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Von Neumann’s inequality states that for a contraction T acting on a Hilbert

space H

(v) IIp(T) ll <_ sup {Ip(z) I: Izl < }

holds for all polynomials p. The analog for a set of comuting contractions

{TI, ,Tn},

lp(T Tn) ll < sup {Ip(zl z )I: z < I}
n i

is known to be false for n > 2. In fact, for any c > o, there exist {TI,...,Tn}
where n is sufficiently large, and a polynomial p such that

ll(P(Tl,...,Tn) ll > c sup(Ip(zI ,Zn) l:Iz+/-l < , (2)

In this note we establish the following weakened version of (Vn):
PROPOSITION I. Let {TI,...,T } be co,muting contractions on a Hilbert space H.

n

Then for any polynomial p,
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llP(Tl,...,Tn) ll < sup {Ip(zl, Zn) l:Izll < n1/2},

i.e., Dn {(Zl’ ’Zn) Izi < n1/2} is a spectral set for (TI,.. ,Tn)
Our proof is an easy consequence of the following proposition.

PROPOSITION 2 (3 1.9.2). Let {SI S be commuting contractions with
n

n 2

i_Z_l II sill < i. Then {Sl,...,Sn} has a commuting unitary dilation (in fact

a regular one) and it therefore follwos immediately that {Sl,...,Sn} satisfies

PROOF OF PROPOSITION i. Given {TI,...,Tn} let S.1 n-1/2 Ti’ i l,...,n.

n 2 -i I[r+/-l 2
Then Z [I s n < i so (v) holds for {SI S

i--I i i--i n n

(n1/2z
IGiven any polyno.al p(zl,...,Zn) let q(zl,...,zn) p ’’’’’n’Zn)"

Then

I]P(TI’’’’’Tn) I] l]p(n1/2Sl’’’’’n1/2Sn

lq<sx ,Sn)

sup {lq(wl,...,Wn) l: lwil < i}

sup {Ip(nwl,...,n%n) lwil < l}

sup {[p(zl,...,Zn) l:lzil < n1/2}

COROLLARY 3. (see (i) p. 279). Any set {T
I T of commuting contractions

n

on H has the polydisc D :Izil <
n (Zl,... zn) n as a complete spectral set.

PROOF. By proposition 2, there exist commuting unitary operators UI,...,Un on

a Hilbert space K containing H such that q(Sl, Sn) P q(UI,...,Un) for all

polynomials q, where S. n- To and P projects K onto H. Setting N
i

n U
i

we have that {NI,...,Nn} is a normal dilation of {Tl,...,Tn with joint spectrum

sp(N) contained in the boundary of D and the corollary follows as in (i).
n

Similarly, it follows that Da {(zl’’’’’Zn):Izi < ai} is a complete

-2
spectral set for all commuting contractions {TI,...,T if Z a < i

n i
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Since the common intersection of such D is the unit polydisc D, which is nota

in general a complete spectral set since (Vn) can fall if n >_ 3, we have

COROLLARY 4. If {TI,...,Tn} is a set of commuting contractions such that the

intersection of any two complete spectral sets is also a complete spectral set,

then the unit p.olydisc D is also a complete spectral set.

We note that von Neumann’s original paper (4) showed that for a single con-

traction the intersection of two spectral sets need not be a spectral set.

Since (vn) holds for n 2, we see that proposition i is not the best

possible result. This prompts the following

PROBLEM. Find

V(n) inf{r: llp(Tl,...,Tn)l < sup {Ip(zl,...,zn) l:Izll < r}}

We note that Theorem 1.2(b) of (2) yields information concerning the growth

of V(n) as n increases. Since

ssup {Ip(zI z )l:Iz < r} r sup {Ip(z) l:Iz in i
< i} for homogeneous poly-

nomials of degree s, we have for any > o, V(n) n
(1/4-e)

for n sufficiently

large.
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