A NOTE ON STRICTLY CYCLIC SHIFTS ON ℓ_{p}

GERD H. FRICKE
Department of Mathematics Wright State University Dayton, Ohio 45431

(Received June 28, 1977)

ABSTRACT. In this paper the author shows that a well known sufficient condition for strict cyclicity of a weighted shift on ℓ_{p} is not a necessary condition for any p with $1<p<\infty$.

1. INTRODUCTION.

For $1 \leq p<\infty$ let ℓ_{p} be the Banach space of absolutely p-summable sequences of complex numbers. Let S_{α} denote the weighted shift on ℓ_{p} with weight sequence $\alpha=\left\{\alpha_{n}\right\}_{1}^{\infty}$ defined by $S_{\alpha}\left[\sum_{n=0}^{\infty} x_{n} e_{n}\right]={ }_{n=1}^{\infty} \alpha_{n} x_{n-1} e_{n}$. Let $\beta_{0}=1$ and $\beta_{n}=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$ for all $n \geq 1$. (For more detail we refer the reader to [2] and [3]).

Mary Embry [1] showed that for $p=1$ the weighted shift S_{α} is strictly cyclic if and only if

$$
\begin{equation*}
\sup _{n, m}\left|\frac{\beta_{n+m}}{\beta_{n} \beta_{m}}\right|<\infty . \tag{1.1}
\end{equation*}
$$

Edward Kerlin and Alan Lambert [2] considered the natural extension to (1.1) for the case $1<p<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{equation*}
\sup _{n} \sum_{m=0}^{n}\left|\frac{\beta_{n}}{\beta_{m} \beta_{n-m}}\right|^{q}<\infty \tag{1.2}
\end{equation*}
$$

and showed (1.2) implies S_{α} is strictly cyclic on ℓ_{p}. They also proved that (1.2) is necessary if the weight sequence α is eventually decreasing.

This strongly suggested that (1.2) is a necessary and sufficient condition for strict cyclicity. However, we will show in this paper that (1.2) is not a necessary condition for S_{α} to be strictly cyclic for any p with $1<p<\infty$. 2. PROOF.

To preserve the clarity of the proof we will consider the cases $1<p \leq 2$ and $2<p<\infty$ separately.
(a) Let $1<p \leq 2$ and let q be such that $\frac{1}{p}+\frac{1}{q}=1$. Let $\left\{n_{k}\right\}_{1}^{\infty}$ be a sequence of rapidly increasing positive integers, e.g., choose $n_{1}=10$ and $n_{k}=\left(10 n_{k-1}\right)^{10 q n_{k-1}}$ for $k>1$.
We now define the weight sequence $\alpha=\left\{\alpha_{i}\right\}_{1}^{\infty}$ by $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n_{1}}=1$ and for k > 1

$$
\alpha_{i}=\left\{\begin{array}{lc}
n_{k}^{-1} & \text { if } n_{k-1}<i \leq n_{k}-n_{k-1} \\
n_{k-1}^{-1} & \text { if } n_{k}-n_{k-1}<i \leq n_{k}
\end{array}\right.
$$

Clearly, $\alpha_{n_{k-1}+1}=\alpha_{n_{k-1}}+2=\ldots=\alpha_{n_{k}-n_{k-1}}$ and $\alpha_{n_{k}-\ell+1} \leq \alpha_{\ell}$ for $1 \leq \ell \leq \frac{n_{k}}{2}$. Thus, for $0<m<n_{k}$

$$
\frac{\beta_{n_{k}}}{\beta_{m} \beta_{n_{k}-m}}=\frac{\alpha_{n_{k}-m+1} \alpha_{n_{k}-m+2} \cdots \alpha_{n_{k}}}{\alpha_{1} \alpha_{2} \ldots \alpha_{m}} \geq \frac{\alpha_{n_{k}} n_{k-1}+1 \ldots{ }^{\alpha_{n}}}{\alpha_{1} \alpha_{2} \ldots \alpha_{n_{k-1}}} \geq\left(\alpha_{n_{k}}\right)^{n_{k-1}}
$$

Therefore,

$$
\sum_{m=1}^{n_{k}^{-1}}\left|\frac{\beta_{n_{k}}}{\beta_{m}^{\beta} n_{k}-m}\right|^{q} \geq n_{k}\left(\alpha_{n_{k}}\right)^{q n_{k-1}}=n_{k} n_{k-1}^{-q n_{k-1}} \rightarrow \infty \text { as } k \rightarrow \infty .
$$

Hence,

$$
\sup _{n} \sum_{m=0}^{n}\left|\frac{\beta_{n}}{\beta_{m} \beta_{n-m}}\right|^{q}=\infty .
$$

We now show that S_{α} is strictly cyclic. It is known that $S_{\alpha}[2]$ is strictly cyclic if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\sum_{m=0}^{n} \frac{\beta_{n}}{\beta_{m} \beta_{n-m}} x_{m} y_{n-m}\right|^{p}<\infty \text { for all } x, y \varepsilon \ell_{p} \tag{1.3}
\end{equation*}
$$

Obviously, for $0<m<n$

$$
\frac{\beta_{n}}{\beta_{m} \beta_{n-m}}=\frac{\alpha_{n-m+1} \cdots \alpha_{n}}{\alpha_{1} \alpha_{2} \cdots \alpha_{m}} \leq \alpha_{n}
$$

and $\frac{\beta_{n}}{\beta_{m} \beta_{n-m}}=1$ for $m=0$ or $m=n$.
Thus,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|\sum_{m=0}^{n} \frac{\beta_{n}}{\beta_{m} \beta_{n-m}} x_{m} y_{n-m}\right|^{p} & \leq \sum_{n=0}^{\infty}\left\{\left|x_{0} y_{n}\right|+\left|y_{0} x_{n}\right|+\sum_{m=1}^{n-1} \alpha_{n}\left|x_{m} y_{n-m}\right|\right\}^{p} \\
\leq & \sum_{n=0}^{\infty}\left\{\left|x_{0} y_{n}\right|+\left|y_{0} x_{n}\right|+\alpha_{n}\|x\|_{2}\|y\|_{2}\right\}^{p}<\infty \\
& \text { since } \alpha, x, y \varepsilon \ell_{p} .
\end{aligned}
$$

Hence (1.3) holds and S_{α} is strictly cyclic.
(b) Let $2<p<\infty$ and let $\frac{1}{p}+\frac{1}{q}=1$. Let $\left\{n_{k}\right\}_{1}^{\infty}$ be a sequence of rapidly increasing integers, e.g., choose $n_{1}=10$ and n_{k} such that

$$
\sum_{n=1}^{n_{k}} \frac{1}{n} \geq\left(10 n_{k-1}\right)^{10 n_{k-1}} \text { for } k>1
$$

Define $\left\{d_{i}\right\}_{1}^{\infty}$ such that $\prod_{i=1}^{n} d_{i}=n^{-\frac{1}{q}}$ for $n=1,2, \cdots$ and define $\left\{s_{k}\right\}_{1}^{\infty}$ by $s_{1}=10$ and $s_{k}=2 s_{k-1}+2 n_{k}$ for $k>1$.

We now define the weight sequence $\alpha=\left\{\alpha_{i}\right\}_{1}^{\infty}$ by $\alpha_{1}=\ldots=\alpha_{s_{1}}=1$ and for $k>1$,

$$
\alpha_{i}=\left\{\begin{array}{lll}
n_{k}^{-2} & \text { if } & s_{k-1}<i \leq s_{k-1}+n_{k} \\
n_{k}^{-2} \quad d_{s_{k}-s_{k-1}}-i+1 & \text { if } & s_{k-1}+n_{k}<i \leq s_{k}-s_{k-1} \\
n_{k-1}^{-2} & \text { if } & s_{k}-s_{k-1}<i \leq s_{k}
\end{array}\right.
$$

Now, for $s_{k-1}<m<\frac{s_{k}}{2}$,

$$
\begin{aligned}
\frac{\beta_{s_{k}}}{\beta_{m} \beta_{s_{k}-m}}=\frac{\alpha_{s_{k}-m+1} \cdots \alpha_{s_{k}}}{\alpha_{1} \alpha_{2} \cdots \alpha_{m}} \geq \frac{\alpha_{s_{k}-m+1} \cdots \alpha_{s_{k}-s_{k-1}}}{\alpha_{s_{k-1}+1} \cdots \alpha_{m}}{ }^{-2 s_{k-1}} & \geq n_{k-1}^{-2 s_{k-1}} \underset{m_{i=1}^{m-s_{k-1}}}{ } d_{i} \\
& =n_{k-1}^{-2 s_{k-1}}\left(m-s_{k-1}\right)^{-\frac{1}{q}}
\end{aligned}
$$

Thus,

$$
\left.\begin{gathered}
s_{k} \\
\sum_{m=0} \\
{ }^{\beta} s_{k} \\
\beta_{m}^{\beta} s_{k}-m
\end{gathered}\right|^{q} \geq n_{k-1}^{-2 q s_{k-1}} \sum_{i=1}^{n_{k}} i^{-1} \geq n_{k-1}^{-10 n_{k-1}} \sum_{i=1}^{n_{k}} i^{-1} \rightarrow \infty \text { as } k \rightarrow \infty
$$

Hence,

$$
\sup _{n} \sum_{m=0}^{n}\left|\frac{\beta_{n}}{\beta_{m} \beta_{n-m}}\right|^{q}=\infty .
$$

We now show that

$$
\sum_{n=0}^{\infty}\left|\sum_{m=0}^{n} \frac{\beta_{n}}{\beta_{m} \beta_{n-m}} x_{m} y_{n-m}\right|^{p}<\infty \quad \text { for all } x, y \varepsilon \ell_{p} .
$$

If $s_{k-1}<n<s_{k}-s_{k-1}$ and $0<m<n$ then, $\quad \frac{\beta_{n}}{\beta_{m} \beta_{n-m}} \leq n_{k}^{-2}$.

Let $h=\min \{m, n-m\}$ then, for $s_{k}-s_{k-1} \leq n \leq s_{k}$ and $0<m<n$,

$$
\frac{\beta_{n}}{\beta_{m} \beta_{n-m}} \leq n_{k-1}^{-2} h^{-\frac{1}{q}}
$$

Thus,

Let $\delta=\frac{p}{p-2}$ then $\delta>q$ and $\frac{1}{\delta}+\frac{2}{p}=1 . \quad$ Let $M=\left(\sum_{m=1}^{\infty} 2 m-\frac{\delta}{q}\right)^{\frac{1}{\delta}}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)^{\frac{2}{p}}<\infty$.

Then,

$$
\left.\begin{array}{cc|cc}
\sum_{k=2}^{\infty} & s_{k} & \sum_{n=s_{k}-s_{k-1}}^{n-1} & \sum_{m=1} \\
\beta_{m} \beta_{n-m}
\end{array} x_{m} y_{n-m}\right|^{p}
$$

$$
\leq \sum_{k=2}^{\infty} \sum_{n=s_{k}-s_{k-1}}^{s_{k}}\left(\sum_{m=1}^{\infty} n_{k-1}^{-2} h^{-\frac{1}{q}}\left|x_{m} y_{n-m}\right|^{p} \text {, where } h=\min \{m, n-m\}\right.
$$

$$
\leq \sum_{k=2}^{\infty} \sum_{n=s_{k}-s_{k-1}}^{s_{k}} n_{k-1}^{-2 p} M^{p}<\infty .
$$

Combining (1.4) and (1.5) we obtain that (1.3) is satisfied. QED

References

1. Embry, Mary. Strictly Cyclic Operator Algebras on a Banach Space, to appear in Pac. J. Math.
2. Kerlin, Edward and Alan Lambert. Strictly Cyclic Shifts on ℓ_{p}, Acta Sci. Math. 35 (1973) 87-94.
3. Lambert, Alan. Strictly Cyclic Weighted Shifts, Proc. Amer. Math. Soc. 29 (1971) 331-336.

KEY WORDS AND PHRASES. Strictly cyclic shifts, absolutely p-summable sequence, ℓ_{p}-space, cyclic operator algebras.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES. $40 H 05$.

