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ABSTRACT. Let p and q denote the number of vertices and edges of a graph G,

respectively. Let A(G) denote the maximum degree of G, and G the complement of

G. A graph G of order p is said to be pancycllc if G contains a cycle of each

length n, 3 < n < p. For a nonnegative integer k, a connected graph G is said

to be of rank k if q p i + k. (For k equal to 0 and i these graphs are

called trees and unlcycllc graphs, respectively.)

In 1975, I posed the following problem: Given k, find the smallest positive

integer Pk’ if it exists, such that whenever G is a rank k graph of order p <_ Pk
and A(G) < p 2 then G is pancyclic. In this paper it is shown that a result by

Schmeichel and Hakiml (2) guarantees that Pk exists. It is further shown that for

k 0, i, and 2, Pk" 5, 6, and 7, respectively.

i. INTRODUCTION.

Throughout this paper the terminology of Behzad and Chartrand (i) will be
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followed. In particular, p and q shall denote the number of vertices and

edges of a graph G, respectively. We let A(G) denote the maximum degree of

G and G denote the complement of G.

A graph G of order p is called pancyclic if G contains a cycle of each

length n, 3 < n < p. For a nonnegative integer k, a connected graph G is said

to be of rank k if q p i + k. Here the number k gives the number of

independent cycles in G. When k equals 0 or i these graphs are called trees

or unicyclic graphs, respectively.

In this paper we explore the following idea: if G is a graph having,

in some sense, little cycle structure relative to its order, then perhaps G

will have a great deal of cycle structure. As an example, consider the graph

shown in Figure i. This graph is a tree, i.e., a connected graph having no

cycles. On the other hand note that its complement is pancyclic.
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Figure i. A tree...and its pancyclic complement

In 1975, after obtaining the results for k 0, i, and 2 which are

presented here, I posed the following problem: Given k, find the smallest

positive integer Pk’ if it exists, such that whenever G is a graph of rank

k of order p > Pk and A(G) < p 2, then G is pancyclic. Recently, J. A.

Bondy has pointed out that the existence of Pk is guaranteed by the

following result due to Schmeichel and Hakimi [2].
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THEOREM. Let G be a graph with p vertices, q edges, and minimum

degree 6 > 2. If

q >

2
(p (26 + l)p + 32 + 6),

(p ( + )p + a6)- + 6),

(3p 8p + 5) + 6,

(3p 10p + 16) + 6,

then G is pancycllc.

2 < 6 < + and p odd
6

2 < 6 < and p even6

p+5 < 6 <E and p odd

p+8 < <_ and p even

2

COROLLARY. Let k be a nonnegatlve integer. Then there exists a

positive integer Pk such that whenever G is a graph of rank k of order

P >Pk and A(G) < p- 2, then G is pancyclfc.

PROOF. Let G be a graph of rank k with A(G) < p 2. If G has p
2

vertices, then has p vertices, q p 3p + 2 k edges and minimum
2

degree 6 > 2. Depending on the value of 6, the requirements for q given

by the theorem would yield the following inequalities:

(2 2)p > 362 + 6 + 2k 2

2
p 4p > 8k + 86 3

2
p 2p > 8k + 86 + 8

2
p -6p >4k- 4

Note that each of the above inequalities is true provided that p is large

enough. Hence we can choose Pk to be the least positive integer which makes

all the above inequalities true.

The above theorem yields an upper bound for Pk; however, in the known

cases it does not give us a very good bound. For example, the theorem
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< I0 whereas we will show that P2would tell us that P2- 7. In the

remainder of the paper we show that for k--0, i, and 2, Pk 5, 6, and 7,

respectively.

2. MAIN RESULTS.

THEOREM 1. If G is a tree of order p > 5 with A(G) < p 2, then

G is pancyclic.

PROOF. The proof is by induction on p. If p 5, then G is a path

on 5 vertices. Thus G C
5
+ e and so clearly G is pancycllc. Now let

p > 6, and assume the result holds for all trees of order less than p.

Let G be a tree of order p with A(G) < p 2. If A(G) < p 3, let v be

an end vertex of G. If A(G) p 3, then unless G is the graph of

Figure i, we may choose v to be an end vertex adjacent with the unique

vertex of degree p- 3. Now consider G- v, which is a tree of order

p 1 with A(G v) < (p i) 2. Hence by the induction hypothesis,

G- v has a cycle of each length n, 3 < n < p i. Therefore so does G.

Since degGv p- 2 > p i
2

v must be adjacent in G to two consecutive

vertices on the (p-l)-cycle in G- ’v. Thus this cycle can be extended in

to a cycle of length p. Therefore, is pancyclic. Now by induction

the proof is completed.

COROLLARY i. If G is a forest of order p > 5 with A(G) < p 2, then

G is pancyclic.

PROOF. Note that there exists a tree H with A(H) < p 2 containing

G as a spanning subgraph. Since H is pancyclic and H

_
G, G is pancyclic.

THEOREM 2. If G is a unicyclic graph of order p > 6 with

A(G) < p 2, then G is pancyclic.

PROOF. Let uI, u2, un
denote the cycle vertices of G. Among

the vertices ul, we will choose one of minimum degree in G; call it u.
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CASE i Suppose n > 4 Then deg u < 2 + p 4 p + 4 Note that
4 4

p + 4 < p i provided that p > 6 If A(G) p 3, notice that we can4 2

choose u so that A(G u) p 4 unless G is the graph of Figure 3a. Now

since G u is a forest, G u is pancyclic by Corollary i. Since u is

adjacent in to two consecutive vertices on the (p-l)-cycle of "G u,

this cycle can be extended to a p-cycle in G. Therefore, G is pancycllc.

CASE 2. Suppose n 3. First, suppose that if A(G) p 3 deg v,

then v is one of the 3 cycle vertices. Then we know that A(G u) < p 4.

Now deg u_< 2 + p 3 p + 3
If deg u < p i

3 3 2
we can proceed Just as in

Case i. This will happen if p > 9 or if p 8. If it does not happen then

G must be one of the graphs shown in Figures 3b d, all of which have

pancycllc complements. Secondly suppose that A(G) p 3 degGv and

v is not a cycle vertex. Then G is the graph of Figure 2.

u

v

Figure 2

If p > 8, we can remove u and proceed as above. If p 6 or 7, we again

get special case graphs, which can be shown to have pancycllc complements.
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a,

b. p-9

c. p= 7

d. pffi6

Figdre 3

COROLLARY 2. If G is a graph of order p _> 6 with A(G) < p 2 and

G contains exactly one cycle, then G is pancycllc.

The five-cycle C
5 is a unicyclic graph on 5 vertices which, does not

have a pancycllc complement. This shows that Pl" 6. The graph shown in

Figure 4 is a rank 2 graph of order 6 whose complement does not contain

a 3-cycle. Hence P2 > 7. Our final result shows that indeed P2 7.
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Figure 4

THEOREM 3. If G is a graph of rank 2 of order p > 7 with

A(G) < p- 2, then G is pancyclic.

PROOF. We consider three cases.

CASE i. G has a cycle with a diagonal. Let u_, u^, u be the
n

cycle vertices of G, n > 4, and suppose UlUi is the diagonal of the cycle,

3 < i < n- i. First, suppose A(G) < p 3. Choose a cycle vertex u

which has the smallest degree in G among the cycle vertices Then

4 Note that
p + 6 < if p > 8 Also there does not4

exist a rank 2 graph on 7 vertices with A(G) 3 and deg u
i 3, i_< i_< n.

Thus p > 7 implies degGu < p lJ2 Now by Corollary 2, G- u is

pancyclic. Since u is adjacent in G to more than half the other vertices,

G is pancyclic. Secondly, suppose A(G) p 3 and p > 8. Then we either

choose u as above or of degree 3 in G in such a way that A(G u) p 4.

Since 3 < p i < p i
2 degGu 2 and so we argue as before. Lastly we must

consider the case where p 7, A(G) 4, and there does not exist a vertex

u with degGu 2 and A(G- u) 3. In this case G must be one of the

graphs shown in Figure 5, all of which have pancyclic complements.
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Figure 5

CASE 2. G has the following configuration as a subgraph.

Again let u be a cycle vertex of smallest degree. Then

2+P -35,u#v
< .p+7 p-i

degGu
4+P_13

5 < 2

5
u mv

Also if 6(G) p 3, then clearly it is possible to choose u so that

A(G- u) p 4. Hence we may argue as before.

CASE 3. G contains the configuration of Figure 6.

Figure 6
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Choose u as before. Then

2+P- 4
6

u {Vl,V2}
degGu <

3+P-106 u {Vl,V2}

p+8< p- I
6 2

If A(G) p 3, then deg v
i

p 3 for i I or 2 but not both, and all

other cycle vertices have degree 2. Hence we may choose u so that

A(G- u) p 4 and proceed as before.
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