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ABSTRACT. Some inequalities for the Wallis functions are proved. The results
of this paper are consequences of some characterization of convex functions.

A generalization of a result of Boyd (1) and an extention of an inequality

of Gantschi (3) are obtained.
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The aim of this note is to show that some inequalities for the Wallis
function

WE, 0) = TETE L (6, 0 e R x (0, D), e

are natural consequences of the property of convex functions or of differ-

entiable functions. Indeed, our results are, to some extent, consequences
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of the following characterization of convex functions.
THEOREM 1. A real-valued function ¢ is convex on a closed interval
IR if and only if for every point x, € f, the function

$(x) = ¢(x,)

X -» x_xo N xef, (2)

is non-decreasing on I. In particular, if ¢ is convex on I, u # v, x # y,

u<x, v<y, for all u, v, x, y € I, then

2 - ¢(uw) . $(¥) = ¢(x) 3)

v-u - y - x

The proof of the theorem is well known; see for example, ([3], pp. 15-18).
It is, therefore, omitted.
THEOREM 2. Let u, v, X, y w and z be positive real-numbers satisfying
ufv,wfz,u<x<w, x<y<zandv<y.
Then the following inequality is valid
y-x 2.:;25

v-21u w
[?gvz] < [ (z) %)
I'(u) - T(x) T (w)
PROOF. Since the function n -+ logl'(n), n ¢ R+, is convex, it follows

from inequality (3) that

logl(v) - ;Agr(u) logl'(y) - logl(x) < logl'(z) — logl'(w) , (5)

vV-u y - x z - W
provided u, v, x, y, w and z satisfy the hypothesis of the theorem. Since
inequality (5) is equivalent to inequality (4), the proof of the theorem is

complete.

COROLLARY 1. For (&, 6) ¢ R, x [0, 1], we have

- I'm+ & +1) 1-6
(m+€)leir(m+g+e)f_(m+§+6) , me Z. (6)
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PROOF. Set u=m+§, v=m+E+1, x=m+E+6, y=m+£+1,
we=m+f+06and z=m+ & + 1+ 6.
Then inequalities (5) reduce to inequalities (6).

The case £ = 0 and 0 < 6 < 1 is due to Gautschi ([3], § 3. 6. 51).

Inequalities (6) in the form

1 < T(m+ &+ 6) < 1

were obtained by Lazarevié and Lupas [2] who made use of the fact that the
Gamma function is logarithmic convex and an unpublished result of Lupas
on inequalities involving the Gamma function.

We now prove a more general result which contains, as a special case,

an imporved version of Boyd's result [1], namely,

1.2
+3)
1 1 % @+ m+3 3
{m+_l:+32m+32} < r(m+l) < N T} - N
2 4 32m + 32

We first obtain the following results on differentiable functions:
THEOREM 3. Let ¢1 and ¢2 be two differentiable real-valued functions
on an open interval S in R. Let x, y, u, ve S, x#y, u# w. Then there

exists n ¢ (0, 1) such that for every positive real number o,

y - x v-u

tan® o e+ %@ - X)) - oyt - udl. (8)
PROOF. Consider the function

FO) = 5= 4, + 270 - 0) - LF 9, + 2% W - w).
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This function is differentiable on [0, 1]. By the usual Mean Value Theorem
for differentiable functions, we obtain the desired conclusion.

THEOREM 4. Let ¢ be a differentiable real-valued function on an open
interval S in R and let ¢' be non-decreasing on S.
Suppose u, v, X, y €S, u¥ v, x ¥ y and either x > u, v >y or x < u,

v <y. Then, for some a € z, (the set of positive integers) such that

A-nME-w+n'y-v)20,0<n<1,a>a, )
we have
o0 = ¢ , 4(v) - ¢(u) (10)
y-Xx - v-u

We note, however, that inequality (10) is valid if x > u, y > v and ¢
is an arbitrary positive real number.

PROOF. Let ¢l = ¢2 = ¢ in Theorem 3. The assumptions on x, y, u and v

X ~-u

is an arbitrary real number between 0 and 1.
-utv-y

imply that "

X - u

Suppose © <N < T Fv -y

< 1. Then, for all a € Z+,

X - u

a X=-u
< ———— e
XxX-u+v-y

x-u+v-y < n < 1, there exists

. If, however, 0 <

X = u

< ——
fx-u+v-y Hence, in

a
a, € Z+ such that for all o 20, ace Z+, n

either case, (1 - na)(x -u) + na(y -v) >0, for all a € Z+, a>a. The
conclusion follows by Theorem 3 and the non-decreasing character of ¢'.

We remark on passing, that inequality (10) is strict unless ¢ is a con-
stant or linear function. Furthermore, inequality (10) is reversed if ¢ is
non-increasing.

COROLLARY 2. Let ¢ be a twice differentiable real-valued convex function
on an open interval S in R. Let x, y, u and v satisfy the conditions of
Theorem 4. Then inequality (10) holds if inequality (9) is valid. The

inequality is reversed if ¢ is concave.
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PROOF. Since ¢ is convex on S, ¢" is non-negative on S. Hence ¢' is
non-decreasing on S. If, however, ¢ is concave, ¢' is non-increasing on S.
Consequently, the conclusion of the corollary follows from Theorem 4.

An immediate consequence of the above corollary can be obtained by
specializing ¢. For example, if we take ¢(a), a € R+, as logl'(c), then this
function satisfies the condition of Corollary 2. Consequently, if inequality

(9) holds and x, y, u, v satisfy the conditions of Theorem 4, we have

Y'_X
For m > - %3 let Y € R - {0} be such that n = %3 o <n<1l, Put
X=m+ 53 y=m+1l, u=m+ 6(m) and v=m+ 1 +°6(m) where %-j_e(m) < %u

Since x - u >0, y - v <0 and l-< 6(m) < l3 inequality (11) holds if
4 — 2
1- o >¥=J 5,

and only if for some positive integer «a,

w T X-u-—
Hence
¥ + a
@+o@ < ZEBED yp Loom - &1, 0B <.
1 4 2 Y 2
I‘(m+7)
Letting a + =, we get
T'(m + 12 1f L. 8(m) < L (12)
(m+e(m))< 4 — -2
T'(m +—)
Now write v=m+ 1, u=m + %3 y=m+ 1+ 6(m) and x = m + 6(m). Then
X=-u<0and v-y <0. Consequently, inequality (11) holds if and only if
o
1—'Q—'L < 1 < Y=Y, Equivalently,
n - - X-1u
@+ o)’ > et D), 13)
I‘(m +§)
provided
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a condition which reduces to 6(m) = %—.

Combining inequalities (12) and (13), we obtain

@+o@’ <I@*D Lo L (14)
P(Ill'f'i)

The converse of this result was obtained by Watson {4], namely, if

Y
M- (m + 6(m)) , thenl<e(m) <L for m>—l and
I‘(m+l) 4= =2 - 2
2
%—ie(m) i—:IL-I— for m > 0.
Formi--;-'-, -2—'< 6 (m) i%—, we obtain
1 1,2
I(m+ 1) mt+3 (m+3) %
I'm+3) rm+d  m+lxo +l)}’
2 nT2 2 n T2
T'm+ 1)

Hence, this inequality and inequality (14) combined yield

1.2
i (m + %) "
weo@)’ < @EL T as)
I'm+ %) m+5+o@m+3)
1 1

wherez < 6(m) <7

Taking 6 (m) = % + m, m=1,2,...., ve obtain inequality (7).
On putting 6(m) = % + 1 36 » Ve obtain an inequality due to

32m + 8 + e

Siavic ([5], inequality (12)).
A result which is better than any one known, except for the formula (15) of

Slavic's paper [5] is obtained by putting
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e(m)-%-+ 1 36 .
32m+8+m

It is our conjecture that formula (15) of Slavic's paper [5] can be obtained
from our general result, namely inequality (15), by appropriate choice of

o= [-3 = » B 3.
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