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ABSTRACT. In [1] E. L. Reiss obtained a multivariable expansion of the problem

L[y] y" + 2y’ + y 0, t > 0; y(0;) 0, y’(0,) 1 by means of a tech-

nique which does not employ the traditional method of using a secularity con-

dition in obtaining higher order approximations. In this paper Reiss’ tech-

nique is formalized and new results are established.

O. INTRODUCTION.

Consider the problem

L[y] y" + 2zy’ + y 0, (’ ) t >0; (0.1)

y(0;c) V, y’(O,c) . (0.2)

where y and are constants independent of e. This problem will be referred

to as (PI). We seek a formal expansion of the form
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M
y eJ/ RM(t;(to ...,tN) + e)

J=O

where the time scales are defined by

(0.3)

t. Jt, j O, i, N

J
Our task is to determine the coefficients y so that (0.3) constitutes a

(0.4)

"generalized uniform asymptotic expansion" in an interval o t. Definitions

to be given later will make clear the nature of these expansions.

When (0.5) and (0.4) are substituted into (0.1) we get an expression

of the form

M+2N
L[y] Z

:o J+k:
0<J<M

o (o.s)

where

J
0ilk<0Zk

J J
Z
J

+ yo=Ytt
o o

J + 2YJtk_l 1 < k < N+I (0.6)J r. Yt.tZk i+j=k ] i
o<_, j <_N

N+2 < k < 2NJ r. YJt. t
i+j=k ] z

o<_, j <_N
J

0 ,k>2NZk

J eTo determine the y s we set the coefficients of to zero for 0, M

while M successively assumes the values 0, I, 2 The solutions of the re-

sulting equations involve arbitrary functions of N variables which must be

found by imposing additional conditions. These conditions are supplied by

M+1 M+N
further setting the coefficients of e e to zero. Finally, to make

the coefficients determinate (0.5) is substituted into (0.2) and the initial
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J
values of the y s are chosen so that (0.2) is satisfied as "closely" as possible.

Specifically, when (0.3) is substituted into (0.2) we get

M J - RMy Z eJy (0) + (0)
J=o

and

M+N J dRM6-- r. e 7. Ytk (0] + (0)
=0 J+k=

0<J<M
0<k<N

where (0) denotes the vector (0, 0,..., 0) corresponding .to to t I tN

0. Equating the coefficients of like powers of e in the above as far as

possible we obtain

o () o

o

J J
y (0) 0; J+k=Z Ytk (0) 0; J, 1,...,M

0<J<M
0<k<N

(0.8)

At the end of the formal process we are left with the following problem

for the error term"

M+2N
L[RM] rM(t;e) 7, [ 7. J

=M+N+ 1 J+k= Zk
0<_J<_

(0.9)

M+NdR
M yMRM(0) 0, d-X- (0) z

=M+1 J+k= Ytk
0<J<M
0<k<N

(0.10)

JIn this analysis we delineate explicitly the form of the coefficients y and

establish the uniform validity of the formal expansions over the infinite

interval [0,). Estimates of the magnitude of the error are made from (0.9)

and (0.10).



164 W.C. OBI

i. GENERAL DEPENDENCE OF COEFFICIENTS ON TIME SCALES

By setting the coefficients of e to zero in (0.5) for 0, M,

...,M+N as M ranges through the values 0,1,2,... it can be shown that for each

J we obtain

JZ
k O, k 0,..., N-I (1.1a)

J { o ZJ-1}ZN ZJ+N + +
N+I (l.lb)

The (N+I) equations in (1.1) give the dependence of yJ on the time scales to’

t I tN respectively. It is worth noting that dependence on t tN_o’ 1

is the same for each J. We will now solve these equations to get the coeffici-

J
ents y If we assume that N is infinite, then we can explore the dependence

of y on t t
I t

2
by solving Z

J J J
o’ o Zl Z2 0. From (0.6) we

obtain the first four equations"

J J
Yt t

o o

J J

YtotI
+ Yto 0 (1.3)

J J J
2Yt t

+ Yt t +2y
t

0 (1.4)
o 2 1 1 1

J J J
2Yt t

+ 2Yt t
+ 2Yt 0 (i.5)

o 3 1 2 2

The equations can be solved one after another. From (1.2) we get

it -itJ A1 o 1
,t

2 )ey (tl,t2,...)e / B (t 1 (1.)

Now substitute (1.6) into (1.3) and require that (1.3) be satisfied identically.

We obtain

A1 A2(t2,t3,...)e-tl 1 B
2 -tlB (t2,ts,...)e
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Hence

j -tI IA2 it
B2

-it ]y e (t2,...)e o
+ (t2,...)e o

(1.7)

Similarly, we substitute (1.7) into (1.4) and so on. Proceeding in this manner
Jwe find that y is sinusoidal in t

2 but is independent of t
3 (from (1.S)). If

Jwe carry the process still further we i,d that y is sinusoidal in t
4

but is

independent of t5.

By induction we establish

j -t
I IA i(t +...+a2jy e (t2(j+l),...) e o t2j

-i (t + t
+ a(t2(j+l),...) e o ""+(x2j 2j

j i, 2, (i .8)

and

a 1 e
2 1/2o

1
a2j 2 (a2a2(j-1) + + a2(j-1)a2)’ if j > 2

{1.9)

We have therefore shown, by directly solving the governing differential

Jequations, that when N is infinite the coefficients y are sinusoidal in the

even time scales to, t2, and independent of the odd scales t3, t5

Dependence on t I is exponential as shown in (1.8).

A link between the form (1.8) and the exact solution of (Pl) can be

established. The exact solution is

y ye-t ($+y) -t 2cos e2t +
2

e sin i e t
l-e

(1.10)

The desired link consists in showing from (1.9) and mathematical induction

that a2j is the coefficient of e2j in the binominal expansion of
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That is, we can write a2j alternatively as follows

e2j (-1) j ( I/2j {1.11)

Now let us consider the practical case in which N is finite. As can

be easily seen from (1.1) dependence on the time scales t ...,t will beO’ N-I
exactly as in the case where N is infinite. In order to be able to write

expressions in a compact form, we will modify the definition for 2j when

2j > N. Let

n

N/2 if N is even

(N-I)/2 if N is odd

(I.12)

Then

a2j 0 if j < 0

o i, 2 1/2

c*2j - (a2’2 (j _l)
+ + c*2(j_l)CX2) (-i) j

j

1
O2n+2r -- (a2rC2n + + a2nC2r)

1 2
C2n+2n 2 (a2n)

,2<j<n

,l<r<n

a2n+2r 0 r > n

An immediate consequence of the results already established is that

it -itJ
AJ o BJ oy (tl)e + (tl)e N 1

(I.i)

(1.14)



-tJ
y e

-tJ iy e
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J +" "+2 t
i

(tN) e
i{to (n=l) 2(n-l)

BJ( je

-i(t +...+2 t2 )tN
o (n- i) (n- i)

J
N (>__2) even

/

i(t +. .+a2nt2nJ
{tN} e o

-i {t +.
o "+a2nt

+ B
J
(tN) e 2n)] N(>I) odd

167

(1.IS)

{i.16)

In {I.15) and {i.16) n and the frequencies 2j are given by (1.12) and (i.13),

respectively.

After a lengthy but straightforward algebra it can be established that

-t
y {to,...,tN) e

i{t +

q {tN} e
o "+e2nt2n

-i(t + ..+2nt )Io 2n
+ P (tN)e J (1.17)

q

where P are complex valued polynomials in tN, the last time scale in the set
q

t. EJt, j 0,...,N {1.18)

and n and the a2i are given by (1.12) and (1.13). The degrees of the poly-

nomials depend on both N and J as follows

J/2 if J is even and N is even

{J-l)/2 if J is odd and N is even

J if N is odd

(1.19)

J
The following form of y is sometimes convenient to use-

-t
y (to ,tN) e 2Re{Pq(tN)} cos(t +...+(2nt2nO

21m{Pq{tN)} sin(to+’’’+e2nt2n)] (1.20)
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2. VALIDITY OF THE EXPANSIONS.

We seek a "generalized uniform asymptotic expansion" {see [1] and [3])

in an interval D, which is assumed to be generally finite and possibly infinite.

More specifically, we use the following definition

DEFINITION 1

Let {Sj (t;e)} be a sequence of functions defined for t e D and 0 < e

< e for some e > 0 and let {fj(e)} e / 0, be an asymptotic sequence. Then
O

Z S (t;e) is a generalized Uniform asymptotic expansion of y(t;e) in D to
j=o
(M+l) terms if the remainders satisfy

k
Rk(t;e) y(t;e) Z S (t;e) 0(

j=o J fk+l (2.1)

for each km {0,1,... ,M}.

In our analysis the element of the sequence, Si(t;e) will be in the

eJ J k
form y (to,...,tN) and fk e We wish to show that

M JJY, y (to,...,tN)

is a uniform asymptotic expansion of the solution of (P1) in the sense of

(2.1) where the interval D is infinite. To do this we need estimates of

the error terms RM(t;e).
Since L is a differential operator with constant coefficients, an

integral representation of the solution of (0.9) can be obtained by means

of the appropriate Green’s function. With the integral representation

estimates can be made as follows:

(2.2)
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where

and a and are positive constants.

One of the goals of our analysis is to determine the link between [RMI
and the initial conditions of (P1). This is achieved by expressing yM in terms

of those initial conditions. The following lemma gives the required expressions.

Lemma.

dR
M

The quantity d- (0) yM can be written in the following terms

dRM
(0) yM T’ Z M+{2s+I)

d---- e II2s+l e
o<_.s<_.[ (N- 1 ) / 2

l<r< IN/2]
eM+2r,E2r if M is even (2.4)

d--- (0) yM
o E A2s+lo<._s<[ (N- i) / 2

eM+(2s+l)

M+2r+ T Z A2r if M is odd (2.5)
l<_r<_ N/2

The constants E. and A. depend on the quantities 2i" [x] is defined as the

greatest integer less than or equal to x.

The proof of the lemma is lengthy but straightforward and is omitted

for brevity.

Before considering the main theorem, let us introduce an additional

notation which will enable us to state the theorem in a compact form. Define

the function z(t;e) as follows"
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J
z(t;e) Z Z

kJ+k=
O<J<M

(2.6)

Using {2.6) we can rewrite equation {0.9) in the form

M+2N
L[RM] rM(t;e) Y. z(t;)

E=M+N+1
{0.9b)

Now let us state the theorem.

Theorem

If the time scales are given by {0.4), then for N > 1 {0.3) is a

(M+I) term {N+I) time generalized uniform asymptotic expansion of the

RMsolution of (P1) in the interval [0 ) The error (t;s) is bounded in

magnitude as follows"

RM(t;s)] < A1]YM + (B1/e) ]]rM{t;s)]] if M is even

<_ A2lo] + (B2/e) lrM(t;elll, if M is odd (2.7)

where yM and yM are given by (2.4) and {2.5), respectively;e o

M+2N

=M+N+I
(2,8)

and AI, A2, BI, B2 are positive constants.

Proof

From equations (0.9), (2.2) (2.5) we see that the theorem will be

proved if we can show that

Iz ct; )ll II z z
kJ+k=

O<J<M

(2.9)

exists for all t > O. From (0.6) we see that for each , z is a sum of terms

J J J
like y yt

k
and Yt.t. these terms are therefore of the form
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sin(to +2nt2n)

cos(to +a2nt2n) (2. 0)

where q <_M. With tI et and tN eNt it can be shown that the quantities in

(2.10) are bounded by (N-qlqqe-q for t > 0. Therefore Iz (t; )ll exists

(2.7) follows from the lemma and equation (2.2) while (2.8) follows from (0.gb)

and the triangle inequality. Thus the theorem is proved. Q.E.D.

The following corollaries are easily established.

Corollary 2.

If N I, then RM 0(eM+I ) for all M.

Corollary 3.

Let N be greater than 1 and y 0. Then,

(I) RM 0(eM+I) if M is odd

(II) RM 0(eM+2) if M is even

(III) yJ 0 when J is odd and N is even.

Corollary 4.

Let N be greater than 1 and 6 0. Then

(IV) RM 0(eM+2) if M is odd

(V) RM o(eM+l) if M is even

S. GENERAL RESULTS

The first set of results to be presented in this section concerns the

role of the number of time scales in the expansions. We give and clarify the

following results originally stated by Reiss [i]:

There are a minimum number of time scales, namely two,
that are required to obtain a uniform asymptotic expansion. (RI)
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For a fixed number of terms in the expansion three or
more time scales give uniform expansions with the smallest
estimate of the remainder. In particular, three time scales
will always give uniform expansions with the smallest estimate
of the remainder.

(RII)

From (RII) it is seen that there may be no justification in using N>2

(i.e. more than three time scales). However, expansions using N>2 may be de-

sirable for certain purposes as is the case when more accurate frequencies are

desired. Recall the error bound given in (2.7) and (2.8). One of the terms

in this bound consists of a sum of terms of the form

(eN+-q) qqe-q, 0<_qM, M+N+I <_ <_ M+2N

Thus for fixed M this term can be decreased indefinitely by simply

increasing the number of time scales. Only the term depending on the initial

conditions cannot be so diminished. In a given initial value problem (M fixed)

is it legitimate to ask if we can select the least number of time scales which

give the smallest estimate of the remainder. Levine and Lubot [4] and Obi [2]

have explored this question in some detail. The answer is in the affirmative.

In many cases three is the least number, but with certain initial conditions

(which depend upon e) one can indeed increase the accuracy indefinitely by

merely increasing the number of time scales (even for M-0).

We now turn to the role of the odd scales e3t, eSt, in the multi-

time expansions. Reiss had reasoned that since these scales do not appear

in the expansions of the exact solution the multi-time method need be applied

using only the scales

t, t et t
k

e2(k-1)t, k 2,5, Nto 1

The present analysis clearly shows that expansions involving the odd scales
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exist. We reproduce some of them:

o eyl t3) (e2)y y (to,t I t2,t3) + (t + 0
o

-tl 1 [- 1 -tle sin(t - t2) + E; L- t3 e cos(t t
2

+ O(e (3.1)

o 2 2y y (to,...,t3) + eyl(to,.. .,t3) + e Y (to,.. .,t3) + O(e4)

-tl 1 [ 1 -tl 1 )e sin(t t2) + E t3 e cos(t t
2

+ (1 - t ) e sin(t - t2
+ O(e4)

In these expansions y=0, 8=1 and t
k

is given by (0.4). Observe that R

0(E2) and R1 0(2) so that Corollary 3 still holds. This will appear con-

ifusing at first until we further observe that in reality y is "small". Since

-tl 3te-Et -t 0(4). Hencet3e and te is uniformly bounded we see that yl
this term does not improve the order of magnitude estimate of the error. The

approach taken in this analysis has thus revealed a larger class of generalized

uniform asymptotic expansions. The results of [1] can be recovered in one of

two ways. The first is to work with the complete set (0.4) but with N even.

In this case dependence on the odd scales drops out in direct computations.

Another way is to seek expansions of the form

o 2 2(t t3 + 2Y y (to,...,t3) + Y

That is, we assume beforehand that the coefficient with the odd superscript

vanishes. In this case however, we obtain the same expansion as would re-

sult if we used only t ,t t (This should be regarded as a coincidence
o 1’2"

since such results do not carry over when we consider equations with variable

coefficients [2]).
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The role of the initial conditions in determining the approximations is

very interesting. When N(>_29 is even the coefficients yJ, J an odd integer,

are all proportional to y y(0). These coefficients therefore vanish when

0 but not otherwise (constrast Corollaries 3 and 4). The analysis in.[l] con-

sidered only the case y 0 and the incomplete picture thus presented certainly

gave rise to the false impression that the odd coefficients will vanish for

other cases.

Another important set of observations concerning the influence of

the number of time scales is fundamental to the understanding of multi-time

expansions. This analysis shows clearly two kinds of dependence on individual

time scales. The first kind is definitely a property of the differential

equation involved. Thus if we assume that N is infinite only t
o

t
1
and the

even scales appear in our expansions. These scales are precisely those which

will appear in the uniformly valid expansions of the exact solution. The

second kind of dependence may be characterized as a truncation effect. This

is a consequence of using only a finite number of time scales and manifests

itself in the form of polynominals in the last scale, tN. It is due to this

effect that we are able to get a class of expansions involving the other odd

scales. These expansions were not anticipated, and in fact, were discounted

in [1].

4. FINAL PMARKS

The general results reported in this paper are common to a broad class

of generalized uniform asymptotic expansions. The basic feature of the method

reported in [1] is found to be the imposition of secularity conditions by pick-

ing approximations of a certain form. The most general form of such approxi-

mations have been dealt with in [5] and [6] where it has been shown that time
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scales may be derived from the governing differential equation
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