EQUIVALENCE CLASSES OF THE 3RD GRASSMAN SPACE OVER A 5-DIMENSIONAL VECTOR SPACE

KULDIP SINGH
Department of Mathematics
The University of New Brunswick Fredericton, N.B., Canada E3B 5A3

(Received June 10, 1977)

Abstract

An equivalence relation is defined on $\Lambda^{r} V$, the $r^{\text {th }}$ Grassman space over V and the problem of the determination of the equivalence classes defined by this relation is considered. For any r and V, the decomposable elements form an equivalence class. For $r=2$, the length of the element determines the equivalence class that it is in. Elements of the same length are equivalent, those of unequal lengths are inequivalent. When $r \geq 3$, the length is no longer a sufficient indicator, except when the length is one. Besides these general questions, the equivalence classes of $\Lambda^{3} \mathrm{~V}$, when $\operatorname{dim} \mathrm{V}=5$ are determined.

KEY WORDS AND PHRASES. Grassman space, equivalent classes, representation of equivalent classes.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 14 M 15.

Suppose V is a finite dimensional vector space over an arbitrary field F and r is a positive integer. Consider $\Lambda^{r} V$, the rth Grassman space over V. We define an equivalence relation on $\Lambda^{r} V$ as follows: If X and Y are in $\Lambda^{r} V$, we write $X \sim Y$ iff \exists a non-singular linear transformation $T: V \longrightarrow V$ such that $C_{r}(T) X=Y$, where $C_{r}(T)$ is the r exterior product of T. Using the facts, that if T and S are two linear transformations of V, then $C_{r}(T) C_{r}(S)=C_{r}(T S)$ and if T is non-singular, then $C_{r}\left(T^{-1}\right)=C_{r}(T)^{-1}$, it follows that the above relation is an equivalence relation.

We consider the problem of determining the number of equivalence classes, into which the set $\Lambda^{r} V$ is decomposed, along with a system of distinct representatives of these equivalence classes.

DEFINITIONS. 1. If $X \in \Lambda^{r} V$ and $X=x_{1} \wedge$. . . $\wedge X_{r}$, we say X is decomposable.
2. If $X \varepsilon \Lambda^{r} V$, we define its length, to be denoted by $\ell(X)$ as $\ell(X)=\min \{m \mid X$ is a sum of m decomposable elements of $\Lambda^{r} v$ \}.
3. If $X \in \Lambda^{r} V$, we define a subspace [X] of V as $[X]=\cap\left\{U \mid U\right.$ is a subspace of V and $\left.X \varepsilon \Lambda^{r} U\right\}$.
4. If $\mathrm{X} \in \Lambda^{r} \mathrm{~V}$, we define the rank of X to be denoted by $\rho(X)$ as $\rho(X)=\operatorname{dim}[X]$.

PROPOSITION 1. If $X, Y \in \Lambda^{r} V$ and $X \sim Y$, then (i) $\ell(X)=\ell(Y)$, (ii) $P(X)=P(Y)$.

PROOF. (i) Let $T: V \rightarrow V$ be a n.s.l.t. such that $C_{r}(T) X=Y$. If $\ell(X)=s \quad X=\sum_{i=1}^{S} X_{i}$, where $X_{i} \varepsilon \Lambda^{r} V$ and $\ell\left(X_{i}\right)=1$.

Then $Y=C_{r}(T) X=\sum_{i=1}^{S} C_{r}(T) X_{i}$. This implies $\ell(Y) \leq s=\ell(X)$. Similarly $\mathrm{Y} \sim \mathrm{X}$ implies $\ell(\mathrm{Y}) \leq \ell(\mathrm{X})$ and this proves (i).
(ii) We first remark that if U and W are subspaces of V, then $X \varepsilon \Lambda^{r} U$ implies $Y \in \Lambda^{r} T(U)$ and $Y \varepsilon \Lambda^{r} W$ implies $X \varepsilon \Lambda^{r_{T}} \mathrm{~T}^{-1}(W)$, where $T: V \rightarrow V$ is a n.s.1.t. such that $Y=C_{r}(T) X$. From this remark, it follows easily that $[Y]=T[X]$ and hence $P(X)=P(Y)$.

PROPOSITION 2. If U and W are subspaces of V, then $\Lambda^{r} U \cap \Lambda^{r} W=\Lambda^{r}(U \cap W)$.
PROOF. Clearly $\Lambda^{r}(U \cap W) \subseteq\left(\Lambda^{r} U\right) \cap\left(\Lambda^{r} W\right)$. To prove the inclusion in the other direction, let $x_{1}, x_{2}, \ldots, x_{k}$ be a basis of $U \cap W$ and extend it to a basis $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{s}$ of U and a basis $x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{t}$ of W. Then $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{s}, z_{1}, \ldots, z_{t}$ is a basis of $U+W$. If $A=\left\{x_{i} \wedge x_{j} \mid 1 \leq i<j \leq k\right\}, B=\left\{y_{i} \wedge y_{j} \mid 1 \leq i<j \leq s\right\}, C=\left\{z_{i} \wedge z_{j} \mid 1 \leq i<j \leq t\right\}$, $D=\left\{x_{i} \wedge y_{j} \mid 1 \leq i \leq k ; 1 \leq j \leq s\right\}, E=\left\{x_{i} \wedge z_{j} \mid 1 \leq i \leq k ; 1 \leq j \leq t\right\}$, $F=\left\{y_{i} \wedge z_{j} \mid 1 \leq i \leq s ; 1 \leq j \leq t\right\}$, then the sets $A, A \cup B \cup D, A \cup C \cup E$, and A $\cup B \cup C \cup D \cup E \cup F$ form bases of $\Lambda^{r}(U \cap W), \Lambda^{r} U, \Lambda^{r} W$ and $\Lambda^{r}(U+W)$ respectively. If $X \varepsilon\left(\Lambda^{r}{ }_{U}\right) \cap\left(\Lambda^{r} W\right)$, then $x=\sum_{A} a_{i j} x_{i} \wedge x_{j}+\sum_{B} b_{i j} y_{i} \wedge y_{j}+\sum_{D} d_{i j} x_{i} \wedge y_{j}$ and also $X=\sum_{A} a_{i j} x_{i} \wedge x_{j}+\sum_{C} c_{i j} z_{i} \wedge z_{j}+\sum_{E} e_{i j} x_{i} \wedge z_{j}$. Hence $a_{i j}=a_{i j}$ and $b_{i j}=d_{i j}=c_{i j}=e_{i j}=0$ for all the appropriate values of the indices i and j. Thus $X \varepsilon \Lambda^{r}(U \cap W)$.

REMARK 1. The result of Proposition 2 holds for any number of subspaces of V.

REMARK 2. If $X \varepsilon \Lambda^{r} V$ and $\boldsymbol{\mathcal { B }}=\left\{\mathrm{U} \mid \mathrm{U}\right.$ is a subspace of $\left.V, X \varepsilon \Lambda^{r} U\right\}$, then
 subspace of V .

PROPOSITION 3. Let $X \varepsilon \Lambda^{2} v, \ell(X)=k$ and $X=\sum_{i=1}^{k} x_{i} \wedge y_{i}$, then $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ are linearly independent.

PROOF. If not, then one of them (say) y_{k} is a linear combination of the
remaining $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k-1}$. Let $y_{k}=\sum_{i=1}^{k} a_{i} x_{i}+\sum_{j=1}^{k-1} b_{j} y_{j}$.
Then $x_{k} \wedge^{-} y_{k}=\sum_{i=1}^{k} a_{i} x_{k} \wedge x_{i}+\sum_{j=1}^{k-1} b_{j} x_{k} \wedge y_{j}$. Hence X can be written as $X=\sum_{i=1}^{k-1}\left(x_{i} \wedge y_{i}+x_{k} \wedge z_{i}\right)$, where $z_{i}=a_{i} x_{i}+b_{i} y_{i}, 1 \leq i \leq k-1$. If $z_{i}=0$, then $\ell\left(x_{i} \wedge y_{i}+x_{k} \wedge z_{i}\right)=1$. If $z_{i} \neq 0$, let $a_{i} \neq 0$, then $x_{i} \wedge y_{i}+x_{k} \wedge z_{i}=z_{i} \wedge\left(a_{i}^{-1} y_{i}-x_{k}\right)$, thus $\ell\left(x_{i} \wedge y_{i}+x_{k} \wedge z_{i}\right) \leq 1$.
Hence $\ell(X) \leq k-1$, a contradiction.
REMARK 3. If $X \in \Lambda^{2} v, \ell(X)=k$ and $X=\sum_{i=1}^{k} x_{i} \wedge y_{i}$, then $[\mathrm{X}]=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right\rangle$.

PROOF. Let $U=\left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\rangle$; then $[X] \subseteq U$. By Proposition 3 , $\operatorname{dim} \mathrm{U}=2 \mathrm{k}$. Also $\mathrm{X} \varepsilon \Lambda^{2}[\mathrm{X}]$; let
$x=\sum_{i=1}^{k} x_{i}^{\prime} \wedge y_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime} \varepsilon[x], 1 \leq i \leq k$. Again by Proposition 3, $\operatorname{dim}[\mathrm{X}] \geq 2 \mathrm{k}$. Thus $[\mathrm{X}]=\mathrm{U}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right\rangle$.

PROPOSITION 4. If $X, Y \in \Lambda^{2} V, P(X)=P(Y)$, then $X \sim Y$.
PROOF. Let $X=\sum_{i=1}^{k} x_{i} \wedge y_{i}, Y=\sum_{j=1}^{s} x_{j}^{\prime} \wedge y_{j}^{\prime}$; then by Remark 3,
$[\mathrm{X}]=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right\rangle$ and $[\mathrm{Y}]=\left\langle\mathrm{X}_{1}^{\prime}, \ldots, \mathrm{X}_{\mathrm{s}}^{\prime}, \mathrm{y}_{1}^{\prime}, \ldots, \mathrm{y}_{\mathrm{s}}^{\prime}\right\rangle$. Also by Proposition 3, $P(X)=2 k, P(Y)=2 s$. Thus $k=s$. Let T be a linear transformation of $V \quad T x_{i}=x_{i}^{\prime}, T y_{i}=y_{i}^{\prime}, 1 \leq i \leq k$; then $C_{r}(T) X=Y$. Thus $X \sim Y$.

PROPOSITION 5. If $X \in \Lambda^{r} V, \ell(X)=2, X=x_{1} \wedge \ldots \wedge x_{r}+y_{1} \wedge \ldots \wedge y_{r}$, then $\mathrm{X}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right\rangle$.

PROOF. Let $U=\left\langle x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right\rangle$; then $[X] \subseteq U$. If $[X] \neq U$, then at least one element (say) x_{1} is not in $[X]$. Let B be a basis of $[X]$ and extend $\{x\} \cup B$ to a basis of U. Let W be a complement of $<x_{1}>$ in U, containing $[X]$, i.e., $U=\left\langle x_{1}\right\rangle \oplus W,[X] \subseteq W$. Let $x_{i}=a_{i} x_{1}+w_{i}, 2 \leq i \leq r$ and $y_{j}=b_{j} x_{1}+w_{j}^{\prime}, 1 \leq j \leq r$, where $w_{i}, w_{j}^{\prime} \varepsilon W$. Then $x=X_{1}+X_{2}$, where $X_{1} \in x_{1} \wedge\left(\Lambda^{r-1} W\right)$ and $X_{2} \in \Lambda^{r} W$, and $\ell\left(X_{i}\right)=1, i=1,2$. But $U=\left\langle X_{1}\right\rangle \oplus W \Longrightarrow \Lambda^{r} U=x_{1} \wedge\left(\Lambda^{r-1} W\right) \oplus \Lambda^{r} W$. Also $X \varepsilon \Lambda^{r}[X] \subseteq \Lambda^{r} W$, hence
$\mathrm{X}_{1}=\mathrm{X}-\mathrm{X}_{2} \varepsilon \Lambda^{\mathrm{r}} \mathrm{W}$. Thus $\mathrm{X}_{1}=0$ and $\mathrm{X}=\mathrm{X}_{2} \Rightarrow \ell(\mathrm{X})=1$, a contradiction. Hence $[\mathrm{x}]=\mathrm{U}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right\rangle$.

Note: The above proposition is true also for $\ell(\mathrm{X})=\mathrm{k}$.
PROPOSITION 6. If $\mathrm{X}, \mathrm{Y} \in \Lambda^{\mathrm{r}} \mathrm{V}, \ell(\mathrm{X})=\ell(\mathrm{Y})=2, \mathrm{P}(\mathrm{X})=\mathrm{P}(\mathrm{Y})$, then $\mathrm{X} \sim \mathrm{Y}$.
PROOF. Let $x=x_{1} \wedge \ldots \wedge x_{r}+y_{1} \wedge \ldots \wedge y_{r}, U_{1}=\left\langle x_{1}, \ldots, x_{r}\right\rangle$,
$\mathrm{U}_{2}=\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right\rangle$, then by Proposition $4,[\mathrm{x}]=\mathrm{U}_{1}+\mathrm{U}_{2}$. Let $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}$ be a basis of $U_{1} \cap U_{2}$, and extend it to a basis $z_{1}, \ldots, z_{k}, u_{1}, \ldots, u_{s}$, where $k+s=r$ of U_{1} and to a basis $z_{1}, \ldots, z_{k}, v_{1}, \ldots, v_{s}$ of U_{2}. Then $P(X)=k+2 s$. Since x_{1}, \ldots, x_{r} and $z_{1}, \ldots, z_{k}, u_{1}, \ldots, u_{s}$ are two bases of U_{1}, hence $\mathrm{x}_{1} \wedge \ldots \wedge \mathrm{x}_{\mathrm{r}}=a z_{1} \wedge \ldots \wedge z_{k} \wedge u_{1} \wedge \ldots \wedge u_{\mathrm{s}}=\mathrm{z}_{1} \wedge \ldots \wedge z_{k} \wedge \bar{u}_{1} \wedge \ldots \wedge u_{\mathrm{s}}$, where $\bar{u}_{1}=a u_{1}$. Similarly $y_{1} \wedge \ldots \wedge y_{r}=b z_{1} \wedge \ldots \wedge z_{k} \wedge v_{1} \wedge \ldots \wedge v_{s}=z_{1} \wedge \ldots \wedge z_{k} \wedge \bar{v}_{1} \wedge \ldots \wedge v_{s}$, where $\bar{v}_{1}=b v_{1}$. Hence $X=z_{1} \wedge \ldots \wedge z_{k} \wedge\left(\bar{u}_{1} \wedge u_{2} \wedge \ldots \wedge u_{s}+\bar{v}_{1} \wedge v_{2} \wedge \ldots \wedge v_{s}\right)$, where $z_{1}, \ldots, z_{k}, \bar{u}_{1}, u_{2}, \ldots, u_{s}, \bar{v}_{1}, v_{2}, \ldots, v_{s}$ is a basis of $[\mathrm{X}]$. Similarly $Y=z_{1}^{\prime} \wedge \ldots \wedge z_{k}^{\prime} \wedge\left(\bar{u}_{1}^{\prime} \wedge u_{2}^{\prime} \wedge . . . \wedge u_{s}^{\prime}+\bar{v}_{1}^{\prime} \wedge v_{2}^{\prime} \wedge \ldots \wedge v_{s}\right)$, where $z_{1}^{\prime}, \ldots, z_{k}^{\prime}, \bar{u}_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{s}^{\prime}, \bar{v}_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{s}^{\prime}$ is a basis of $[Y]$.
Define $T: V \longrightarrow V$, a linear transformation
$T z_{i}=z_{i}^{\prime}, T \bar{u}_{1}=\bar{u}_{1}^{\prime}, T u_{i}=u_{i}^{\prime}, T \bar{v}_{1}=\bar{v}_{1}^{\prime}, T v_{i}=v_{i}^{\prime}$, for $i=2,3, \ldots, s$.
Then $C_{r}(T) X=Y$; hence $X \sim Y$.
REMARK 4. Let $X \in \Lambda^{r} v, \ell(X)=2$, then $r+1 \leq \rho(X) \leq 2 r$.
PROOF. If $x=x_{1} \wedge \ldots \wedge x_{r}+y_{1} \wedge \ldots \wedge y_{r}$, then $[x]=\left\langle x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right\rangle$ $=U_{1}+U_{2}$, where $U_{1}=\left\langle x_{1}, \ldots, x_{r}\right\rangle, U_{2}=\left\langle y_{1}, \ldots, y_{r}\right\rangle . U_{1} \neq U_{2}$, for otherwise $y_{1} \wedge \ldots \wedge y_{r}=a x_{1} \wedge \ldots \wedge x_{r}$, where a is a scalar and $\ell(X)=1$. $P(X)=2 r-\operatorname{dim} U_{1} \cap U_{2}$. Hence $r+1 \leq P(X) \leq 2 r$.

THEOREM 1. Let $\mathrm{E}(2, \mathrm{~s})=\left\{\mathrm{X} \mid \mathrm{X} \in \Lambda^{\mathrm{r}} \mathrm{V}, \ell(\mathrm{X})=2, \mathrm{P}(\mathrm{X})=\mathrm{s}\right\}$, then $E(2, s), s=r+1, r+2, \ldots, 2 r$ are all the equivalence classes on the set of all vectors of $\Lambda^{r} \mathrm{~V}$, of length 2 .

PROOF. Follows from Proposition 6 and Remark 4.

PROPOSITION 7. Let $0 \neq \mathrm{X} \varepsilon \Lambda^{\mathrm{r}} \mathrm{V}$ and $\mathrm{x} \varepsilon \mathrm{V}$ such that $\mathrm{x} \wedge \mathrm{X}=0$; then $\mathrm{x} \varepsilon[\mathrm{X}]$.

PROOF. Let $x_{1}, x_{2}, \ldots, x_{m}$ be a basis of [X]. Then $\left\{\hat{x}_{\alpha} \mid \alpha \in Q_{r, m}\right\}$ is a basis of $\Lambda^{r}[X]$, where $Q_{r, m}$ is a set of all the strictly decreasing sequences of length r on the integers $1,2, \ldots, m$. det $X=\sum \mathrm{a}_{\alpha} \hat{\mathrm{x}}_{\alpha}$; then $x \wedge x=\sum_{\alpha} a_{\alpha} x \wedge \hat{x}_{\alpha}$. If $x \notin[X]$, then $\left\{x \wedge \hat{x}_{\alpha} \mid \alpha \varepsilon Q_{r, m}\right\}$ is a part of a basis of $\Lambda^{r+1}<x,[X]>$. Thus $x \wedge X=0 \Rightarrow a_{\alpha}=0 \forall \alpha \varepsilon Q_{r, m} \Rightarrow X=0$, a contradiction.

PROPOSITION 8. If $0 \neq \mathrm{X} \varepsilon \Lambda^{\mathrm{r}} \mathrm{V}$ and $\mathrm{x} \notin[\mathrm{X}]$, then $[\mathrm{x} \wedge \mathrm{X}]=\langle\mathrm{x}\rangle \oplus[\mathrm{X}]$.
PROOF. By Proposition 7, $x \wedge X \neq 0$. Again by Proposition 7, since $x \wedge(x \wedge X)=0$, hence $x \varepsilon[x \wedge X]$. Clearly $[x \wedge X] \subseteq\langle x\rangle \oplus[X]$. Let x, x_{1}, \ldots, x_{k} be a basis of $[x \wedge X]$ and extend it to a basis $x, x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{m}$ of $\langle X\rangle \oplus[X]$. If $U=\left\langle X_{1}, \ldots, X_{k}\right\rangle$, then $[x \wedge X]=\langle X\rangle \oplus U, U \subseteq[X]$. $\Lambda^{r+1}[x \wedge X]=x \wedge\left(\Lambda^{r} U\right) \oplus \Lambda^{r+1} U$. Let $x \wedge X=x \wedge u+v$, where $u \varepsilon \Lambda^{r} U$ and $v \in \Lambda^{r+1} U$. Thus $x \wedge v=0$. If $v \neq 0$, then by Proposition 7, $x \varepsilon[v] \subset U$, a contradiction. Hence $v=0$ and thus $x \wedge X=x \wedge u$. Then $x \wedge(X-u)=0$. If $X-u \neq 0$, then by Proposition 7, $x \varepsilon[X-u]$. Now $X \varepsilon \Lambda^{r}[X]$ and $u \varepsilon \Lambda^{r} U \subseteq \Lambda^{r}[X]$; thus $X-u \varepsilon \Lambda^{r}[X]$. Hence $[X-u] \subseteq[X]$. Thus $x \varepsilon[X-u] \Rightarrow X \varepsilon[X]$, which is a contradiction and therefore $X-u=0$; i.e., $X=u \varepsilon \Lambda^{r} U$. Hence $[X] \subseteq U$. Also $U \subseteq[X]$, hence $U=[X]$ and $[x \wedge X]=\langle X\rangle \oplus[X]$.

PROPOSITION 9. Suppose $X \in \Lambda^{2} V, \ell(X)=2, x_{1}, x_{2}$ are linearly independent vectors in $[X]$. Then $\exists y_{1}, y_{2} \varepsilon[X]$ and $\lambda \varepsilon F 3 X$ has one and only one of the following representations: (i) $x=x_{1} \wedge y_{1}+x_{2} \wedge y_{2}$,
(ii) $X=\lambda x_{1} \wedge x_{2}+y_{1} \wedge y_{2}$.

PROOF. $X \in \Lambda^{2} V, \ell(X)=2 \Rightarrow P(X)=4$. Extend x_{1}, x_{2} to a basis x_{1}, x_{2}, x_{3}, x_{4} of $[X]$.
Then $X=\sum_{1 \leq i<j \leq 4} a_{i j} x_{i} \wedge x_{j}, a_{i j} \varepsilon F$.

If $a_{34}=0$, take $y_{1}=a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}$ and $y_{2}=a_{23} x_{3}+a_{24} x_{4}$, then $x=x_{1} \wedge y_{1}+x_{2} \wedge y_{2}$. If $a_{34} \neq 0$, then $\left(-\lambda+a_{12}\right) a_{34}-a_{13} a_{24}+a_{14}{ }^{a_{23}}=0 \quad$ (1) has a solution in F. Set $Y=\left(-\lambda+a_{12}\right) x_{1} \wedge x_{2}+a_{13} x_{1} \wedge x_{3}+a_{14} x_{1} \wedge x_{4}+a_{23} x_{2} \wedge x_{3}+a_{24} x_{2} \wedge x_{4}+a_{34} x_{3} \wedge x_{4}$. Then $Y=-\lambda X_{1} \wedge x_{2}+X$. Because of $(1), \ell(Y)=1$; also $Y \varepsilon \Lambda^{2}[X]$.

Thus $y_{1}, y_{2} \varepsilon[X] \quad Y=y_{1} \wedge y_{2}$. Hence $X=\lambda x_{1} \wedge x_{2}+y_{1} \wedge y_{2}$.
If $\mathrm{X}=\mathrm{x}_{1} \wedge \mathrm{y}_{1}+\mathrm{x}_{2} \wedge \mathrm{y}_{2}$ and also $\mathrm{X}=\lambda \mathrm{x}_{1} \wedge \mathrm{x}_{2}+\mathrm{z}_{1} \wedge \mathrm{z}_{2}$ then $\mathrm{x}_{1} \wedge \mathrm{X}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \mathrm{y}_{2}$ and also $x_{1} \wedge X=x_{1} \wedge z_{1} \wedge z_{2}$. Thus $0 \neq x_{1} \wedge x_{2} \wedge y_{2}=x_{1} \wedge z_{1} \wedge z_{2}$ and hence $\left\langle x_{1}, x_{2}, y_{2}\right\rangle=\left\langle x_{1}, z_{1}, z_{2}\right\rangle$. Let $z_{1}=a_{1} x_{1}+a_{2} x_{2}+a_{3} y_{2}$ and $z_{2}=b_{1} x_{1}+b_{2} x_{2}+b_{3} y_{2}$.

Then $z_{1} \wedge z_{2}=\left(a_{1} b_{2}-a_{2} b_{1}\right) x_{1} \wedge x_{2}+\left(a_{1} b_{3}-a_{3} b_{1}\right) x_{1} \wedge y_{2}+\left(a_{2} b_{3}-a_{3} b_{2}\right) x_{2} \wedge y_{2}$. Putting this expression for $z_{1} \wedge z_{2}$ in $X=\lambda x_{1} \wedge x_{2}+z_{1} \wedge z_{2}$, we get two different representations of X in the basis of $\Lambda^{2}[X]$, determined by the basis $x_{1}, x_{2}, y_{1}, y_{2}$ of $[X]$; thus X has precisely one of the two representations.

PROPOSITION 10. If $X, Y \varepsilon \Lambda^{r} V$ are decomposable, then $X+Y$ is decomposable iff $\operatorname{dim}[X] \cap[Y] \geq r-1$.

PROOF. ($\Leftrightarrow>$) Let $X+Y$ be decomposable, and $X+Y=Z, \ell(Z) \leq 1$.
Let $X=x_{1} \wedge \ldots \wedge x_{r}, Y=y_{1} \wedge \ldots \wedge y_{r}, Z=z_{1} \wedge \ldots \wedge z_{r}$. If $[X]=[Z]$, then for any $i, 1 \leq i \leq r, z_{i} \wedge X=z_{i} \wedge Z=0$; but then $z_{i} \wedge Y=0$, and thus $z_{i} \varepsilon[Y]$ by Proposition 7 , and $[Z]=[Y]$. Hence $[X]=[Y]$, i.e., $\operatorname{dim}[X] \cap[Y]=r$. If $[X] \neq[Z]$, then for some $i, z_{i} \notin[X]$. But $z_{i} \wedge(X+Y)=0 \Rightarrow z_{i} \wedge X=-z_{i} \wedge Y \Rightarrow\left\langle z_{i},[X]\right\rangle=\left\langle z_{i},[Y]\right\rangle$. Thus [X], [Y] are r-dimensional subspaces in an $(r+1)$ - dim space $<z_{i},[X]>$. Hence $\operatorname{dim}[X] \cap[Y] \geq \operatorname{dim}[X]+\operatorname{dim}[Y]-(r+1)=r-1 . \quad \Leftrightarrow$ If $\operatorname{dim}[X] \cap[Y] \geq r-1$. Let u_{1}, \ldots, u_{r-1} be 1.i. vectors in $[X] \cap[Y]$ and extend these to a basis $x, u_{1}, \ldots, u_{r-1}$ and a basis $y, u_{1}, \ldots, u_{r-1}$ of [X] and [Y] respectively. Thus $X=a x \wedge u_{1} \wedge \ldots \wedge u_{r-1}, Y=$ by $\wedge u_{1} \wedge \ldots \wedge u_{r-1}$ for some a and b.

Hence $X+Y=(a x+b y) \wedge u_{1} \wedge \ldots u_{r-1}$, i.e., $X+Y$ is decomposable.
THEOREM 2. If $\operatorname{dim} V=5, X \in \Lambda^{3} V$, then $\ell(X) \leq 2$.
PROOF. We shall first prove that $\ell(X) \leq 3$. Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be a basis of V. Then

$$
\begin{aligned}
x= & \sum_{1 \leq i<j<k \leq 5} a_{i j k} x_{i} \wedge x_{j} \wedge x_{k}=x_{1} \wedge x_{2} \wedge\left(a_{123} x_{3}+a_{124} x_{4}+a_{125} x_{5}\right) \\
& +x_{1} \wedge x_{3} \wedge\left(a_{134} x_{4}+a_{135} x_{5}\right)+x_{2} \wedge x_{3} \wedge\left(a_{234} x_{4}+a_{235} x_{5}\right) \\
& +\left(a_{145} x_{1}+a_{245} x_{2}+a_{345} x_{3}\right) x_{4} \wedge x_{5}
\end{aligned}
$$

Let $y_{1}=a_{134} x_{4}+a_{135} x_{5}, y_{2}=a_{234} x_{4}+a_{235} x_{5}$. If y_{1}, y_{2} are 1.d., then $\ell(X) \leq 3$. So we assume y_{1}, y_{2} are 1.i.; then $\left\langle y_{1}, y_{2}\right\rangle=\left\langle x_{4}, x_{5}\right\rangle$, and thus $\mathrm{x}_{4} \wedge \mathrm{x}_{5}=\lambda \mathrm{y}_{1} \wedge \mathrm{y}_{2}, \lambda \varepsilon \mathrm{~F}$. Let $\mathrm{a}_{124} \mathrm{x}_{4}+\mathrm{a}_{125} \mathrm{x}_{5}=\mathrm{b}_{1} \mathrm{y}_{1}+\mathrm{b}_{2} \mathrm{y}_{2}$. Then $\mathrm{x}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge\left(\mathrm{a}_{123} \mathrm{x}_{3}+\mathrm{b}_{1} \mathrm{y}_{1}+\mathrm{b}_{2} \mathrm{y}_{2}\right)+\mathrm{x}_{1} \wedge \mathrm{x}_{3} \wedge \mathrm{y}_{1}+\mathrm{x}_{2} \wedge \mathrm{x}_{3} \wedge \mathrm{y}_{2}$

$$
+\lambda\left(a_{145} x_{1}+a_{245} x_{2}+a_{345} x_{3}\right) y_{1} \wedge y_{2}
$$

$$
\begin{aligned}
=a_{123} x_{1} \wedge x_{2} \wedge x_{3} & +\left(x_{1}+a_{345} \lambda y_{2}\right) \wedge y_{1} \wedge\left(-b_{1} x_{2}-x_{3}+a_{145} \lambda y_{2}\right) \\
& +\left(b_{2} x_{1}-x_{3}-\left(a_{245}-a_{345} b_{1}\right) \lambda y_{1}\right) \wedge x_{2} \wedge y_{2}
\end{aligned}
$$

Hence $\ell(X) \leq 3$.
Let $\mathrm{X}=\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}$, where $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are decomposable, $\mathrm{X}_{1}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \wedge \mathrm{x}_{3}$, $\mathrm{X}_{2}=\mathrm{y}_{1} \wedge \mathrm{y}_{2} \wedge \mathrm{y}_{3}, \mathrm{X}_{3}=\mathrm{z}_{1} \wedge \mathrm{z}_{2} \wedge \mathrm{z}_{3}$. Then $1 \leq \operatorname{dim}\left[\mathrm{X}_{1}\right] \cap\left[\mathrm{X}_{2}\right] \leq 3$.

CASE 1. $\operatorname{dim}\left[X_{1}\right] \cap\left[X_{2}\right]=3$. Then $X_{2}=\lambda X_{1}$ for some λ and thus $\ell(X) \leq 2$.
CASE 2. $\operatorname{dim}\left[X_{1}\right] \cap\left[X_{2}\right]=2$. Let u_{1}, u_{2}, v and u_{1}, u_{2}, w be bases of $\left[X_{1}\right]$ and $\left[X_{2}\right]$ respectively. Then $X_{1}=\lambda u_{1} \wedge u_{2} \wedge v$ and $X_{2}=\lambda u_{1} \wedge u_{2} \wedge w$. Then $\ell(X) \leq 2$.

CASE 3. $\operatorname{dim}\left[x_{1}\right] \cap\left[x_{2}\right]=1$. det u_{1}, u_{2}, u_{3} and u_{1}, u_{4}, u_{5} be bases of $\left[X_{1}\right]$ and $\left[X_{2}\right]$ respectively. Then $X_{1}=u_{1} \wedge u_{2} \wedge u_{3}, X_{2}=u_{1} \wedge u_{4} \wedge u_{5}$; we have assumed the co-effs. to be absorbed with the vectors u_{i} 's and v_{i} 's. Then $X_{1}+X_{2}=u_{1} \wedge Y$, where $Y=u_{2} \wedge u_{3}+u_{4} \wedge u_{5}$. Also $\left[X_{1}\right]+\left[X_{2}\right]=V$.

Since $\operatorname{dim}<u_{2}, u_{3}, u_{4}, u_{5}>\cap\left[X_{3}\right] \geq 2$, we can take $X_{3}=w_{1} \wedge w_{2} \wedge w_{3}$, where $w_{1}, w_{2} \varepsilon<u_{2}, u_{3}, u_{4}, u_{5}>$. By Proposition $9, v_{1}, v_{2}$ and $\lambda \quad Y=\lambda w_{1} \wedge w_{2}+v_{1} \wedge v_{2}$ or $Y=W_{1} \wedge v_{1}+w_{2} \wedge v_{2}$. If $Y=\lambda w_{1} \wedge w_{2}+v_{1} \wedge v_{2}$, then $X=u_{1} \wedge Y+w_{1} \wedge w_{2} \wedge w_{3}$ has length ≤ 2. If $Y=w_{1} \wedge v_{1}+w_{2} \wedge v_{2}$, then since $u_{1}, w_{1}, w_{2}, v_{1}, v_{2}$ is also a basis of V, let $w_{3}=a_{1} u_{1}+a_{2} w_{1}+a_{3} w_{2}+a_{4} v_{1}+a_{5} v_{2}$. Then $X=X_{1}+X_{2}+X_{3}=\left(u_{1}-a_{4} w_{2}\right) \wedge w_{1} \wedge v_{1}+u_{1} \wedge w_{2} \wedge v_{2}+\left(a_{5} v_{2}+a_{1} u_{1}\right) \wedge w_{1} \wedge w_{2}$ has length ≤ 2, since $Z=u_{1} \wedge w_{2} \wedge v_{2}+\left(a_{5} v_{2}+a_{1} u_{1}\right) \wedge w_{1} \wedge w_{2}$ and $\operatorname{dim}<u_{1}, w_{2}, v_{2}>\cap<a_{5} v_{2}+a_{1} u_{1}, w_{1}, w_{2}>\geq 2$ implies $\ell(Z) \leq 1$.

REMARK. There exists $X \in \Lambda^{3} V$ with $\ell(X)=2$; for if $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ is a basis of V and $X=x_{1} \wedge x_{2} \wedge x_{3}+x_{1} \wedge x_{4} \wedge x_{5}$, then $\ell(X)=2$, by Proposition 10 .

REMARK. If $X \in \Lambda^{3} V, \operatorname{dim} V=5, \ell(X)=2$, then $P(X)=5$; for let $X=X_{1}+X_{2}$, where $\ell\left(X_{1}\right)=\ell\left(X_{2}\right)=1$. Since X is not decomposable, then by Proposition 10, $\operatorname{dim}\left[\mathrm{X}_{1}\right] \cap\left[\mathrm{X}_{2}\right]<2$ and hence
$\operatorname{dim}[X]>\operatorname{dim}\left[X_{1}\right]+\operatorname{dim}\left[X_{2}\right]-\operatorname{dim}\left[X_{1}\right] \cap\left[X_{2}\right]=4$, i.e., $P(X)=5$.
It follows from Proposition 6 that if $X, Y \varepsilon \Lambda^{3} V$ and $\ell(X)=\ell(Y)$, then $X \sim Y$. Hence all the equivalence classes of $\Lambda^{3} V$ are given by

$$
\begin{aligned}
& \mathrm{S}_{0}=\left\{\mathrm{X} \mid \mathrm{X} \varepsilon \Lambda^{3} \mathrm{~V}, \ell(\mathrm{X})=0\right\}=\{0\} \\
& \mathrm{S}_{1}=\left\{\mathrm{X} \mid \mathrm{X} \varepsilon \Lambda^{3} \mathrm{~V}, \ell(\mathrm{X})=1\right\} \\
& \mathrm{S}_{2}=\left\{\mathrm{X} \mid \mathrm{X} \varepsilon \Lambda^{3} \mathrm{~V}, \ell(\mathrm{X})=2\right\}
\end{aligned}
$$

ACKNOWLEDGMENT. The author is grateful to Professor R. Westwick for his invaluable help in the preparation of this manuscript.

REFERENCES

1. Hodge, W. V. D. and D. Pedoe. Methods of Algebraic Geometry, Vol. 1, University Press, Cambridge, 1953.
2. Lim, M. J. S. L-2 Subspaces of Grassmann Product Spaces, Pacific J. Math. 33 (1970) 167-182.
3. Gurewich, G. B. Foundations of the Theory of Algebraic Invariants, P. Noordhoff Ltd., Groningen, The Netherlands, 1964.
