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ABSTRACT. The puppose of this paper is to derive a nonlinear partial differential

equation for which given by (1.3), is one value of the solution. In Section 2,

we derive this equation using a straightforward dynamic programming approach. In

Section 3, we discuss some computational aspects of derermining the solution of

this equation. In Section 4, we show that the same method may be applied to the

nonlinear characteristic value problem. In Section 5, we discuss how the method

may by applied to find the higher characteristic values. In Section 5, we discuss

how the same method may be applied to some matrix problems. Finally, in SeCtion 7,

we discuss selective computation.
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i. INTRODUCTION.

Consider the equation
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u" + ;ka(t)u 0 (I.i)

her we hve the boundary conditions

u(0) u(T) 0 (1.2)

We shall assume that a(t) is positive throughout the interval and possesses

a Taylor expansion in the neighborhood of 0. We know that the characteristic

values are real, positive, and simple.

The smallest characteristic value is given by the Raylelgh quotient

u’2dt

mln r 2
u a(t)u dt

where u is subject to the same boundary conditions as above.

2. DRrNAIC PRORNG APPROACH.

Let us consider the more general problem

f(c,T) min ;u’2dtu (2.1)

where u is subject to

u(Z) c, u(O) 0 (2.2a)

T
a(t)u2dt I

0
(2.2b)

We now make the decomposition

IT !T IT-A+
0 T-A 0

(2.3)

In the second integral we make the renormalization

u (I c2/2)v (2.4)
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We thus obtain, to terms in A2,

2Af(c,T) v
2

A + (I c f(c + vA, T A)

Passing to the limit we obtain the nomllnear partial differential equation

fT cf f2/4 (2.6)
C

3. COMPUTATIONAL ASPECTS.

The nonlinear partial differential equation above cannot be iolved routinely

on a digital conputer. In the flrlt place, we seo that the solution becomes un-

bounded as T / 0; In the second place, we see that there i a singularity as both

c and T/0.

To obtain the numerical solution, we can tree analysis to derive the solution

for small T This is consistant with the Senerl principle that effective

puing needs accommodation of analysis and the arithtlc capabilities of the dlgltl

computer. We also use anaylsis to derive the olutlon for small c and T If

we keep the constant term in the Taylor expansion of a(t), we can solve the

ociated differential equation in terms of trigonometric functions; If we keep

first two terms we can solve the equation in terms of Bessel functions of order 1/3;

If we keep the first three terms, we can solve the differential equation in ter

of cylinder functions. Since we have to use power series expansions at some stage,

it is probably best to avoid special functions and carry through the whole calcula-

tlon using power series.

Another approach to this problem is given in []],

4. NONLINEAR CHARACTERISTIC VALUE PR.0.BLES
Let us consider the function of three variables defined hy

T

f(cl, c2, T) rain u’2dt
u 0

(4ol)
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where u is subject to

u(T) ClU(0 0

T
g(u)dt c

2
0

(4.2a)

(4.2b)

If g is a power of u we can use renormalization as above to eliminate

the variable c
2

If we have

n
g(u) u2 + au (4.3)

we can use renormalization and take a as a state variable.

The same method may be applied to general isoperimetric problems, 2 ].

5. HIGHER CHARACTERISTIC VALUES.

Let us now turn to the determination of higher characteristic values. It will

be sufficient to consider the second characteristic value. We know that there is

orthogonality. Hence, we add the condition

T

0 UUldt c
2

Here, uI is the first characteristic function. The dynamic programming approach

given above determines the function too.

We can now proceed as above to obtain a nonlinear partial differential equation.

6. MATRIX THEORY.

If we have a symmetric matrix, we can obtain Rayleigh quotients for the small-

est, and largest characteristic values.

If the matrix has a particular structure, we can use a dynamic programming

approach. Examples are found in [3].

Matrix problems are obatined if the Ritz-Galerkin method is used. We can use

the methods of [4] to obtain upper and lower bounds.
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In many cases, the matrix is non-negative as well as symmetric. We can obtain

upper and lower bounds from this fact. An example is given in 5 j.

7. SELECTIVE COMPUTATION.

In many cases, we only want a few values of the nonlinear partial differential

equation. In that case, we can solve the associated variational problem instead.
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