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ABSTRACT. Some characteristic approximation properties of quadratic

irrationals are studied in this paper. It is shown that the limit points

of the sequence form a subset C(x), and D(x) can be generated from
n

C(x) in a relatively simple way. Another proof of Lekkerkerker’s theorem

is given using relations between dn-l’ n’ n+l which are independent of

x and n.
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O. l’hroughout this paper x will denote a real irrational number. We introduce

r (x) x +

which implies [_i i)r<x) g,g Ir(x) lxll

Given x the sequence nl{nxl{, n e q ontains bounded subsequences (e.g.

n Inxl I<i/ for infinitely many n by Hurwitz’s theorem), and it seems natural

to investigate the set D(x) of all its limit points which_ describes the various

qualities of approximation of x by rationals which occur again and again 1). A

number x is "well approximable" if 0 e D(x) (e.g. if x=e=2.71.., or if x is

2)a Liouville number) and "badly approximable" if 0 D(x) If 0 e D(x) then

D(x) [0,) hence interesting numbers in this context are the badly approximable

numbers.

Let x be represented by the continued fraction [b b let A /B denoteo’ i’ n n

its convergent s and let

6n 6n(X) BnlBnX Anl n > -2 (6n Bn[IBnXll for n > i). (I)

The limit points of the sequence 6 form a subset C(x) (which is in a sensen

constructive) and we shall show that D(x) can be generated from C(x) in a

relatively simple way (Theorem i), so the structure of C(x) is basic in our

context.

A theorem of Lekkerkerker [5] lhow that for a badly approximable number x the

set C(x) is finite if and only if x is a quadratic irrational, and the con-

nection between C(x) and D(x) show that D(x) is discrete if and only if

I) For results on infD(x) which is the inverse of Perron’s modular function
[5, see [i] and the bibliography of this paper.

2) Let ni nil [nixll / 0 choose O< e 1 and let n n
i

Th,n
ni n

i ]]nixll for i large and ni / Hence D(x).
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x is (badly approximable and) a quadratic irrational. We wll also give another

proof of Lekkerkerker’s theorem using relations between ’n-l’ n’ n+l which

are independent of x and n and seem to tell the whole structure of the

’s (Lemma 3, Theorem 3).
n

I. THE BASIC FORMULAS.

1
Writing x [b b [b b I ,bn_ + ] [b

no’ i o’ 1 - n bn+l and
n

B
n i/Pn B n > i Po 0 we have for n > 0 the following well known

n-i

formulas

I
E
n

b + (2)
n n+l

B (B x- A
(-l)n

n n n n+l + 1
(3)

n

1 (4)bn+l Pn+l p
n

(cf. [7] 13; (4) is a consequence of Bn+I bn+1 Bn + Bn_l, n > -i).

LEMMA i. For n > 1

3)
6n + 6n_l < 1 unless n 1 b 1

p
pn 2 6n_l n

(5)

(6)

PROOF. It follows from (2) and (4) that

1 1n + 1 b + i +
Pn-

+ Pn
n >- i

On_ I n n+l 1 n+l
This and (i), (3)

3) If b I 1 then 6o + 61 (x-Ix]) (x-Ix]- I) l0
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show that

n+l +Pn+ for n > 1 (7)n n-i I + 0n+1

which implies (5) (note that n+l > 1) In order to prove (6) we note that the

foregoing calculations also show that

Pn n+l
I-4 1-4

nn-i 2
(i + Pnn+l

and this leads immediately to (6).

Formulas (4) and (6) suggest the introduction of the function

(x,y;z) l-xz +
2z

z > 0 4xz < 1 4yz < 1

using this notation, we have

bn+l (n-I %+i n > 0 ( I
0 (8)

The following properties of will be used in later sections of this paper

(x,y;z) (y,x;z) (9)

(x,y;z) + (strictly)if x+ y+ or z+ (io)

(x,-z;z) 12z-l + /’W_.’4.’
2z

(x O;z) (x,i-z;z) .i,-,..z-i,ii
2z

1 if z _< I/2 /i 12)
1-__z < 1 if z > i
z

In conclusion we mention that (5) contains Vahlen’s result (see e.g. [7] 14)
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that at least one of is < 1/2 and Borel’s result (see [7],14) that at
n n-I

least one of n-1, n’ n+l is < I/ follows from (6), (8) and (i0). Indeed,

if this were not true then one of the ’s would be > i/ (since
n n+l

5 + but p is rational) and this andi
11 and (6) would imply Pn+l 2 n

(8) and (I0) imply

but b > 1
n+l

2. THE RELATION BETWEEN C(x) AND D(x).

In addition to d(x) and C(x) we introduce the sets

D (x) the limit points of the sequence n r(nx)
s

C (x) the limit points of the sequence B r(B x)
s n n

These sets contain information on the sign of the approximations of x by

rationals and D(x) or C(x) is known if D (x) or C (x) is known.
s s

Let lnxll nx-ml, sign (nx- m) e Then it follows from

n %B
k
+ DBk_ 1

m % + -i k _> -I

by Cramer’s rule that %, g and that

% nlXBk_1 _i + (-I)k e Bk_ 1 llnxll

nlxBk I -l)k e B
k Inxl[

(13)

(14)

THEOREM i. Let 0 D(x) Then D (x) if and only if
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%2y_% signy + 2B (15)

where % q (% ) # (0 O) and B lira B
k _ir(Bk _1

x)
0

1 1

y lira Bkir(Bk’X)1 for some sequence k.1 +

COROLLARY. Formula (15) and BY < 0 show that D(x) and C(x) are con-

netted by

(16)

PROOF of Theorem i.

Let nir(nix ni(nix-mi) / a Ds(X) and select ki lq (for all large i)

such that

Bk. Inixll < n
i lBk.Xll (17)

nil Bk.+ixl (18)

Define numbers %i’ i by (13) (with ni, mi, k
i

instead of n, m, k). It

follows from (17) and (14) that %i i lq Condition (17) implies B -< n
o k

i
since otherwise lnixll > IBk.Xll by Lagrange’s Theorem ([7], 15) which lead:

to a contradiction to (17). On the other hand, it follows from

lBk.+IXll > (Bk.+l + Bk.+2 )-I ([7] 13) and (18) that

Bk.+l + Bk.+2
2<- n.Im IBk.+ixll < Bk.+Inil Inixll B

k +i(II + o(i))

which implies n. -< 21 1/2
Bk +2

for all large i

i

1
It follows from 0 D(x) and Bkl BkXll <

bk+I
Hence, there is a constant C C(, x) such that

([7], 13) that bk+ 0(i).
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< C( x)B
kBk. -< ni .-i

From (19) and (14) we infer that

for all large i, (19)

< KI( x)0<l
i

0 -< i -< K2 (’ x)

for constants KI, K
2

and all large i

By taking subsequences, the foregoing shows that sequences n. / =, k. /

l

exist such that

nir(nix) / e

(20) n
i %Bk. + Bk.-l’ m.1 + -i’ ’ lq,o (’ ) # (0, 0)

i i i

Bk._l r(Bk._ix) / 8 r(B
k

x) / yBki i

Let n_.,x kol satisfy (20). Then (note that r(BnX)__ BnX- An for n -> i)

2B x)nir(nix) 2Bkir(Bkix) + (kiBk-Ir(Bkl-Ix) +. Bkir(Bkix) + ki_ir(Bki_l
1

This and (6) show that every D has a representation (15) and that everys

number (15) belongs to D
s

REMARKS. I. Let K > 0 Then the proof of Theorem shows that for every

D (x) lel < K a representation (15) holds for some and which ares

bounded by a constant which depends on K and x only. Hence, if C(x) is

discrete (i.e. C(x) is finite since B ....llBnXll <_ then D(x) is discrete
n

and vice versa.

2. A slight modification of the proof of Theorem 1 also shows that

1/2 (n lq) implies n/m A /B for some ([7] 13;[2]
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Theorem 184; for a more general result compare [4], Proposition 4). In fact,

choose k > i such that Bk_"I < n < B
k

(n=l is a trivial case). If (-i)
k

and n < Be, then (14) leads to the contradiction 0 < < 2n Inxl] < i, hence

n Bk. If (-i)
k-I

then (14) implies p > 0, >-n Inxll > -i/2 hence

)t _> O. But )t < 1 since n -< Bk, hence n lBk_1
m pAk_ 1.

3. THE STRUCTURE OF C(x) WHEN x IS A UADRATIC IRRATIONALITY.

We show first that C(x) is finite when x is a quadratic irrationality.

LEMM 2. If x belongs to a quadratic number field, then 0 C(x) and

C (x) and C(x) are finite.
S

This Lemma is essentially due to Lekkerkerker [5], see also Perron [6], p.6.

The following proof contains an explicit representation of the elements of

c (x).

PROOF. x [b b is represented in this case by a periodic con-
o i"’"

tinued fraction, i.e. x [b ,br_ po, ’Pk ] r > I k >- I It
o i, i

for u 0,1,...,k-I n e lq and iffollows that br+nk+v P o

x =[pu Po "’Pu-I then r+nk+v xP+I’" Pk-l’

It follows from (4) that Pn ibn, bn-l"’"bl hence

Pr+nk+v.-i
--Ip I’ Pv-2’’’’’Po Pk-I ’’’’’p c (n / and the state-

ment of Lemma 2 follows from (3).

1
REMARK. It follows from a theorem of Galois ([7], 23) that c

X

where x is the conjugate of x Hence, the elements of C are
S

(-1) r+v-1 _+1
if k is even

X X X X
if k is odd. (21)

This formula leads to an even more explicit representation of the elements of C (x)
S
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This representation uses the notation A /Bn, for the convergents of
n,j J

bj bj+I ] ([7] 5). Let A /B denote the convergents of [Pon n "’’’Pk-I
Then the elements of Cs(x) are

(-I)
rq-I Bk-l’9 Bk-l’ if k is oddif k is even

20, l,...,k-I D (A__I + Bk_2) + 4(-1)-1,9-Bk-2,9+
In fact, we have x

2Bk- I,
([7], 19). But Bi, j Ai_l,j+I Ai, j

and it follows that

k-I

bjAi_l,j+I + Bi_l,j+I

(22)

2 k-I+ 4(-1)

([7], 5)

-l,v-I +Bk-2,v-I bv-l-2,v bk- l+v-2,v
+ -3,v

+ Bk_2, v ++ -3,v Bk-2,v

+ Hence D D and (22) follows.-l,v Bk-2,v o

4. THE RELATION BETWEEN THREE CONSECUTIVE ’s.

Formula (8) shows that bn+1
is a function of n-l, n, n+l" The fol-

lowing Lemma shows that bn+1
is also a function of 6 6 alone. This fact

n-l, n

is the key to the following considerations, which will show that the converse of

Lemma 2 is also true.

LEPTA 3. For n >- 0

bn+l (n-I 0; n and (6 0; an) In-l’

PROOF. Formulas (3), (6) and (8) imply

1 i
1 + 1-46n6n_I

n+l - p 26
n n n

(6n-1,0; n (n >-0)

(23)
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and (23)follows from n+l =bn+l’ bn+2’’’" ] bn+l [n+l
(note that n+l is irrational).

REMARK. Formulas (6) and (4) show that

Pn+l--bn+l’ bn’ bl] (n > 0)

and it follows

bn+l (n+l’ O; n (n+l’O; n 1 (24)

if n> 2 or if n I, b I > i.

The first formula (24) remains true for n 0.

Lemma 3 shows that a (universal) function exists such that

bn+I
( 6 n > 0 (25)

n n-1

and the remark shows that also bn+l (n’ 6n+l unless n 1 b

i.e. unless n i, > 1/2
o

It follows from (8) that (6n’ 6n-i (6n-l’ 6n+l’ n hence there exists

by (I0) a function X such that

n+l X(n, n-i n -> 0 (26)

and similarly n-I X(n’ n+l unless n i, b
I 1

Using the function we find explicitely

1
i 2n P( n- $n- (2n+l X(n’ 6n-l) 46 n’ i I 7)

n

The following theorem gives in a more convenient form than Lemma 3.

THEOREM 2. Let n >-0 k
n

1
Then 6 # k (l-k andn-I n n n
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k if 6 [0 kn(l-kn6n))n n-I

bn+l (6n, 6n_l
k I if 6 (k l-kn6n) I-6n)n n-I

4).

PROOF Assume that 6 kn(_l-kn6n)._ Then
n-I

1 + 6 k-1,2
n n k (28)( o; )=n-l’ n 26 n

n

(note that 26 k > I) which contradicts (23).
n n

Let 6n_l e [0, kn(l-kn6n)). Then by (I0)and (28)

k + i > (0 0"6 > (6
n 1 0;6n > (kn(l-kn6 0;6n) k and

n n n n
n

k b follows from Lemma 3
n n+l

Let 6n-I (kn(l-knn)’ 1-8n which implies n >_ I since 6_i 0. Then, by

(28), (I0), (5)and (12)

kn (kn(l-kn6n)’ 0; n > (n_l,0;n) > (l-n’0;6n)

i
> -’(O,O;n) 1 1 > k 1

6 n
n

and k -I b follows from Lemma 3
n n+l

Figure 1 shows the areas of constancy for the function

5. THE INFLUENCE OF 0 C(x).

Our next step is to introduce the assumption 0 C(x) i.e. >- % > 0
n

n lq for some % into our considerations.

LEMMA 4. Let 0 < % < I/
If n > 1 and if n-I and n+2 are > % then

4) This interval is empty if k In
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n n+l
(29)

PROOF. Our proof depends on the inequality

(3O)

In order to prove (30) we observe that

2 + %2 < (2z- + %I 4z z)

and (30) follows from

z;z) -< z + 2z + %) 1

Assume that the assumptions of Lemma 4 hold and that 6n +6n+l >- I/1-h-

If 6 > 1 Jl-%-n- then by (8), (I0) and (30)

bn+1 --(6n_l, 6n+l;6n)< n+l;6 _< q(%, -6 ;6 -<
n n n

but b > 1
n+l

Similarily, if 6n+1

bn+2 (6 < (,6 -< (%, i-%-n’ 6n+2 6n+l n 6n+l 6n+l 6
n+l

< I

> 1but bn+2

REMARK. Formula (5) is for n > 2 a special case of (29)

If 6n > % for all n then it follows form (29) that 2)t < -,
hence X < i/.

Lemma 4 will be used now to show that the points (6n, 6n-1 keep a certain

distance from the discontinuities of if 0 C(x) We introduce the notation
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q k (l-k
n n n n

and we assume chat > I > 0 for some I > 0 and all
n

nE.

Let 1/2 for some fixed n > 2 Formula (8) and Theorem 2imply
n

k

+
2 nn

2 6nkn-26n

(31)

2k
In what follows we need the inequality 2 k >

n n k +I > (note that kn > 2)

2 n 2
and the formulas 1-46 (2 k-I) i-4 8 (I-8) (i-28)

nn nn n n n

Let 8 > qn Then it follows from (31) that
n-i

n n+l n n-I

hence (use /b (a-b) / (- + V’b

8 qE_ < 8.n+1_< n+1 n n-1
2 2

1+ 8nn+I 46n6n_ 1
+ (28 nkn-1)

nn-Sn_ 1
1/3

It follows that

6 q
n-1 < n 6

Let 6 > q Then it follows from (31) that
n-i n

8n6n+1

hence, by Lemma 4

n_l-qn

26nkn- I+ QI-4 6n6n_ 1

1 (n + 8n+l)
I-4 8n6n+l+(l-2n

(32)

It follows that
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(33)

Formula (4) implies that all points (6 6 n > 2 are in a certain open
n’ n-i

triangle, and some straight lines inside of this triangle are excluded by Theorem 2

(cf. figure I)

Fig. 1

Moreover, if 6 > k > 0 then (29), (32) and (33) introduce some additional
n

restriction for (6n, n_l To describe the remaining region we introduce the

following set.

Let M(k) 0 -< < I/, denote the (open) set of points (x, y) with the pro-

perties
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x > % y > % x + y <

and for x < 1/2

y < (l-x or

(Figure 2 illustrates M(%) for % i/5 .)

Fig. 2

If n > % 0 for all n c I then (n, n-i e M(%) for n > 3 by (29), (32)

and (33). The combination of this result with the results of section 4 leads im-

mediately to

THEOREM 3. There are (universal) functions and X defined on M(0)

such that bn+l (n’ n-i n+l X(n, n-i n >-0
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The functions and X are continuous on every M(%) % > O. If

> > 0 ( < i/) for all n q then (
i

M() for n -> 3.
n n n-

6. THE CONVERSE OF LE 2.

We use Theorem 3 to prove the following result of Lekkerkerker [5].

THEOREM 4. If C (x) is finite and 0 C (x) then x belongs to a
s s

quadratic number field.

PROOF. Let . denote the elements of C(x) and let A be the set to all

pairs (i’ j) with (n’ n-I / (i’ j) on a subsequence. Since 0 C(s)

there is some > 0 such that (n’ n-i M() for all large n and

a M() for every a A

If a (i’ j) e A then a’ (X(i, j) ,i A since

nk
nk_l / .j implies 6nk+l X(nk, nk-l)--> (i’ j) by Theorem

We call a’ the successor of a. The set A is finite, hence if a A then one

of its later successors is again a

Let U(a,e) {(x,y) II (x,y) a < e a e A Choose > 0 such that

u(a,) M() for every a A U(a,e) n U(b,) if a # b

It follows that is constant on every U(a,s)
,

Choose e (0, such that for every a A

((x,y) x (x,y) U(a,e U(a’ e) (34)

Let N e 1 be so large that ( U(a,e for exactly one a e An’ n-1

depending on n > N This establishes a mapping a F( for every
n n-i

n -> N which is successor preserving" i.e. if F( a then
n n-i ,

F(n+l, n a’ Indeed, if F( a i.e. ( e U(a,e then
n n-i n n-i

(n+l’ 6n) (X(n’ n_l ), n c_ U(a’,) by (34), hence (n+l’ n U(a’,

since n > N.
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Take a fixed n > N and let a F(n, n_l). Consider a sequence of suc-

(o) a" (1) (1)cessors a a a ,...,a 1 e lq with a a. It follows

that

()F(6n++k 6n_l++k) a 0, i ,-i, k 0, I, 2,... (35)

Since Y is constant on every U(a,e it follows from (35) that

bn++k+l (Bn+9+K,Bn++k/_l) is independent of k, i.e. the continued

fraction for x is periodic. This proves Theorem 4.

REMARK. As conclusion we explain our results in the simplest case

x (i + /2 ,i Here C(x) consists of the single point i/by
(22), and D(x) consists of the points 1%2 % 21/ with integral

(%,) # (0,0) by (16). It is well-known (see [3], p. 554) that

represents exactly the integers for which the exponents in the prime factor-

ization must be even for all primes 2 or 3 nod 5 So

D(x) __i 4__ 5 9__ I__I 1__6 1__9 20

Since this set contains only one element (0,I) it determines C(x) uniquely.

Furthermore, given C(y) i/} all possible y which produce this set are

ax+b
given by integral transformations Y cx+d

ad bc +I.

This follows because the proof of Theorem 4 works with i, so the continued

fraction for y has period 1 (the terms before the period being of no influence

with quotients 1 by (22).
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