Internat. J. Math. & Math. Sci. Vol. 1 (1978) 479-496

CHARACTERISTIC APPROXIMATION PROPERTIES OF QUADRATIC IRRATIONALS

W. B. JURKAT AND A. PEYERIMHOFF

Universitat ULM (MNH) Abt. f. Mathematic I 7900 Ulm (Donau) Oberer Eselsberg, Germany

(Received April 19, 1978)

<u>ABSTRACT</u>. Some characteristic approximation properties of quadratic irrationals are studied in this paper. It is shown that the limit points of the sequence δ_n form a subset C(x), and D(x) can be generated from C(x) in a relatively simple way. Another proof of Lekkerkerker's theorem is given using relations between δ_{n-1} , δ_n , δ_{n+1} which are independent of x and n.

KEY WORDS AND PHRASES. Quadratic Irrationals, Approximation of numbers, Badly Approximable Numbers.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES. 10F05, 10F35.

0. Throughout this paper x will denote a real irrational number. We introduce

$$||\mathbf{x}|| = \min_{\mathbf{k}\in\mathbb{Z}} |\mathbf{x}-\mathbf{k}|$$
, $\mathbf{r}(\mathbf{x}) = \mathbf{x} - \left[\mathbf{x} + \frac{1}{2}\right]$

which implies $r(x) \in \left[-\frac{1}{2}, \frac{1}{2}\right)$, |r(x)| = ||x||.

Given x, the sequence n||nx||, $n \in \mathbb{N}$, contains bounded subsequences (e.g. $n||nx|| < \sqrt{1/5}$ for infinitely many n by Hurwitz's theorem), and it seems natural to investigate the set D(x) of all its limit points which describes the various qualities of approximation of x by rationals which occur again and again 1. A number x is "well approximable" if $0 \in D(x)$ (e.g. if x=e=2.71... or if x is a Liouville number) and "badly approximable" if $0 \notin D(x)$. If $0 \in D(x)$ then 2 $D(x) = [0,\infty)$, hence interesting numbers in this context are the badly approximable numbers.

Let x be represented by the continued fraction $[b_0,b_1,\ldots]$, let A_n/B_n denote its convergents and let

$$\delta_n = \delta_n(\mathbf{x}) = B_n |B_n \mathbf{x} - A_n|, \quad n \ge -2 \quad (\delta_n = B_n ||B_n \mathbf{x}|| \text{ for } n \ge 1). \quad (1)$$

The limit points of the sequence δ_n form a subset C(x) (which is in a sense constructive) and we shall show that D(x) can be generated from C(x) in a relatively simple way (Theorem 1), so the structure of C(x) is basic in our context.

A theorem of Lekkerkerker [5] shows that for a badly approximable number x the set C(x) is finite if and only if x is a quadratic irrational, and the connection between C(x) and D(x) shows that D(x) is discrete if and only if

- 1) For results on infD(x), which is the inverse of Perron's modular function [5], see [1] and the bibliography of this paper.
- 2) Let $\eta_i = n_i ||n_i x|| \to 0$, choose $0 < \alpha \in \mathbb{R}$, and let $n_i^* = n_i \sqrt{\frac{\alpha}{\eta_i}}$ Then $\eta_i \left[\sqrt{\frac{\alpha}{\eta_i}} \right]^2 = n_i^* ||n_i^* x||$ for i large and $\eta_i \left[\sqrt{\frac{\alpha}{\eta_i}} \right]^2 \to \alpha$. Hence $\alpha \in D(x)$.

x is (badly approximable and) a quadratic irrational. We will also give another proof of Lekkerkerker's theorem using relations between δ_{n-1} , δ_n , δ_{n+1} which are independent of x and n and seem to tell the whole structure of the δ_n 's (Lemma 3, Theorem 3).

1. THE BASIC FORMULAS.

Writing $x = [b_0, b_1, \ldots] = [b_0, b_1, \ldots, b_{n-1} + \frac{1}{\xi_n}]$, $\xi_n = [b_n, b_{n+1}, \ldots]$ and $\rho_n = \frac{B_n}{B_{n-1}}$, $n \ge 1$, $1/\rho_0 = 0$ we have for $n \ge 0$ the following well known formulas

$$\xi_n = b_n + \frac{1}{\xi_{n+1}}$$
 (2)

$$B_{n}(B_{n}x - A_{n}) = \frac{(-1)^{n}}{\xi_{n+1} + \frac{1}{\rho_{n}}}$$
(3)

$$b_{n+1} = \rho_{n+1} - \frac{1}{\rho_n}$$
 (4)

(cf. [7], 13; (4) is a consequence of $B_{n+1} = b_{n+1} B_n + B_{n-1}$, $n \ge -1$).

LEMMA 1. For $n \ge 1$

$$\delta_n + \delta_{n-1} < 1$$
 unless ³⁾ $n = 1$, $b_1 = 1$, (5)

$$\rho_{n} = \frac{1 + \sqrt{1 - 4\delta_{n} \delta_{n-1}}}{2 \delta_{n-1}} , \frac{1}{\rho_{n}} = \frac{1 - \sqrt{1 - 4 \delta_{n} \delta_{n-1}}}{2\delta_{n}} .$$
 (6)

PROOF. It follows from (2) and (4) that

$$\xi_{n} + \frac{1}{\rho_{n-1}} = b_{n} + \frac{1}{\xi_{n+1}} + \frac{1}{\rho_{n-1}} = \frac{1}{\xi_{n+1}} + \rho_{n} \quad (n \ge 1) \quad \text{. This and (1), (3)}$$

3) If $b_1 = 1$ then $\delta_0 + \delta_1 = (x - [x]) - (x - [x] - 1) = 1$,

show that

$$\delta_{n} + \delta_{n-1} = \frac{\xi_{n+1} + \rho_{n}}{1 + \rho_{n}\xi_{n+1}} \qquad \text{for } n \ge 1 , \qquad (7)$$

which implies (5) (note that $\xi_{n+1} > 1$). In order to prove (6) we note that the foregoing calculations also show that

$$1 - 4\delta_{n}\delta_{n-1} = 1 - 4 \frac{\rho_{n}\xi_{n+1}}{(1 + \rho_{n}\xi_{n+1})^{2}} = \left(\frac{\rho_{n}\xi_{n+1} - 1}{1 + \rho_{n}\xi_{n+1}}\right)^{2}$$

and this leads immediately to (6).

Formulas (4) and (6) suggest the introduction of the function

$$\phi(x,y;z) = \frac{\sqrt{1-4xz'} + \sqrt{1-4yz'}}{2z}, \quad z > 0, \quad 4xz < 1, \quad 4yz < 1$$

using this notation, we have

$$b_{n+1} = \phi(\delta_{n-1}, \delta_{n+1}; \delta_n), \quad n \ge 0 \quad (\delta_{-1} = 0).$$
 (8)

The following properties of ϕ will be used in later sections of this paper :

$$\phi(\mathbf{x},\mathbf{y};\mathbf{z}) = \phi(\mathbf{y},\mathbf{x};\mathbf{z}) , \qquad (9)$$

$$\phi(x,y;z) \downarrow \text{(strictly) if } x\uparrow, y\uparrow \text{ or } z\uparrow,$$
 (10)

$$\phi(\mathbf{x}, 1-\mathbf{z}; \mathbf{z}) = \frac{|2\mathbf{z}-1| + \sqrt{1-4\mathbf{x}\mathbf{z}'}}{2\mathbf{z}}, \qquad (11)$$

$$\phi(\mathbf{x},0;\mathbf{z}) - \phi(\mathbf{x},1-\mathbf{z};\mathbf{z}) = \frac{1-|2\mathbf{z}-1|}{2\mathbf{z}} = \begin{cases} 1 & \text{if } \mathbf{z} \leq 1/2 \\ \frac{1-\mathbf{z}}{\mathbf{z}} < 1 & \text{if } \mathbf{z} > 1/2 \end{cases}$$
(12)

In conclusion we mention that (5) contains Vahlen's result (see e.g. [7], §14)

that at least one of δ_n , δ_{n-1} is < 1/2, and Borel's result (see [7],§14) that at least one of δ_{n-1} , δ_n , δ_{n+1} is < $1/\sqrt{5}$ follows from (6), (8) and (10). Indeed, if this were not true then one of the δ 's would be > $1/\sqrt{5}$ (since $\delta_n = \delta_{n+1} = 1/\sqrt{5}$ and (6) would imply $\rho_{n+1} = \frac{\sqrt{5}+1}{2}$, but ρ_n is rational) and this and (8) and (10) imply

$$b_{n+1} = \phi(\delta_{n-1}, \delta_{n+1}; \delta_n) < \phi(1/\sqrt{5}, 1/\sqrt{5}; 1/\sqrt{5}) = 1$$

but $b_{n+1} \ge 1$.

2. THE RELATION BETWEEN
$$C(x)$$
 AND $D(x)$.

In addition to d(x) and C(x) we introduce the sets

 $D_{s}(x)$: the limit points of the sequence n r(nx) ,

 $C_s(x)$: the limit points of the sequence $B_n r(B_n x)$.

These sets contain information on the sign of the approximations of x by rationals, and D(x) or C(x) is known if $D_{s}(x)$ or $C_{s}(x)$ is known. Let ||nx|| = |nx-m|, sign $(nx - m) = \varepsilon$. Then it follows from

$$n = \lambda B_{k} + \mu B_{k-1}$$

$$m = \lambda A_{k} + \mu A_{k-1} , \quad k \ge -1$$
(13)

by Cramer's rule that λ , $\mu \in \mathbb{Z}$ and that

$$\lambda = n |xB_{k-1} - A_{k-1}| + (-1)^{k} \varepsilon B_{k-1} ||nx|| ,$$

$$\mu = n |xB_{k} - A_{k}| - (-1)^{k} \varepsilon B_{k} ||nx|| .$$
(14)

<u>THEOREM 1.</u> Let $0 \notin D(x)$. Then $\alpha \in D_{g}(x)$ if and only if

W. B. JURKAT & A. PEYERIMHOFF

$$\alpha = \lambda^{2} \gamma - \lambda \mu \sqrt{1 + 4\beta \gamma} \operatorname{sign} \gamma + \mu^{2} \beta , \qquad (15)$$

where $\lambda, \mu \in \mathbb{N}_{O}$, $(\lambda, \mu) \neq (0, 0)$ and $\beta = \lim_{k_{i} \to \infty} \mathbb{B}_{k_{i}} - 1^{r(B_{k_{i}} - 1^{x})}$, $\gamma = \lim_{k_{i} \to \infty} \mathbb{B}_{k_{i}} r(B_{k_{i}} x)$ for some sequence $k_{i} \to \infty$.

<u>COROLLARY</u>. Formula (15) and $\beta\gamma < 0$ show that D(x) and C(x) are connected by

$$\alpha = \left| \lambda^2 |\gamma| - \lambda \mu \sqrt{1 - 4 |\beta| \gamma|} - \mu^2 |\beta| \right| .$$
 (16)

PROOF of Theorem 1.

Let $n_i r(n_i x) = n_i (n_i x - m_i) \rightarrow \alpha \in D_s(x)$, and select $k_i \in \mathbb{N}$ (for all large i) such that

$$\mathbf{B}_{\mathbf{k}_{\mathbf{i}}} ||\mathbf{n}_{\mathbf{i}}\mathbf{x}|| \leq \mathbf{n}_{\mathbf{i}} ||\mathbf{B}_{\mathbf{k}_{\mathbf{i}}}\mathbf{x}|| , \qquad (17)$$

$$B_{k_{i}+1}||n_{i}x|| > n_{i}||B_{k_{i}+1}x||$$
 (18)

Define numbers λ_{i} , μ_{i} by (13) (with n_{i} , m_{i} , k_{i} instead of n, m, k). It follows from (17) and (14) that λ_{i} , $\mu_{i} \in \mathbf{N}_{o}$. Condition (17) implies $B_{k_{i}} \leq n_{i}$ since otherwise $||n_{i}x|| > ||B_{k_{i}}x||$ by Lagrange's Theorem ([7], §15) which leads to a contradiction to (17). On the other hand, it follows from $||B_{k_{i}}+1x|| > (B_{k_{i}}+1 + B_{k_{i}}+2)^{-1}$ ([7], §13) and (18) that

$$\frac{n_{i}^{2}}{B_{k_{i}+1} + B_{k_{i}+2}} \leq n_{i}^{2} ||B_{k_{i}+1}x|| \leq B_{k_{i}+1}n_{i}||n_{i}x|| = B_{k_{i}+1}(|\alpha| + o(1))$$

which implies $n_i \leq 2|\alpha|^{1/2} B_{k_i+2}$ for all large i.

It follows from $0 \notin D(x)$ and $B_k ||B_k x|| < \frac{1}{b_{k+1}}$ ([7], 13) that $b_{k+1} = 0(1)$. Hence, there is a constant $C = C(\alpha, x)$ such that

$$B_{k_i} \leq n_i \leq C(\alpha, x)B_{k_i} - 1$$
 for all large i, (19)

From (19) and (14) we infer that

$$0 \le \lambda_{i} \le K_{1}(\alpha, \mathbf{x})$$
 , $0 \le \mu_{i} \le K_{2}(\alpha, \mathbf{x})$

for constants $K_1^{}$, $K_2^{}$ and all large i .

By taking subsequences, the foregoing shows that sequences $n_i \to \infty, k_i \to \infty$ exist such that

(20)
$$\begin{cases} n_{i}r(n_{i}x) \neq \alpha \\ n_{i} = \lambda B_{k_{i}} + \mu B_{k_{i}-1}, m_{i} = \lambda A_{k_{i}} + \mu A_{k_{i}-1}, \lambda, \mu \in \mathbb{N}_{0}, (\lambda, \mu) \neq (0, 0) \\ \\ B_{k_{i}-1}r(B_{k_{i}-1}x) \neq \beta , B_{k_{i}}r(B_{k_{i}}x) \neq \gamma . \end{cases}$$

Let n_i , k_i satisfy (20). Then (note that $r(B_n x) = B_n x - A_n$ for $n \ge 1$)

$$n_{i}r(n_{i}x) = \lambda^{2}B_{k_{i}}r(B_{k_{i}}x) + \lambda\mu(\rho_{k_{i}}B_{k_{i}}-1r(B_{k_{i}}-1x) + \frac{1}{\rho_{k_{i}}}B_{k_{i}}r(B_{k_{i}}x) + \mu^{2}B_{k_{i}}-1r(B_{k_{i}}-1x).$$

This and (6) show that every $\alpha \in D_s$ has a representation (15) and that every number (15) belongs to D_s .

REMARKS. 1. Let K > 0. Then the proof of Theorem 1 shows that for every $\alpha \in D_{g}(x)$, $|\alpha| \leq K$, a representation (15) holds for some λ and μ which are bounded by a constant which depends on K and x only. Hence, if C(x) is discrete (i.e. C(x) is finite since $B_{n}||B_{n}x|| \leq 1$), then D(x) is discrete and vice versa.

2. A slight modification of the proof of Theorem 1 also shows that n||nx|| = n |nx-m| < 1/2 ($n \in \mathbb{N}$) implies $n/m = A_v/B_v$ for some v ([7], §13;[2] Theorem 184; for a more general result compare [4], Proposition 4). In fact, choose $k \ge 1$ such that $B_{k-1} < n \le B_k$ (n=1 is a trivial case). If $\varepsilon = (-1)^k$ and $n < B_k$, then (14) leads to the contradiction $0 < \lambda < 2n ||nx|| < 1$, hence $n = B_k$. If $\varepsilon = (-1)^{k-1}$, then (14) implies $\mu > 0$, $\lambda > -n ||nx|| > -1/2$, hence $\lambda \ge 0$. But $\lambda < 1$ since $n \le B_k$, hence $n = \mu B_{k-1}$, $m = \mu A_{k-1}$.

3. THE STRUCTURE OF C(x) WHEN x IS A QUADRATIC IRRATIONALITY.

We show first that C(x) is finite when x is a quadratic irrationality.

LEMMA 2. If x belongs to a quadratic number field, then $0 \notin C(x)$ and $C_{s}(x)$ and C(x) are finite.

This Lemma is essentially due to Lekkerkerker [5], see also Perron [6], p.6. The following proof contains an explicit representation of the elements of $C_{g}(x)$.

PROOF. $x = [b_0, b_1, ...]$ is represented in this case by a periodic continued fraction, i.e. $x = [b_0, ..., b_{r-1}, p_0, \overline{p_1, ..., p_{k-1}}]$, $r \ge 1$, $k \ge 1$. It follows that $b_{r+nk+\nu} = p_{\nu}$ for $\nu = 0, 1, ..., k-1$, $n \in \mathbb{N}_0$, and if $x_{\nu} = [\overline{p_{\nu}, p_{\nu+1}, ..., p_{k-1}, p_0, ..., p_{\nu-1}]}$, then $\xi_{r+nk+\nu} = x_{\nu}$.

It follows from (4) that $\rho_n = [b_n, b_{n-1}, \dots, b_1]$, hence $\rho_{r+nk+\nu-1} \rightarrow [\overline{p_{\nu-1}, p_{\nu-2}, \dots, p_0, p_{k-1}, \dots, p_{\nu}]} = c_{\nu} (n \rightarrow \infty)$, and the statement of Lemma 2 follows from (3).

REMARK. It follows from a theorem of Galois ([7], §23) that $c_v = -\frac{1}{\bar{x}_v}$, where \bar{x}_v is the conjugate of x_v . Hence, the elements of C_s are

$$\frac{(-1)^{r+\nu-1}}{x_{\nu}-\bar{x}_{\nu}} \quad \text{if } k \text{ is even }, \quad \frac{\pm 1}{x_{\nu}-\bar{x}_{\nu}} \quad \text{if } k \text{ is odd.} \quad (21)$$

This formula leads to an even more explicit representation of the elements of $C_s^{(x)}$.

This representation uses the notation $A_{n,j}/B_{n,j}$ for the convergents of $\begin{bmatrix} b_{j}, b_{j+1}, \dots \end{bmatrix}$ ([7], §5). Let A_{n}/B_{n} denote the convergents of $\begin{bmatrix} p_{0}, \dots, p_{k-1} \end{bmatrix}$. Then the elements of $C_{s}(x)$ are

$$\begin{cases} (-1)^{r+\nu-1} \frac{B_{k-1,\nu}}{\sqrt{D}} & \text{if } k \text{ is even }, \pm \frac{B_{k-1,\nu}}{\sqrt{D}} & \text{if } k \text{ is odd }, \end{cases}$$

$$(22)$$

$$\nu = 0, 1, \dots, k-1 , D = (A_{k-1} + B_{k-2})^2 + 4(-1)^{k-1} .$$

In fact, we have $x_{\nu} = \frac{A_{k-1,\nu} - B_{k-2,\nu} + \sqrt{D_{\nu}}}{2B_{k-1,\nu}}$, $D_{\nu} = (A_{k-1,\nu} + B_{k-2,\nu})^2 + 4(-1)^{k-1}$

 $([7], \S 19)$. But $B_{i,j} = A_{i-1,j+1}$, $A_{i,j} = b_j A_{i-1,j+1} + B_{i-1,j+1}$ ([7], §5), and it follows that

$$A_{k-1,\nu-1} + B_{k-2,\nu-1} = b_{\nu-1}A_{k-2,\nu} + B_{k-2,\nu} + A_{k-3,\nu} = b_{k-1+\nu}A_{k-2,\nu} + A_{k-3,\nu} + B_{k-2,\nu}$$
$$= A_{k-1,\nu} + B_{k-2,\nu}$$
 Hence $D_{\nu} = D_{\rho}$, and (22) follows.

4. THE RELATION BETWEEN THREE CONSECUTIVE δ 's.

Formula (8) shows that b_{n+1} is a function of δ_{n-1} , δ_n , δ_{n+1} . The following Lemma shows that b_{n+1} is also a function of δ_{n-1} , δ_n alone. This fact is the key to the following considerations, which will show that the converse of Lemma 2 is also true.

LEMMA 3. For $n \ge 0$

$$\mathbf{b}_{n+1} = \phi \ (\delta_{n-1}, \ 0; \ \delta_n) \quad , \text{ and } \phi \ (\delta_{n-1}, \ 0; \ \delta_n) \notin \mathbb{N} \ . \tag{23}$$

PROOF. Formulas (3), (6) and (8) imply

$$\xi_{n+1} = \frac{1}{\delta_n} - \frac{1}{\rho_n} = \frac{1 + \sqrt{1 - 4\delta_n \delta_{n-1}}}{2\delta_n} = \phi \ (\delta_{n-1}, 0; \ \delta_n) \quad (n \ge 0)$$

and (23) follows from $\xi_{n+1} = \begin{bmatrix} b_{n+1}, b_{n+2}, \dots \end{bmatrix}$, $b_{n+1} = \begin{bmatrix} \xi_{n+1} \end{bmatrix}$ (note that ξ_{n+1} is irrational).

REMARK. Formulas (6) and (4) show that

$$\phi(\delta_{n+1}, 0; \delta_n) = \frac{1 + \sqrt{1 - 4\delta_n \delta_{n+1}}}{2\delta_n} = \rho_{n+1} = \left[b_{n+1}, b_n, \dots, b_1\right] \quad (n \ge 0)$$

and it follows

$$\mathbf{b}_{n+1} = \phi(\delta_{n+1}, 0; \delta_n) , \quad \phi(\delta_{n+1}, 0; \delta_n) \in \mathbb{N} , \qquad (24)$$

if $n \ge 2$ or if n = 1, $b_1 \ge 1$.

The first formula (24) remains true for n = 0.

Lemma 3 shows that a (universal) function Ψ exists such that

$$b_{n+1} = \Psi(\delta_n, \delta_{n-1}) , n \ge 0 ,$$
 (25)

and the remark shows that also $b_{n+1} = \Psi(\delta_n, \delta_{n+1})$ unless n = 1, $b_1 = 1$, i.e. unless n = 1, $\delta_0 > 1/2$. It follows from (8) that $\Psi(\delta_n, \delta_{n-1}) = \phi(\delta_{n-1}, \delta_{n+1}, \delta_n)$, hence there exists by (10) a function χ such that

$$\delta_{n+1} = \chi(\delta_n, \delta_{n-1}) , \quad n \ge 0 , \qquad (26)$$

and similarly $\delta_{n-1} = \chi(\delta_n, \delta_{n+1})$ unless $n = 1, b_1 = 1$.

Using the function Ψ , we find explicitely

$$\delta_{n+1} = \chi(\delta_n, \delta_{n-1}) = \frac{1}{4\delta_n} \left[1 - \left(2\delta_n \, \Psi(\delta_n, \delta_{n-1}) - \sqrt{1 - 4\delta_{n-1}\delta_n} \right)^2 \right]$$
(27)

The following theorem gives Ψ in a more convenient form than Lemma 3.

THEOREM 2. Let
$$n \ge 0$$
, $k_n = \left[\frac{1}{\delta_n}\right]$. Then $\delta_{n-1} \neq k_n(1-k_n\delta_n)$ and

PROOF. Assume that $\delta_{n-1} = k_n(1-k_n \delta)$. Then

$$\phi(\delta_{n-1}, 0; \delta_n) = \frac{1 + \sqrt{(2\delta_n k_n - 1)^2}}{2\delta_n} = k_n$$
(28)

(note that $2\delta_n k_n > 1$) which contradicts (23). Let $\delta_{n-1} \in [0, k_n(1-k_n\delta_n))$. Then by (10) and (28)

 $\begin{aligned} &k_n + 1 > \frac{1}{\delta_n} = \phi(0,0;\delta_n) \ge \phi(\delta_{n-1},0;\delta_n) > \phi(k_n(1-k_n\delta_n) , 0;\delta_n) = k_n \text{ and} \\ &k_n = b_{n+1} \quad \text{follows from Lemma 3.} \\ &\text{Let } \delta_{n-1} \in (k_n(1-k_n\delta_n), 1-\delta_n) \text{ which implies } n \ge 1 \text{ since } \delta_{-1} = 0. \text{ Then, by} \\ &(28), (10), (5) \text{ and } (12) \end{aligned}$

$$k_{n} = \phi(k_{n}(1-k_{n}\delta_{n}), 0; \delta_{n}) > \phi(\delta_{n-1}, 0; \delta_{n}) \ge \phi(1-\delta_{n}, 0; \delta_{n})$$
$$\ge \phi(0, 0; \delta_{n}) - 1 = \frac{1}{\delta_{n}} - 1 > k_{n} - 1$$

and $k_n - 1 = b_{n+1}$ follows from Lemma 3. Figure 1 shows the areas of constancy for the function Ψ .

5. THE INFLUENCE OF $0 \notin C(x)$.

Our next step is to introduce the assumption $0 \notin C(x)$, i.e. $\delta_n \ge \lambda > 0$, $n \in \mathbb{N}$, for some λ into our considerations.

LEMMA 4. Let
$$0 \le \lambda \le 1/\sqrt{2}^{-1}$$
.
If $n \ge 1$ and if δ_{n-1} and δ_{n+2} are $> \lambda$, then

4) This interval is empty if $k_n = 1$.

W. B. JURKAT & A. PEYERIMHOFF

$$\delta_{n} + \delta_{n+1} < \sqrt{1 - \lambda^{2}} \qquad (29)$$

PROOF. Our proof depends on the inequality

$$\phi(\lambda, \sqrt{1-\lambda^2}-z;z) \leq 1 \quad \text{if} \quad \frac{1}{2}\sqrt{1-\lambda^2} \leq z < 1, 4 \lambda z < 1,$$
(30)

In order to prove (30) we observe that

$$\sqrt{1-4\lambda z} \leq \sqrt{1-2\lambda}\sqrt{1-\lambda^2} = \sqrt{(\sqrt{1-\lambda^2}-\lambda)^2} = \sqrt{1-\lambda^2} - \lambda,$$

$$\sqrt{1-4z} (\sqrt{1-\lambda^2}-z) = \sqrt{(2z-\sqrt{1-\lambda^2})^2 + \lambda^2} \leq (2z-\sqrt{1-\lambda^2}) + \lambda,$$

and (30) follows from

$$\phi(\lambda, \sqrt{1-\lambda^2} - z; z) \leq \frac{1}{2z} \left(\sqrt{1-\lambda^2} - \lambda + 2z - \sqrt{1-\lambda^2} + \lambda \right) = 1$$

Assume that the assumptions of Lemma 4 hold and that $\delta_n + \delta_{n+1} \ge \sqrt{1 - \lambda^2}$.

If
$$\delta_n \ge \frac{1}{2}\sqrt{1-\lambda^2}$$
, then by (8), (10) and (30)
 $b_{n+1} = \phi(\delta_{n-1}, \delta_{n+1}; \delta_n) < \phi(\lambda, \delta_{n+1}; \delta_n) \le \phi(\lambda, \sqrt{1-\lambda^2}, -\delta_n; \delta_n) \le 1$

but $b_{n+1} \ge 1$. Similarily, if $\delta_{n+1} \ge \frac{1}{2}\sqrt{1-\lambda^2}$, $b_n = \phi(\delta_n, \delta_{n-1}, \delta_{n-1}) \le \phi(\lambda_n, \delta_{n-1}, \delta_{n-1}) \le \phi(\lambda_n, \sqrt{1})$

$$\mathbf{b}_{n+2} = \phi(\delta_n, \delta_{n+2}; \delta_{n+1}) < \phi(\lambda, \delta_n; \delta_{n+1}) \le \phi(\lambda, \sqrt{1-\lambda^2} - \delta_{n+1}; \delta_{n+1}) \le 1 ,$$

,

but $b_{n+2} \ge 1$.

REMARK. Formula (5) is for $n \ge 2$ a special case of (29). If $\delta_n > \lambda$ for all n, then it follows form (29) that $2\lambda < \sqrt{1-\lambda^2}$, hence $\lambda < 1/\sqrt{5}$.

Lemma 4 will be used now to show that the points (δ_n, δ_{n-1}) keep a certain distance from the discontinuities of Ψ if $0 \notin C(x)$. We introduce the notation

 $\eta_n = k_n (1 - k_n \delta_n) ,$

and we assume that $\delta_n > \lambda > 0$ for some $\lambda > 0$ and all $n \in \mathbb{N}$. Let $\delta_n = 1/2$ for some fixed $n \ge 2$. Formula (8) and Theorem 2 imply

$$\sqrt{1-4\delta_{n}\delta_{n-1}} + \sqrt{1-4\delta_{n}\delta_{n+1}} = \begin{cases} 2 \delta_{n}k_{n} & \text{if } \delta_{n-1} < \eta_{n} \\ 2 \delta_{n}k_{n}-2\delta_{n} & \text{if } \delta_{n-1} > \eta_{n} \end{cases}$$
(31)

In what follows we need the inequality $2\frac{k}{n}k_n > \frac{2k}{k_n+1} \ge \frac{4}{3}$ (note that $k_n \ge 2$) and the formulas $1-4\delta_n n = (2\delta_n k_n - 1)^2$, $1-4\delta_n (1-\delta_n) = (1-2\delta_n)^2$.

Let $\delta_{n-1} > \eta_n$, Then it follows from (31) that

$$\sqrt{1} - \sqrt{1 - 4\delta_n \delta_{n+1}} = \sqrt{1 - 4\delta_n \delta_{n-1}} - \sqrt{1 - 4\delta_n \eta_n}$$

hence (use $\sqrt{a} - \sqrt{b} = (a-b) / (\sqrt{a} + \sqrt{b})$)

$$\frac{\lambda}{2} \le \frac{\delta_{n+1}}{2} \le \frac{\delta_{n+1}}{1 + \sqrt{1 - 4\delta_n \delta_{n+1}}} = \frac{\eta_n - \delta_{n-1}}{\sqrt{1 - 4\delta_n \delta_{n-1}} + (2\delta_n k_n - 1)} \le \frac{\eta_n - \delta_{n-1}}{1/3}$$

It follows that

$$\delta_{n-1} \leq \eta_n - \frac{\lambda}{6} \quad . \tag{32}$$

Let $\delta_{n-1} > \eta_n$. Then it follows from (31) that

$$\sqrt{1-4\delta_n \eta_n} - \sqrt{1-4\delta_n \delta_{n-1}} = \sqrt{1-4\delta_n \delta_{n+1}} - \sqrt{1-4\delta_n (1-\delta_n)}$$

hence, by Lemma 4

$$\frac{\delta_{n-1} \eta_n}{1/3} \ge \frac{\delta_{n-1} \eta_n}{2\delta_n k_n - 1 + \sqrt{1 - 4\delta_n \delta_{n-1}}} = \frac{1 - (\delta_n + \delta_{n+1})}{1 - 4\delta_n \delta_{n+1} + (1 - 2\delta_n)} \ge \frac{1 - \sqrt{1 - \lambda^2}}{2}$$

It follows that

$$\delta_{n-1} \ge \eta_n + \frac{1 - \sqrt{1 - \lambda^2}}{6}$$
 (33)

Formula (4) implies that all points (δ_n, δ_{n-1}) , $n \ge 2$, are in a certain open triangle, and some straight lines inside of this triangle are excluded by Theorem 2 (cf. figure 1).

Fig.1

Moreover, if $\delta_n > \lambda > 0$, then (29), (32) and (33) introduce some additional restriction for (δ_n, δ_{n-1}) . To describe the remaining region we introduce the following set.

Let $M(\lambda)$, $0 \le \lambda < 1/\sqrt{5}$, denote the (open) set of points (x, y) with the properties

Fig. 2

If $\delta_n > \lambda \ge 0$ for all $n \in \mathbb{N}$, then $(\delta_n, \delta_{n-1}) \in M(\lambda)$ for $n \ge 3$ by (29), (32) and (33). The combination of this result with the results of section 4 leads immediately to

THEOREM 3. There are (universal) functions Ψ and χ , defined on M(0), such that $b_{n+1} = \Psi(\delta_n, \delta_{n-1})$, $\delta_{n+1} = \chi(\delta_n, \delta_{n-1})$, $n \ge 0$. The functions Ψ and χ are continuous on every $M(\lambda)$. $\lambda > 0$. If $\delta_n > \lambda > 0$ ($\lambda < 1/\sqrt{5}$) for all $n \in \mathbb{N}$, then $(\delta_n, \delta_{n-1}) \in M(\lambda)$ for $n \ge 3$.

6. THE CONVERSE OF LEMMA 2.

We use Theorem 3 to prove the following result of Lekkerkerker [5].

THEOREM 4. If $C_{s}(x)$ is finite and $0 \notin C_{s}(x)$, then x belongs to a quadratic number field.

PROOF. Let α_{i} denote the elements of $C(\mathbf{x})$, and let A be the set to all pairs (α_{i}, α_{j}) with $(\delta_{n}, \delta_{n-1}) + (\alpha_{i}, \alpha_{j})$ on a subsequence. Since $0 \notin C(\mathbf{s})$, there is some $\lambda > 0$ such that $(\delta_{n}, \delta_{n-1}) \in M(\lambda)$ for all large n, and $\mathbf{a} \in M(\lambda)$ for every $\mathbf{a} \in A$. If $\mathbf{a} = (\alpha_{i}, \alpha_{j}) \in A$ then $\mathbf{a}' = (\chi(\alpha_{i}, \alpha_{j}), \alpha_{i}) \in A$ since $\delta_{n_{k}} + \alpha_{i}$, $\delta_{n_{k}-1} + \alpha_{j}$ implies $\delta_{n_{k}+1} = \chi(\delta_{n_{k}}, \delta_{n_{k}-1}) \rightarrow (\alpha_{i}, \alpha_{j})$ by Theorem 3. We call a' the successor of a. The set A is finite, hence if $\mathbf{a} \in A$ then one of its later successors is again a. Let $U(\mathbf{a}, \varepsilon) = \{(\mathbf{x}, \mathbf{y}) \mid (\mathbf{x}, \mathbf{y}) - \mathbf{a} \mid \langle \varepsilon \rangle\}$, $\mathbf{a} \in A$. Choose $\varepsilon > 0$ such that $u(\mathbf{a}, \varepsilon) \subseteq M(\lambda)$ for every $\mathbf{a} \in A$, $U(\mathbf{a}, \varepsilon) \cap U(\mathbf{b}, \varepsilon) = \emptyset$ if $\mathbf{a} \neq \mathbf{b}$. It follows that Ψ is constant on every $U(\mathbf{a}, \varepsilon)$. Choose $\varepsilon^{*} \in (0, \phi)$ such that for every $\mathbf{a} \in A$ $\begin{cases} (\chi(\mathbf{x}, \mathbf{y}), \mathbf{x}) \mid (\mathbf{x}, \mathbf{y}) \in U(\mathbf{a}, \varepsilon^{*}) \end{cases} \subseteq U(\mathbf{a}', \varepsilon)$. (34) Let $N \in \mathbb{N}$ be so large that $(\delta_{n}, \delta_{n-1}) \subseteq U(\mathbf{a}, \varepsilon^{*})$ for exactly one $\mathbf{a} \in A$

depending on $n \ge N$. This establishes a mapping $a = F(\delta_n, \delta_{n-1})$ for every $n \ge N$ which is "successor preserving", i.e. if $F(\delta_n, \delta_{n-1}) = a$ then $F(\delta_{n+1}, \delta_n) = a'$. Indeed, if $F(\delta_n, \delta_{n-1}) = a$, i.e. $(\delta_n, \delta_{n-1}) \in U(a, \epsilon^*)$, then $(\delta_{n+1}, \delta_n) = (\chi(\delta_n, \delta_{n-1}), \delta_n) \stackrel{\leq}{=} U(a', \epsilon)$ by (34), hence $(\delta_{n+1}, \delta_n) \in U(a', \epsilon^*)$ since $n \ge N$.

Take a fixed $n \ge N$, and let $a = F(\delta_n, \delta_{n-1})$. Consider a sequence of successors $a = a^{(0)}$, a', a'', $\dots, a^{(\ell)}$, $\ell \in \mathbb{N}$, with $a^{(\ell)} = a$. It follows that

$$F(\delta_{n+\nu+k\ell}, \delta_{n-1+\nu+k\ell}) = a^{(\nu)}, \quad \nu = 0, 1, \dots, \ell-1, k = 0, 1, 2, \dots$$
(35)

Since Ψ is constant on every $U(a,\epsilon^*)$, it follows from (35) that $b_{n+\nu+k\ell+1} = \Psi(\delta_{n+\nu+K\ell}, \delta_{n+\nu+k\ell-1})$ is independent of k, i.e. the continued fraction for x is periodic. This proves Theorem 4.

REMARK. As conclusion we explain our results in the simplest case $x = (1 + \sqrt{5})/2 = [1, 1, ...]$. Here C(x) consists of the single point $1/\sqrt{5}$ by (22), and D(x) consists of the points $|\lambda^2 - \lambda\mu - \mu^2|/\sqrt{5}$ with integral $(\lambda, \mu) \neq (0, 0)$ by (16). It is well-known (see [3], p. 554) that

$$\lambda^2 - \lambda \mu - \mu^2 = (\lambda - \mu \frac{1+\sqrt{5}}{2}) (\lambda - \mu \frac{1-\sqrt{5}}{2})$$

represents exactly the integers for which the exponents in the prime factorization must be even for all primes \equiv 2 or 3 mod 5 . So

$$D(\mathbf{x}) = \{ \frac{1}{\sqrt{5}}, \frac{4}{\sqrt{5}}, \frac{5}{\sqrt{5}}, \frac{9}{\sqrt{5}}, \frac{11}{\sqrt{5}}, \frac{16}{\sqrt{5}}, \frac{19}{\sqrt{5}}, \frac{20}{\sqrt{5}}, \dots \}$$

Since this set contains only one element $\in (0,1)$ it determines C(x) uniquely. Furthermore, given $C(y) = \{ 1/\sqrt{5} \}$, all possible y which produce this set are given by integral transformations $y = \frac{ax+b}{cx+d}$, $ad - bc = \pm 1$. This follows because the proof of Theorem 4 works with $\ell = 1$, so the continued fraction for y has period 1 (the terms before the period being of no influence with quotients 1 by (22).

<u>ACKNOWLEDGEMENT</u>. This research was supported in part by the National Science Foundation.

REFERENCES

- Davis, N. and Kinney, J.R. : Quadratic Irrationals in the Lower Lagrange Spectrum. Can. J. Math. 25 (1973) 578-584.
- Hardy, G.H. and Wright, E.M. : An Introduction to the Theory of Numbers. Oxford 1954.
- 3. Hasse, H. : Zahlentheorie, Akademie-Verlag, Berlin 1969.
- 4. Jurkat, W.B., Kratz, W., and Peyerimhoff, A. : Explicit Representations of Dirichlet Approximations.
- 5. Lekkerkerker, C.G. : Una Questione di Approssimazione Diofantea e Una Proprieta Caratteristica dei Numeri Quadratici I, II. <u>Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat.</u> (8) <u>21</u> (1956) 179-185, 257-262.
- Perron, O. : Uber die Approximation Irrationaler Zahlen Durch Rationale. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 12 (1921) 3-17.
- 7. Perron, O. : Die Lehre von den Kettenbruchen. Teubner Verlag, Stuttgart 1954, 1957.