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A classical solution is considered for the Cauchy problem: (utt −∆u)t +utt −
α∆u = f(x,t), x ∈ R3, t > 0; u(x,0) = f0(x), ut(x,0) = f1(x), and utt(x) =
f2(x), x ∈R3, where α= const, 0<α< 1. The above equation governs the propa-
gation of time-dependent acoustic waves in a relaxing medium. A classical solution
of this problem is obtained in the form of convolutions of the right-hand side and
the initial data with the fundamental solution of the equation. Sharp time esti-
mates are deduced for the solution in question which show polynomial growth for
small times and exponential decay for large time when f = 0. They also show the
time evolution of the solution when f ≠ 0.
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1. Introduction. In recent years, interest has grown in theoretical investiga-

tion of wave motion in media with dispersion and absorption. This is explained

not only by the practical needs of fluid dynamics, theory of viscoelasticity, and

geophysics, but also by the particular nature of equations arising here. In the

present paper, we are concerned with studying a third-order hyperbolic equa-

tion in the three-dimensional case

τ
(
utt−c2

f∆u
)
t+utt−c2

e∆u= f(x,t), x ∈R3, (1.1)

where u(x,t) is the dynamic pressure (perturbation of the average pressure)

and ∆ is the Laplace operator. The positive constant coefficients τ , ce, and cf
are the relaxation time and the limiting phase speeds of sound, respectively.

In order to understand their meaning, one has to describe briefly the corre-

sponding physical situation.

In a relaxing medium, the propagation of an acoustic wave perturbs the state

of a thermodynamical equilibrium. Having been disturbed, such a medium

tends towards a state of equilibrium, but with new values of parameters. If

the relaxation time is much smaller than the period of oscillations, the propa-

gation of sound occurs with the same speed ce as in the absence of relaxation.

If the inverse relation holds, the relaxation processes are “frozen” (not fast

enough to follow the oscillations) and the sound propagates with the “frozen”

sound speed cf > ce. In fact, for the majority of relaxing media (mixtures of

gases, chemically reacting fluids, water with bubbles, etc.), the ratio c2
e /c

2
f is

http://dx.doi.org/10.1155/S0161171203204361
http://dx.doi.org/10.1155/S0161171203204361
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


1074 VLADIMIR VARLAMOV

rather close to one [1, 3, 7]. Similar processes occur in standard viscoelastic

materials [4] and in cracked and porous media [7], where wave propagation

disturbs the state of a mechanical equilibrium.

In [5, 6], Renno obtained an integral representation of the fundamental solu-

tion of (1.1) involving modified Bessel functions and constructed the classical

solution of the Cauchy problem for (1.1) using spherical means [2]. In [8, 9], the

author of the present paper constructed the fundamental solution of (1.1) in

the form of a contour integral in the complex plane and applied the method of

retarded potentials for solving the initial-value problem for the homogeneous

equation (1.1). In the present paper, we would like to continue this study, de-

duce some properties of the fundamental solution, and, with their help, obtain

sharp time estimates of the classical solution of the Cauchy problem for (1.1).

2. Posing of the problem and auxiliary results. We denote by Cn(R3) the

space of functions having continuous derivatives through ordern inR3 and by

Cn0 (R3) the subspace of Cn(R3) of functions whose derivatives through order

n have compact support in R3.

We denote by B(x,t) a ball of radius t with the centre at the point x. In

the sequel, we will need functions defined on such a ball, that is, h(x,t), x ∈
B(x,t), t > 0. Making a change of variable x = tξ, 0 < |ξ| < 1, we obtain the

function h(tξ,t) which we denote by h̃. Analogous notations will be used for

its derivatives, for example, h̃t = ∂th̃(tξ,t), where t > 0, |ξ|< 1.

To simplify the notation in the rest of the paper, we introduce the nondimen-

sional variables x̄i = xi/(cfτ), t̄ = t/τ and set α= c2
f /c

2
e . Note that 0<α< 1.

We are interested in studying a Cauchy problem for (1.1) which in the scaled

variables can be posed as follows:

(
utt−∆u

)
t+utt−α∆u= f(x,t), (x,t)∈R3×R+, (2.1)

u(x,0)= f0(x), ut(x,0)= f1(x), utt(x)= f2(x), x ∈R3. (2.2)

In [9], a contour integral representation was obtained for the fundamental so-

lution E(x,t) of (2.1) which can be written as

E(x,t)= e(x,t)
4π|x|H

(
t−|x|), (2.3)

where

e(x,t)= 1
2πi

∫
C+

exp
[
ξ
(
t−γ(ξ)|x|)]
ξ+α dξ,

γ(ξ)=
√

1+ξ
α+ξ , |x| =

√
x2

1+x2
2+x2

3 .

(2.4)
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Here,

H(t)=

1, t ≥ 0,

0, t < 0
(2.5)

is the Heaviside function and C+ is the positively oriented circle with the center

in ξ = −α and radius 1−α, that is, {ξ : |ξ+α| = 1−α}. The branch of the

function γ(ξ) is determined in the following way. The cut is made along the

interval [−1,−α] and the branch of γ(ξ) satisfying the condition γ(0) = 1 is

chosen. Note that e= e(|x|, t).
In [5], Renno has obtained another representation for the kernel of the fun-

damental solution

e(r ,t)= exp(αr −bt)F(r ,t), (2.6)

where

F(r ,t)=
{
I0
(
ω(r,t)

)+
∫ 1

0
exp

(
η(r ,t)y2)[4η(r ,t)yI0(ψ(r ,t)y)

+ψ(r ,t)I1
(
ψ(r ,t)y

)]
×I0

(
ω(r,t)

√
1−y2

)
dy
}
,

ω(r ,t)= a
√
t2−r 2, η(r ,t)= a(t−r), ψ(r ,t)= 2

√
αar(t−r),

a= 1−α
2
, b = 1+α

2
, r = |x|.

(2.7)

It follows from (2.7) that e(r ,t) > 0. Since representation (2.7) is rather com-

plicated, only a rough estimate was deduced in [5] for the large time behavior

of solutions of (2.1) with f = f0 = f1 = 0 and f2 ∈ C2
0 (R3); namely,

|u| ≤ C
t
, as t �→∞. (2.8)

In [6], without the use of (2.7), Renno has proved that the solution of prob-

lem (2.1) with f = 0 decayed exponentially in time for sufficiently large t. In

the present paper, sharp time estimates uniform in space will be obtained for

all t > 0. They show dependence on the initial data, polynomial growth of so-

lutions for small times, and exponential decay at infinity in time. They also

show evolution of the wave process described by (2.1) due to the influence of

the source term of the equation. In order to obtain these results, we use both

formula (2.7) and the contour integral representation obtained in [9].

Modifying the main theorem of [9] in such a way that it covers the contribu-

tion of the source term of the equation, we can obtain the following statement.

Theorem 2.1. If f(x,t) ∈ C3(R3 ×R+) and fi(x) ∈ C5−i(R3), i = 0,1,2,
then there exists the unique classical solution of problem (2.1) represented in
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the form

u(x,t)=u0(x,t)+u1(x,t)+u2(x,t)+uf (x,t), (2.9)

where

u0(x,t)= 1
4π

∫
B(x,t)

e(x−y,t)
|x−y|

[
f2(y)+ 2

3

(
f1(y)− 1

3
f0(y)−∆f0(y)

)]
dy,

u1(x,t)= 1
4π
∂t
∫
B(x,t)

e(x−y,t)
|x−y|

[
f1(y)+ 2

3
f0(y)

]
dy,

u2(x,t)= 1
4π
∂2
t

∫
B(x,t)

e(x−y,t)
|x−y| f0(y)dy,

uf (x,t)= 1
4π

∫ t
0
dτ
∫
B(x,τ)

e(x−y,τ)
|x−y| f(y,t−τ)dy.

(2.10)

Set

β(ξ,t)= bt−α∣∣ξ∣∣ (2.11)

and observe that

0<a< β(ξ,t) < b. (2.12)

We can write that

ẽ= e(tξ,t)= exp
[−β(ξ,t)]F(tξ,t)= exp

[−β(ξ,t)]F̃ . (2.13)

Since I0(x),I1(x) > 0 for x > 0 (see [10]), it follows from (2.7) that F̃ > 0, and

therefore ẽ > 0. The following statement provides some more properties of the

function ẽ.

Lemma 2.2. The function ẽ satisfies the following inequalities:

ẽt+bẽ > 0, (2.14)

ẽtt+2bẽt+b2ẽ > 0. (2.15)

Proof. Differentiating (2.13) with respect to t, we get

ẽt =−bexp
[−β(ξ,t)]F̃+exp

[−β(ξ,t)]F̃t , (2.16)

ẽtt = b2 exp
[−β(ξ,t)]F̃−2bexp

[−β(ξ,t)]F̃t+exp
[−β(ξ,t)]F̃tt . (2.17)

According to (2.7), we have

ω̃t = a
√

1−|ξ|2 > 0, η̃t = a
(
1−|ξ|)> 0,

ψ̃t = 2
√
αa
(
1−|ξ|)> 0, ω̃tt = η̃tt = ψ̃tt = 0.

(2.18)
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Next, we use the properties of the modified Bessel functions involved in (2.7)

and their derivatives through the second order. These properties are based on

the formulas (see Watson [10, page 79])

I′0(x)= I1(x),

I′ν(x)=
1
2

[
Iν−1(x)+Iν+1(x)

]
, ν ≥ 1,

(2.19)

and the fact that Iν(x) > 0 for ν ≥ 0, x > 0. Therefore, we conclude that F̃t > 0

and F̃tt > 0. Then, (2.14) follows immediately from (2.16). Excluding the second

term in the right-hand side of (2.17) by means of (2.16), we obtain (2.15).

Lemma 2.3. For all t > 0 and integers n≥ 0, the following relations are true

∂nt
∫
B(0,1)

e(tξ,t)
|ξ| dξ = 2π(−1)nane−at, (2.20)

∫ t
0
τ2dτ

∫
B(0,1)

e(τξ,τ)
|ξ| dξ = 2−e−at[(1+at)2+1

]
a3

. (2.21)

Proof. Making use of formula (2.4), setting k = ξγ(ξ) and changing the

order of integration, we get

∫
B(0,1)

e(tξ,t)
|ξ| dξ = 4π

∫ 1

0
e(tρ,t)dρ

= 2
i

∫
C+

eξt

ξ+αdξ
∫ 1

0
exp

(−k(ξ)tρ)ρdρ
= 2
i

∫
C+

exp
{[
ξ−k(ξ)]t}
ξ+α ϕ(ξ,t)dξ,

(2.22)

where

ϕ
(
ξ,t
)= exp

(
k(ξ)t

)−[1+k(ξ)t][
k(ξ)t

]2 . (2.23)

Setting

z = 1+ξ
α+ξ , (2.24)

we map the cut [−1,−α] onto the negative semi-axis (−∞,0] and transform

the last integral to the form

2
i

∫
Γ+

exp
(
− 1−αz√

z+1
t
)
Φ(z,t)
z−1

dz, (2.25)

where

Φ(z,t)= exp
[
K(z)t

]−[1+K(z)t][
K(z)t

]2 , K(z)= (1−αz)
√
z

z−1
(2.26)
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and Γ+ is a positively oriented circle {z : |z−1| = 1}. Note that the only singular

point of the integrand lying inside the contour of integration is the essential

singularity at z = 1. Calculating the residue at this point, we evaluate the inte-

gral (2.25) and obtain (2.20) for the case where n= 0.
In order to prove (2.20) with n ≥ 1, we remark that representation (2.7)

implies that e(r ,t) ∈ C∞{(r ,t) : 0 < r < t, t > 0}. Therefore, for all integers

n≥ 1,

∂nt
∫
B(0,1)

e(tξ,t)
|ξ| dξ =

∫
B(0,1)

∂nt
e(tξ,t)
|ξ| dξ (2.27)

whence (2.20) follows immediately.

Relation (2.21) is deduced by integrating (2.20) with n = 0 with respect to

the temporal variable from 0 to t.

Having completed the preliminary considerations, we now pass to the main

results.

3. The main theorem. Since the following statement deals with the long-

time behavior of solutions of the problem in question, in addition to the as-

sumptions of Theorem 2.1, it is required that the initial data have compact

support in R3.

Theorem 3.1. If f ,f0 ∈ C3
0 (R3), f1 ∈ C4

0 (R3), and f2 ∈ C5
0 (R3), then for all

t > 0 and uniformly with respect to x ∈R3, the following estimates hold:

∥∥u0

∥∥
L∞ ≤ C1t2e−at, (3.1)∥∥u1

∥∥
L∞ ≤

(
C2t+C3t2

)
e−at, (3.2)∥∥u2

∥∥
L∞ ≤

(
C4+C5t+C6t2

)
e−at, (3.3)∥∥uf∥∥L∞ ≤ C7

{
2−e−at[(1+at)2+1

]}
a−3, (3.4)

where Ci = const> 0 depend on α and the initial data.

Proof. Setting x −y = tξ, t > 0, 0 < |ξ| < 1, we can rewrite the term

u0(x,t) in (2.9) as

u0(x,t)= t2

4π

∫
B1

e(tξ,t)
|ξ| F0(x−tξ)dξ, (3.5)

where

F0(y)= f2(y)+ 2
3

[
f1(y)− 1

3
f0(y)−∆f0(y)

]
. (3.6)
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Since e(tξ,t) > 0, applying the mean-value theorem to the last integral and

taking into consideration (2.20) with n= 0, we conclude that

∣∣u0(x,t)
∣∣≤ C1t2e−at, t > 0, x ∈R3, (3.7)

where

C1 = 1
2

sup
y∈R3

∣∣F0(y)
∣∣. (3.8)

Whence, (3.1) follows.

For the term u1, we have

u1(x,t)= t
2π

∫
B(0,1)

e(tξ,t)
|ξ| F1(x−tξ)dξ

+ t
2

4π

∫
B(0,1)

∂te(tξ,t)
|ξ| F1(x−tξ)dξ

− t
2

4π

∫
B(0,1)

e(tξ,t)
|ξ| ξ ·∇F1(x−tξ)dξ,

(3.9)

where

F1(y)= f1(y)+ 2
3
f0(y), (3.10)

x ·y is the scalar product, and ∇F(x−tξ) is the gradient with respect to the

coordinates x− tξ. Next, we apply the mean-value theorem to the first and

the third integrals in the right-hand side of the last formula. In order to have

positive kernels in the integrand, we rewrite the second integral in the last

formula as

∫
B(0,1)

ẽt+bẽ
|ξ| F1(x−tξ)dξ−b

∫
B(0,1)

ẽ
|ξ|F1(x−tξ)dξ. (3.11)

Applying the mean-value theorem and Lemma 2.2, we obtain that for all t > 0

and uniformly with respect to x ∈R3

∣∣u1(x,t)
∣∣≤ (C2t+C3t2

)
e−at, (3.12)

where

C2 = 1
2

sup
y∈R3

∣∣F1(y)
∣∣,

C3 = 1+3α
4

sup
y∈R3

∣∣F1(y)
∣∣+ 1

2
sup
y∈R3

∣∣∇F1(y)
∣∣.

(3.13)

This implies (3.2).
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Similarly, setting x−y = tξ in the representation of u2 and differentiating

the result with respect to t, we find that

u2(x,t)

= 1
2π

∫
B(0,1)

e(tξ,t)
|ξ| f0(x−tξ)dξ

+ t
2π

∫
B(0,1)

[
∂te(tξ,t)
|ξ| f0(x−tξ)− e(tξ,t)|ξ| ξ ·f0(x−tξ)

]
dξ

+ t
2

2π

∫
B(0,1)

{
∂2
t e(tξ,t)
|ξ| f0(x−tξ)− 2∂te(tξ,t)

|ξ| ξ ·∇f0(x−tξ)

+ e(tξ,t)|ξ|
[
ξ ·((ξ ·∇)∇f0(x−tξ)

)+ξ ·∇f0(x−tξ)
]}
dξ.

(3.14)

For the second derivative in the direction of ξ appearing in the last expression,

the following estimate holds

∣∣ξ ·((ξ ·∇)∇f0(y)
)∣∣≤

√√√√√3
3∑

i,j=1

∣∣∂2
yiyj f (y)

∣∣2. (3.15)

We rewrite the integral containing ẽtt as

∫
B(0,1)

ẽtt+2bẽt+b2ẽ
|ξ| f0(x−tξ)dξ−2b

∫
B(0,1)

ẽt+2bẽ
|ξ| f0(x−tξ)dξ

−b2
∫
B(0,1)

ẽ
|ξ|f0(x−tξ)dξ.

(3.16)

Applying the mean-value theorem and Lemmas 2.2 and 2.3, we obtain the es-

timate of (3.16). Finally, we get, for all t > 0 and uniformly with respect to

x ∈R3,

∣∣u2(x,t)
∣∣≤ (C4+C5t+C6t2

)
e−at, (3.17)

where

C4 = sup
y∈R3

∣∣f0(y)
∣∣,

C5 = 1+3α
4

sup
y∈R3

∣∣f0(y)
∣∣+ 1

2
sup
y∈R3

∣∣∇f0(y)
∣∣,

C6 = 1
2

[(
1−α

2

)2

+2(1+α)α+
(

1+α
2

)2
]

sup
y∈R3

∣∣f0(y)
∣∣

+ 1+3α
2

sup
y∈R3

∣∣∇f0(y)
∣∣+ 1

2
sup
y∈R3

√√√√√3
3∑

i,j=1

∣∣∂2
yiyj f (y)

∣∣2.

(3.18)

From the last inequality, (3.3) follows.
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It is easy to see that

∣∣uf (x,t)∣∣≤ sup
Γ̄(x,t)

∣∣f(y,τ)∣∣
∫ t

0
τ2dτ

∫
B(0,1)

e(τξ,τ)
|ξ| dξ, (3.19)

where Γ(x,t) = {(y,τ) | −(t−τ) > |y −x|, 0 < τ < t} is an open backward

light cone with the base B(x,t). Using (2.21), we arrive at (3.4). The proof is

completed.
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