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Let R be the real number axis. Suppose that G, H are Cm maps from R2n+3 to R.
In this note, we discuss the system of finite difference equations G(x,f (x),
f (x+1), . . . ,f (x+n),g(x),g(x+1), . . . ,g(x+n))= 0 and H(x,g(x),g(x+1), . . . ,
g(x+n),f (x),f (x+1), . . . ,f (x+n)) = 0 for all x ∈ R, and give some relatively
weak conditions for the above system of equations to have unique Cm solutions
(m≥ 0).
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1. Introduction. In [4, 5, 6], the iterative functional equations f 2(z)(=
f(f(z))) = az2 + bz + c and

∑n
k=0 ckf k = 0 were considered, respectively.

Zhang [7, 8] showed the existence and uniqueness of C0, C1 solutions of the

equation F(x)−∑n
k=1λkfk(x) = 0. In [3], the authors studied more general

iterative functional equation G(x,f (x), . . . ,f n(x)) = 0 and showed the exis-

tence, uniqueness, and stability of Cm solutions (m ≥ 0) of the equation. The

Cm solutions (m≥ 0) of the equation
∑n
i=0 cif (x+i)= F(x) were discussed in

[2]. In this note, we discuss the following system of finite difference equations:

G
(
x,f(x),f (x+1), . . . ,f (x+n),g(x),g(x+1), . . . ,g(x+n))= 0,

H
(
x,g(x),g(x+1), . . . ,g(x+n),f (x),f (x+1), . . . ,f (x+n))= 0,

(1.1)

for allx∈R, whereG,H∈Cm(R2n+3,R) are given functions and f ,g∈Cm(R,R)
are unknown functions to be solved. Using the method of approximating fixed

points by a small shift of maps, we give some relatively weak conditions for

the above system of equations to have unique Cm solutions for any integer

m≥ 0.

Denote by Z+ the set of all nonnegative integers. Form∈ Z+ and k∈N, write

Zm = {0,1, . . . ,m} and Nk = {1, . . . ,k}. For f ,g ∈ C0(R,R) and r ,s ∈ R, define

the map rf + sg : R → R by (rf + sg)(x) = rf(x)+ sg(x) (for any x ∈ R).

Then, under this operation, C0(R,R) is a linear space.

Letm≥ k > 0. For g ∈ Cm(R,R), denote by g(k) the kth derivative of g. Then

g(k) ∈ Cm−k(R,R). Usually, g(1) and g(2) are written as g′ and g′′. In addition,

for any g ∈ C0(R,R), we put g(0) = g and call g(0) the 0th derivative of g.
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Now we introduce some symbols which are defined as in [3]. For any two

points x �= y in R, (g(x)−g(y))/(x−y) is called a difference quotient of g.

Let

Λg =Λ(g)=
{(
g(x)−g(y))/(x−y) : x,y ∈R, x �=y}. (1.2)

The set Λg is called the set of difference quotients of g. If Λg ⊂ [0,∞), then g
is increasing; and if Λg ⊂ (0,∞), then g is strictly increasing. For g ∈ C1(R,R),
it is easy to verify that

Λg ⊂ g′(R)⊂Λg, (1.3)

where g′(R)= {g′(x) : x ∈R} and Λg is the closure of Λg in R. Write

λg = λ(g)= sup
{|t| : t ∈Λg

}
. (1.4)

If λg <∞, that is, Λg is bounded, then g is said to be Lipschitz continuous and

λg is called the (smallest) Lipschitz constant of g.

Letm≥ j ≥ 0 be integers and let r ≥ 0 be a real number. Suppose that K,K0,
K1, . . . ,Kj are all connected closed subsets of R. Write

Cm
(
R,K;K0,K1, . . . ,Kj

)= {f ∈ Cm(R,K) :Λ
(
f (i)

)⊂Ki, for i= 0,1, . . . ,j
}
,

Cm(R,K;r)= {f ∈ Cm(R,K) :
∣∣f(0)∣∣≤ r},

(1.5)

Cm
(
R,K;r ,K0,K1, . . . ,Kj

)= Cm(R,K;r)∩Cm(R,K;K0,K1, . . . ,Kj
)
, (1.6)

LCm(R,K)= {f ∈ Cm(R,K) :Λ
(
f (i)

)
is always bounded for each i∈ Zm

}
.

(1.7)

Let n≥ 1. For any G ∈ C0(R2n+3,R) and any i∈ Z2n+2, put

ΛiG =Λi(G)=
{
G
(
y0, . . . ,yi, . . . ,y2n+2

)−G(y0, . . . ,yi−1,wi,yi+1, . . . ,y2n+2
)

yi−wi
,

(
y0, . . . ,yi, . . . ,y2n+2

)∈R2n+3, wi ∈R−
{
yi
}}
,

λiG = sup
{|t| : t ∈ΛiG

}
,

λG = λ(0)G =max
{
λiG : i= 0,1, . . . ,2n+2

}
.

(1.8)

If λG < ∞, that is, each ΛiG is bounded, then G is said to be Lipschitz con-

tinuous. Let the 0th-order partial derivative G(0) of G be G itself. For G ∈
Cm(R2n+3,R), k ∈ Nm (m ≥ 1), and (i1, i2, . . . , ik) ∈ Zk2n+2, denote by G(k)i1i2···ik
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a kth-order partial derivative of G, the definition of which is

G(k)i1i2···ik
(
y0,y1, . . . ,y2n+2

)= ∂kG
(
y0,y1, . . . ,y2n+2

)
∂yi1∂yi2 ···∂yik

(1.9)

for any (y0,y1, . . . ,y2n+2) ∈ R2n+3. Obviously, G(k)i1i2···ik ∈ Cm−k(R2n+3,R). In

addition, we also write G′i1 for G(1)i1 and G′′i1i2 for G(2)i1i2 . Let

λ(k)G =max
{
λH :H is a kth-order partial derivative of G

}
. (1.10)

Let K0,K1, . . . ,K2n+2 be all connected closed subsets of R and m≥ 0. Write

Cm
(
R2n+3,R;K0,K1, . . . ,K2n+2

)= {G ∈ Cm(R2n+3,R
)

:ΛiG ⊂Ki, i∈ Z2n+2
}
,

(1.11)

LCm
(
R2n+3,R

)= {G ∈ Cm(R2n+3,R
)

: λ(k)G <∞ for each k∈ Zm
}
. (1.12)

If G ∈ C1(R2n+3,R), then analogous to (1.3), we have

ΛiG ⊂G′i
(
R2n+3)⊂ΛiG. (1.13)

For convenience, we write

Vfg(x)=
(
x,f(x),f (x+1), . . . ,f (x+n),g(x),g(x+1), . . . ,g(x+n)) (1.14)

for all f ,g ∈ C0(R,R) and all x ∈R.

Let m ≥ 0 and G,H ∈ Cm(R2n+3,R). For real number δ �= 0, define ΨδGH :

Cm(R,R)×Cm(R,R)→ Cm(R,R)×Cm(R,R) by

ΨδGH(f ,g)=
(
ΨδG(f ,g),ΨδH(f ,g)

)
(1.15)

for all (f ,g)∈ Cm(R,R)×Cm(R,R), where

ΨδG(f ,g)(x)= f(x)+δG
(
Vfg(x)

)
,

ΨδH(f ,g)(x)= g(x)+δH
(
Vgf (x)

)
,

(1.16)

for all x ∈ R. It is easy to see that (f ,g) is a fixed point of the map ΨδGH if

and only if (f ,g) is a Cm solution of (1.1). Thus, the problem of solutions of

(1.1) can be translated into that of fixed points of ΨδGH . In order to decide the

existence of the fixed points of ΨδGH , we need the following theorem which

can be found in [1, page 74].

Theorem 1.1 (Schauder and Tychonoff). Let X be a compact convex set in

a locally convex linear topological space. Then each continuous map Ψ : X → X
has a fixed point.
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Define a metric ρm on Cm(R,R), for any f ,g ∈ Cm(R,R), by

ρm(f ,g)= sup
{∣∣f (j)(x)−g(j)(x)∣∣/(1+x2) : j ∈ Zm, x ∈R

}
. (1.17)

Denote by 0∗ the function on R which is identical to 0. For f ∈ Cm(R,R), write

‖f‖m = ρm(f ,0∗). Then 0≤ ‖f‖m ≤∞.

Now we define a metric ρm×ρm on Cm(R,R)×Cm(R,R) by

ρm×ρm
((
f1,g1

)
,
(
f2,g2

))= √[ρm(f1,f2
)]2+[ρm(g1,g2

)]2
(1.18)

for all (f1,g1),(f2,g2)∈ Cm(R,R)×Cm(R,R).
Analogous to the proof of [3, Proposition 3.2], we can obtain the following

lemma.

Lemma 1.2. Suppose that m ≥ 0, K0, . . . ,Km are all compact intervals, and

r ≥ 0 is a real number. Let Xr = Cm(R,R;r ,K0, . . . ,Km) as defined in (1.6). Then

ΨδGH|(Xr ×Xr ,ρm×ρm) is continuous.

2. C0 solutions of (1.1). For any G ∈ C0(R2n+3,R), define a function ϕG :

R→R by

ϕG(x)=G(x,x, . . . ,x) ∀x ∈R. (2.1)

Theorem 2.1. Let G,H ∈ C0(R2n+3,R). If the following two conditions hold:

(i) there exist nonnegative real numbers µ0,ε0,c1, . . . ,c2n+1 and b ≥ µ0+ε0,

c0 ≥ µ > 0 such that

G,H ∈ C0(R2n+3,R;
[
µ0,b−ε0

]
,
[−c0,−µ

]
,
[−c1,c1

]
, . . . ,

[−c2n+1,c2n+1
])

;

(2.2)

(ii) µ0 ≥
∑2n+1
i=1 ci(b/µ), ε0 ≥

∑2n+1
i=1 ci(b/µ), and µ > 2

∑2n+1
i=1 ci,

then (1.1) has a solution (f0,g0) ∈ C0(R,R;r ,[0,b/µ])×C0(R,R;r ,[0,b/µ]),
where

r =
∣∣ϕG(0)

∣∣+∑n
i=1 i

(
ci+cn+1+i

)
(b/µ)

µ−∑2n+1
i=1 ci

. (2.3)

Proof. We arbitrarily choose a constant δ∈ (0,1/c0]. It follows from con-

dition (i) that δ ≤ 1/c0 ≤ 1/µ. Let ΨδGH be defined as in (1.15). Let Xr =
C0(R,R;r ,[0,b/µ]). Consider any (f ,g) ∈ Xr × Xr . Write f = ΨδG(f ,g). If
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G ∈ C1(R2n+3,R) and f ,g ∈ C1(R,R), then for any x ∈ R, we have f ′(x) ∈
Λf ⊂ [0,b/µ], g′(x)∈Λg ⊂ [0,b/µ], and

f
′
(x)= f ′(x)+δG′0

(
Vfg(x)

)+δn+1∑
i=1

G′i
(
Vfg(x)

)·f ′(x+i−1)

+δ
n+2∑
i=2

G′n+i
(
Vfg(x)

)·g′(x+i−2).

(2.4)

Noting the upper and lower bounds of G′i(Vfg(x)) given in condition (i), from

(2.4) and condition (ii) we get

f
′
(x)≥ f ′(x)+δµ0−δc0f ′(x)−δ

2n+1∑
i=1

cib
µ

= (1−δc0
)
f ′(x)+δ

(
µ0−

2n+1∑
i=1

cib
µ

)
≥ 0,

(2.5)

f
′
(x)≤ δ(b−ε0

)+
(

1−δµ+δ
2n+1∑
i=1

ci

)
b
µ

≤ δ(b−ε0
)+ (1−δµ)b

µ
+δε0 = bµ .

(2.6)

Combining (2.5) and (2.6), we obtain Λ(f )⊂ [0,b/µ], that is,

Λ
(
ΨδG(f ,g)

)⊂ [0,
b
µ

]
. (2.7)

If G �∈ C1(R2n+3,R), f �∈ C1(R,R), or g �∈ C1(R,R), then for any two given

points u > v in R, we can take G1 ∈ C1(R2n+3,R;[µ0,b − ε0],[−c0,−µ],
[−c1,c1], . . . ,[−c2n+1,c2n+1]) and f1,g1 ∈ C1(R,R;r ,[0,b/µ]) such that for all

j ∈ {0,1, . . . ,n} and w ∈ {u,v},

f1(w+j)= f(w+j), g1(w+j)= g(w+j),
G1
(
Vfg(w)

)=G(Vfg(w)). (2.8)

Write f1
′ = ΨδG(f1,g1). Then by (2.7), we have Λ(f1)⊂ [0,b/µ]; hence (f (u)−

f(v))/(u−v) = (f1(u)− f1(v))/(u−v) ∈ [0,b/µ]. Thus, (2.7) is still valid

when G �∈ C1(R2n+3,R), f �∈ C1(R,R), and g �∈ C1(R,R). Therefore, we have

ΨδG
(
C0
(
R,R;

[
0,
b
µ

])
×C0

(
R,R;

[
0,
b
µ

]))
⊂ C0

(
R,R;

[
0,
b
µ

])
. (2.9)
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Since f ,g ∈ C0(R,R;[0,b/µ]) are increasing, we have f(k) ≤ f(0)+k(b/µ)
and g(k)≤ g(0)+k(b/µ), for k= 1,2, . . . ,n. By condition (ii), we get

∣∣f(0)∣∣= ∣∣f(0)+δ[G(Vfg(0))−ϕG(0)
]+δϕG(0)

∣∣

≤
(

1−δµ+δ
n∑
i=1

ci

)∣∣f(0)∣∣+δn+1∑
i=1

cn+i
∣∣g(0)∣∣

+δ
[∣∣ϕG(0)

∣∣+ n∑
i=1

i
(
ci+cn+1+i

)(b
µ

)]

≤ r +δ
[∣∣ϕG(0)

∣∣+ n∑
i=1

i
(
ci+cn+1+i

)(b
µ

)
−
(
µ−

2n+1∑
i=1

ci

)
r
]

= r .

(2.10)

By (2.9) and (2.10), we obtain

ΨδG
(
Xr ×Xr

)⊂Xr . (2.11)

Similarly, we can obtain that

ΨδH
(
Xr ×Xr

)⊂Xr . (2.12)

Therefore, it follows from (2.11) and (2.12) that

ΨδGH
(
Xr ×Xr

)⊂Xr ×Xr . (2.13)

By [3, Proposition 3.1], under the metric ρ0 × ρ0, Xr ×Xr is compact. By

Lemma 1.2, ΨδGH|(Xr ×Xr ,ρ0 ×ρ0) is continuous. Since Xr ×Xr is a convex

subspace of C0(R,R)×C0(R,R), by Theorem 1.1, ΨδGH|(Xr ×Xr) has a fixed

point. This implies that (1.1) has a solution (f0,g0) ∈ Xr ×Xr . Theorem 2.1 is

proven.

For any h∈ C0(R,R), write BC0(R,R;h)= {f ∈ C0(R,R) : ‖f −h‖0 <∞}.

Theorem 2.2. Suppose that G,H ∈ C0(R2n+3,R) satisfy Theorem 2.1(i) and

(ii), and (f0,g0) ∈ C0(R,R;[0,b/µ])×C0(R,R;[0,b/µ]) is a solution of (1.1).

Then (1.1) has only a solution (f0,g0) in BC0(R,R;f0)×BC0(R,R;g0).

Proof. Suppose that (f1,g1)∈ BC0(R,R;f0)×BC0(R,R;g0) is also a solu-

tion of (1.1). Consider the following two cases.
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Case 1 (‖g0−g1‖0 ≤ ‖f0−f1‖0). For any x ∈ R, there exists wi =wi(x) ∈
ΛiG (i= 1, . . . ,2n+2) such that

0=G(Vf0g0(x)
)−G(Vf1g1(x)

)

=w1
(
f0(x)−f1(x)

)+n+1∑
i=2

wi
(
f0(x+i−1)−f1(x+i−1)

)

+
n+2∑
i=2

wn+i
(
g0(x+i−2)−g1(x+i−2)

)

≥ ∣∣w1
(
f0(x)−f1(x)

)∣∣−n+1∑
i=2

∣∣wi
(
f0(x+i−1)−f1(x+i−1)

)∣∣

−
n+2∑
i=2

∣∣wn+i
(
g0(x+i−2)−g1(x+i−2)

)∣∣

≥ µ∣∣f0(x)−f1(x)
∣∣− n∑

i=1

ci
∥∥f0−f1

∥∥
0−

n+1∑
i=1

cn+i
∥∥g0−g1

∥∥
0

≥ µ∣∣f0(x)−f1(x)
∣∣−2n+1∑

i=1

ci
∥∥f0−f1

∥∥
0.

(2.14)

By (2.14), we have (µ −∑2n+1
i=1 ci)‖f0 − f1‖0 ≤ 0. Since µ > 2

∑2n+1
i=1 ci, ‖f0 −

f1‖0 = 0 which implies f1 = f0. It follows from ‖g0−g1‖0 ≤ ‖f0−f1‖0 = 0 that

g1 = g0. Hence, (f1,g1)= (f0,g0).

Case 2 (‖g0−g1‖0 > ‖f0− f1‖0). Analogous to Case 1, we can also show

that (f1,g1)= (f0,g0). Thus, (1.1) has only a solution (f0,g0) in BC0(R,R;f0)×
BC0(R,R;g0). Theorem 2.2 is proven.

3. Cm solutions (m≥ 1) of (1.1)

Theorem 3.1. Suppose that G,H ∈ LCm(R2n+3,R) satisfy Theorem 2.1(i)

and (ii). Then there exist positive numbers a1, . . . ,am such that (1.1) has a solu-

tion

(
fm,gm

)∈ Cm(R,R;r ,
[

0,
b
µ

]
,
[−a1,a1

]
, . . . ,

[−am,am]
)

×Cm
(
R,R;r ,

[
0,
b
µ

]
,
[−a1,a1

]
, . . . ,

[−am,am]
)
.

(3.1)

Proof. For any δ∈ (0,1/c0], let the map ΨδGH be defined as in (1.15). Write

Xrm = Cm(R,R;r ,[0,b/µ]). By (2.13), we have

ΨδGH
(
Xrm×Xrm

)⊂Xrm×Xrm (3.2)
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since G,H ∈ Cm(R2n+3,R). Consider any f ,g ∈ Cm(R,R;r ,[0,b/µ])∩LCm(R,
R). Let h(x)=G(Vfg(x)). Then we can calculate the derivatives of h of order

1,2, . . . ,m as follows:

h′(x)=
n+1∑
i=0

G′i
(
Vfg(x)

)·f ′(x+i−1)+
n+2∑
i=2

G′n+i
(
Vfg(x)

)·g′(x+i−2),

h′′(x)=
n+1∑
i=1

G′i
(
Vfg(x)

)
f ′′(x+i−1)+

n+2∑
i=2

G′n+i
(
Vfg(x)

)
g′′(x+i−2)

+
n+1∑
i=0

n+1∑
j=0

G′′ij
(
Vfg(x)

)
f ′(x+i−1)f ′(x+j−1)

+
n+1∑
i=0

n+2∑
j=2

G′′i,j+n
(
Vfg(x)

)
f ′(x+i−1)g′(x+j−2)

+
n+2∑
i=2

n+1∑
j=0

G′′n+i,j
(
Vfg(x)

)
f ′(x+j−1)g′(x+i−2)

+
n+2∑
i=2

n+2∑
j=2

G′′n+i,n+j
(
Vfg(x)

)
g′(x+i−2)g′(x+j−2),

(3.3)

where dx/dx(= 1) is written as f ′(x−1) for convenience.

In general, for k= 2, . . . ,m, it is easy to see that

h(k)(x)=
n+1∑
i=1

G′i
(
Vfg(x)

)
f (k)(x+i−1)

+
n+2∑
i=2

G′n+i
(
Vfg(x)

)
g(k)(x+i−2)+ξk

({·},{·},{·}),
(3.4)

where

ξk({·},{·},{·})=ξk
({
G(p)i1i2···ip

(
Vfg(x)

)
:p ∈Nk,

(
i1, i2, . . . , ip

)∈Zp2n+2

}
,

{
f (p)(x+q−1) : p ∈Nk−1,q ∈ Zn+1

}
,

{
g(p)(x+q−1) : p ∈Nk−1,q ∈ Zn+1

})
(3.5)

(dpx/dxp (= 1) is written as f (p)(x − 1) for convenience) is a polynomial

of G(p)i1i2···ip (Vfg(x)) (where p ∈ Nk; i1, . . . , ip ∈ Z2n+2), f (p)(x + q − 1), and

g(p)(x+q−1) (where p ∈ Nk−1, q ∈ Zn+1) whose coefficients are all positive

integers. The functional relation ξk itself is related only to the rules of partial

derivatives of general functions of several variables and the rules of deriva-

tives of compositions and products of functions, but not related to specific G,

f , or g. Therefore, ξk is still well defined for k >m. If G ∈ Cm+1(R2n+3,R) and

f ,g ∈ Cm+1(R,R), then (3.4) also holds for k=m+1.
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For k= 0,1, . . . ,m, let

bk =max
{
λ
(
f (k)

)
,λ
(
g(k)

)}
, Bk =max

{
λ(j)G ,λ

(j)
H : j = 0,1, . . . ,k

}
. (3.6)

It follows from (1.4) and (1.3) that bk = max{‖f (k+1)‖0,‖g(k+1)‖0}, k = 0, . . . ,
m−1. Since G,H ∈ LCm(R2n+3,R), by (1.12), we have B0 ≤ B1 ≤ ··· ≤ Bm <∞.

For 1≤ p ≤ k≤m, by (1.8), (1.9), (1.10), and (1.13), we have |G(p)i1i2···ip (Vfg(x))|
≤ Bk−1. Now, we choose a δ∈ (0,1/c0] such that

δ <
1

2
(
µ−∑2n+1

i=1 ci
) . (3.7)

Write µ = µ −∑2n+1
i=1 ci and f = ΨδG(f ,g). Replacing all G(p)i1i2···ip (Vfg(x)),

f (p)(f (x + q − 1)), and g(p)(f (x + q − 1)) in the polynomial ξk({·},{·},
{·}) by the upper bounds Bk−1 and bp−1 of their absolute values, from (3.4)

we get

∣∣∣f (k)(x)∣∣∣≤
(

1−δµ+δ
2n+1∑
i=1

ci

)
bk−1+δηk

(
Bk−1,b0,b1, . . . ,bk−2

)

= (1−δµ)bk−1+δηk
(
Bk−1,b0, . . . ,bk−2

)
, k= 2, . . . ,m,

(3.8)

where ηk(Bk−1,b0, . . . ,bk−2) is a polynomial of Bk−1,b0, . . . ,bk−2, whose coeffi-

cients are all positive integers. The functional relation ηk itself is determined

by ξk and is independent of specific G, H, f , and g. Therefore, ηk is still well

defined for k >m.

For k= 2, . . . ,m, noting that λ(f
(k−1)

)= ‖f (k)‖0, by (3.8) we obtain

λ
(
f
(k−1))≤ (1−δµ)bk−1+δηk

(
Bk−1,b0, . . . ,bk−2

)
. (3.9)

If G,H ∈ Cm+1(R2n+3,R) and f ,g ∈ Cm+1(R,R), then f ∈ Cm+1(R,R), (3.8)

and (3.9) are also true for k =m+1. Adopting the method that is used in the

proof of Theorem 2.1 to show that (2.7) still holds when G �∈ C1(R2n+3,R),
f �∈ C1(R,R), or g �∈ C1(R,R), we can verify that (3.9) still holds for k=m+1

even if G,H �∈ Cm+1(R2n+3,R) or f ,g �∈ Cm+1(R,R).
Let a0 = b/µ and

ak−1 = ηk
(
Bk−1,a0,a1, . . . ,ak−2

)
µ

, k= 2, . . . ,m+1. (3.10)
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Then ak−1 only depends on G and H. Since ηk(Bk−1,b0,b1, . . . ,bk−2) is a mono-

tone increasing function of b0,b1, . . . ,bk−2, and 1−δµ > δµ > 0, from (3.9) and

(3.10) it follows that if bi ≤ ai for all i∈ Zk−1, then

λ
(
f
(k−1))≤ (1−δµ)ak−1+δηk

(
Bk−1,a0, . . . ,ak−2

)= ak−1, k= 2, . . . ,m+1.
(3.11)

WriteXm = Cm(R,R;r ,[0,b/µ],[−a1,a1], . . . ,[−am,am]). ThenXm is a convex

subset of Cm(R,R). By (3.2) and (3.11), we get

ΨδG
(
Xm×Xm

)⊂Xm. (3.12)

Similarly, we can obtain that

ΨδH
(
Xm×Xm

)⊂Xm. (3.13)

Therefore, it follows from (3.12) and (3.13) that

ΨδGH
(
Xm×Xm

)⊂Xm×Xm. (3.14)

By [3, Proposition 3.1], under the metric ρm×ρm, Xm×Xm is compact. By

Lemma 1.2, ΨδGH|(Xm ×Xm,ρm ×ρm) is continuous. Thus, by Theorem 1.1,

ΨδGH|(Xm×Xm) has a fixed point. This implies that (1.1) has a solution (fm,
gm)∈Xm×Xm. Theorem 3.1 is proven.

Noting that Cm(R,R)⊂ C0(R,R), we have the following proposition.

Proposition 3.2. Let G,H ∈ C0(R2n+3,R), F ⊂ C0(R,R)× C0(R,R), and

m ≥ 1. If (1.1) has at most a solution in F, then (1.1) has at most a solution

in F∩(Cm(R,R)×Cm(R,R)).
By Proposition 3.2, after obtaining Theorem 2.2, we need not discuss the

uniqueness of Cm solutions of (1.1), for m ≥ 1, in detail unless we can give

some conditions weaker than those in Theorem 2.2 (or, at least, they do not im-

ply each other) or we can discuss the uniqueness of solutions in a subspace of

C0(R,R)×C0(R,R) larger than the subspace of BC0(R,R;fm)×BC0(R,R;gm).

4. Example. Let a≥ 10 be a real number. Suppose that the system of equa-

tions is

3
2
x−af(x)+sinf(x)·cosf(x+1)+ 1

2
sin

(
2g(x)−1

)+arctang(x+1)= 0,

2x+sin
(
x−g(x+1)+f(x)+f(x+1)

)−ag(x)+arctang(x)= 0,
(4.1)
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for all x ∈R. Then the representatives of the corresponding G,H :R5 →R are

G
(
x0,x1,x2,x3,x4

)= 3
2
x0−ax1+sinx1 ·cosx2+ 1

2
sin

(
2x3−1

)+arctanx4,

H
(
x0,x1,x2,x3,x4

)= 2x0+sin
(
x0−x2+x3+x4

)−ax1+arctanx1,
(4.2)

for all (x0,x1,x2,x3,x4) ∈ R5. We can easily calculate the derivatives of G
and H, and then obtain the supremums and infimums of ΛiG and ΛiH (i =
0,1,2,3,4); hence we can take µ0 = 1, b = 3+ ε0 (ε0 ≥ 0 is to be selected),

c0 = a+1, µ = a−1, and c1 = c2 = c3 = 1.

When a+1 > a ≥ a ≥ 13, we choose ε0 = (a−10)/3. Then b/µ = 1/3 and

Theorem 2.1(i) and (ii) hold. Thus, by Theorems 2.1, 2.2, 3.1, and Proposition

3.2, we have the following proposition.

Proposition 4.1. Let m≥ 0 be given. If a+1>a≥ a≥ 13, then (4.1) has a

solution (fm,gm) ∈ Cm(R,R;[0,1/3])×Cm(R,R;[0,1/3]), and (fm,gm) is the

unique solution of (4.1) in BC0(R,R;fm)×BC0(R,R;gm).

Consider the following system of equations:

x+arctanx−19f(x)+e−[(f (x+2))2+(f (x+5))2+(g(x))2+(g(x+8))2] = 0,

3
2
x+1−20g(x)+ ln

[(
f(x+3)

)2+(g(x+4)
)2+1

]
+sin

(
g(x+5)

)·cos
(
f(x)+g(x+2)

)= 0.

(4.3)

Analogous to the argument of Proposition 4.1, we can obtain the following

proposition.

Proposition 4.2. Let m ≥ 0 be given. Equation (4.3) has a solution (fm,
gm) ∈ Cm(R,R;[0,1/6])×Cm(R,R;[0,1/6]), and it is the unique solution of

(4.3) in BC0(R,R;fm)×BC0(R,R;gm).
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