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Let R be the real number axis. Suppose that G, H are C" maps from R2"+3 to R.
In this note, we discuss the system of finite difference equations G(x,f(x),
fx+1),....f(x+n),g(x),g(x+1),...,g(x+n)) =0and H(x,g(x),g(x+1),...,
gx+n), f(x),f(x+1),...,f(x+n)) =0 for all x € R, and give some relatively
weak conditions for the above system of equations to have unique C™ solutions
(m = 0).

2000 Mathematics Subject Classification: 39A20, 47B38.

1. Introduction. In [4, 5, 6], the iterative functional equations f2(z)(=
f(f(2)) = az? +bz+c and >} jcxf* = 0 were considered, respectively.
Zhang [7, 8] showed the existence and uniqueness of C° C! solutions of the
equation F(x) — >}_; A f*(x) = 0. In [3], the authors studied more general
iterative functional equation G(x, f(x),...,f"(x)) = 0 and showed the exis-
tence, uniqueness, and stability of C" solutions (m > 0) of the equation. The
C™ solutions (m > 0) of the equation Y>.I , ¢; f (x +1) = F(x) were discussed in
[2]. In this note, we discuss the following system of finite difference equations:

G(x,f(x),f(x+1),...,f(x+n),g(x),g(x+1),...,g(x+n)) =0,

1.1
H(x,9(x),9(x+1),...,g(x+n), f(x),f(x+1),...,f(x+n)) =0, (1.1

for all x € R, where G,H € C"™ (R?"+3 R) are given functions and f,g € C™(R,R)
are unknown functions to be solved. Using the method of approximating fixed
points by a small shift of maps, we give some relatively weak conditions for
the above system of equations to have unique C™ solutions for any integer
m = 0.

Denote by Z.. the set of all nonnegative integers. For m € Z, and k € N, write
Zym =1{0,1,...,m} and Ny = {1,...,k}. For f,g € C°(R,R) and 7,s € R, define
the map ¥f+sg:R - R by (rf+sg)(x) =rf(x)+sg(x) (for any x € R).
Then, under this operation, C°(R,R) is a linear space.

Letm = k > 0.For g € C™(R,R), denote by g® the kth derivative of g. Then
g% e cmk(R,R). Usually, g’ and g'® are written as g’ and g”. In addition,
for any g € C°(R,R), we put g» = g and call g'© the Oth derivative of g.


http://dx.doi.org/10.1155/S0161171203202131
http://dx.doi.org/10.1155/S0161171203202131
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com

2316 XINHE LIU ET AL.

Now we introduce some symbols which are defined as in [3]. For any two
points x # ¥y in R, (g(x)—g(»))/(x—) is called a difference quotient of g.
Let

Ag=A@g) ={(gx)—g()/(x-y):x,y €R, x # ¥} (1.2)

The set Ay is called the set of difference quotients of g. If A; C [0, ), then g
is increasing; and if Ay C (0, ), then g is strictly increasing. For g € CH(R,R),
it is easy to verify that

Ag C g’ (R) CAy, (1.3)
where g’ (R) = {g'(x) : x € R} and Kg is the closure of A, in R. Write
Ag=A(g) =sup{ltl:t e Ay} (1.4)

If Ay < o0, thatis, A4 is bounded, then g is said to be Lipschitz continuous and
Ay is called the (smallest) Lipschitz constant of g.

Let m > j > 0 be integers and let ¥ > 0 be a real number. Suppose that K, Ky,
Kji,...,K;j are all connected closed subsets of R. Write

C™(R,K;Ko,K1,...,K;) = {f € C"™(R,K) : A(f?) C Ky, for i =0,1,...,j},

C™(R,K;7) = {f € C™(R,K): | £(0)| =7},
(1.5)

C™(R,K;7,Ko,K1,....K;) = C"(R,K;7) N C™ (R,K;Ko,K1,....K;),  (1.6)
LC™(R,K) = {f € C"™(R,K) : A(f?) is always bounded for each i € Z,,].

(1.7)

Let n = 1. For any G € C°(R?"*3 R) and any i € Z»,,2, put

Aic = Ai(G) = {G(yo,...,yi,..-,y2n+z) —C;('y();--,J’i—lywi;yiﬂ;---,y2n+2)’
i~ Wi

(V0yeees Vigenns Yons2) € RT3 w; e R—- {yi}},
Aig =sup {It]:t € Aig},

A¢ =AY =max {Aig:i=0,1,...,2n+2}.
(1.8)

If Ag < oo, that is, each A;; is bounded, then G is said to be Lipschitz con-
tinuous. Let the Oth-order partial derivative G'© of G be G itself. For G €

C™(R23,R), k € Ny (m = 1), and (i1,ia,...,1k) € Z5,.,, denote by G{¥), ;.
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a kth-order partial derivative of G, the definition of which is

akG(yO!yls---!y2n+2)
0y, 0Yi, -+ - 0V

Gg?z...ik(3’0,)/1,...,y2n+2) - W

for any (yo,¥1,...,Yons2) € R2"*3, Obviously, Gifzz_”ik e CMmk(R27+3 R). In

addition, we also write G;, for GEID and G, for Gl(fl)z Let
A(Gk) =max {Ay : H is a kth-order partial derivative of G}. (1.10)

Let K¢,K,...,K>n,+2 be all connected closed subsets of R and m > 0. Write

C™(R*™3 R;Ko,K1,...,Kzns2) = {G € C"™(R*™"3,R) : Ajg C Ky, i € Zonsa},
(1.11)

LC™(R™M3 R) = (G € C™(R¥3,R) :AX) < oo for each k € Z,,}.  (1.12)
If G € C'(R2"*3 R), then analogous to (1.3), we have
Aic C GH(R?™3) € Ayq. (1.13)
For convenience, we write
Vig(x) = (x,f(x), fx+1),..., f(x+n),g(x),g(x+1),...,g(x+n)) (1.14)

for all f,g € C°(R,R) and all x € R.
Let m > 0 and G,H € C™(R?"*3 R). For real number § # 0, define ¥scy :
C"(R,R)xC™(R,R) - C"™(R,R) x C"(R,R) by

Yseu(f,9) = Ysc(f,9),Ysu(f,9)) (1.15)
for all (f,g) € C"™(R,R)x C"™(R,R), where

Y56 (f,9)(x) = f(x)+6G(Vsg(x)),

1.16
Ysu (f,9)(x) =g(x)+6H (Vyr(x)), (116

for all x € R. It is easy to see that (f,g) is a fixed point of the map ¥sqy if
and only if (f,g) is a C™ solution of (1.1). Thus, the problem of solutions of
(1.1) can be translated into that of fixed points of ¥ssy. In order to decide the
existence of the fixed points of ¥Yssn, we need the following theorem which
can be found in [1, page 74].

THEOREM 1.1 (Schauder and Tychonoff). Let X be a compact convex set in
a locally convex linear topological space. Then each continuous map ¥V : X — X
has a fixed point.
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Define a metric p,, on C"™(R,R), for any f,g € C"™(R,R), by
pm(f,9) =sup {| P (x) =gV (x)|[/(1+x?):j €Ly, x eR}.  (1.17)

Denote by 0* the function on R which is identical to 0. For f € C™(R,R), write

lflm = pm(f,0%). Then O < || fllm < 0.
Now we define a metric p;,;, X py on C"™(R,R) X C"™(R,R) by

o o ((£1,91), (f2.92)) = \[om (Fr ) o+ [om (91.02) ) (1.18)

for all (f1,41),(f2,92) € C"™(R,R) x C"™(R,R).
Analogous to the proof of [3, Proposition 3.2], we can obtain the following
lemma.

LEMMA 1.2. Suppose that m = 0, Ky,...,Ky, are all compact intervals, and
v > 0 is a real number. Let X,, = C"™(R,R;7,Ko,...,Ky) as defined in (1.6). Then
Ysou | (Xy X Xy, pm X pm) 1S continuous.

2. CY solutions of (1.1). For any G € C°(R?"*3 R), define a function @ :
R — R by

pe(x)=G(x,x,...,x) VxeR. (2.1)

THEOREM 2.1. Let G,H € CO(R2"*3 R). If the following two conditions hold:
(i) there exist nonnegative real numbers g, 9,C1,...,Con+1 and b = o + €,
co = 4> 0 such that

G,H € CO(R?™3 R; [0, b —&0],[—co,—u],[—c1,¢1],+., [ = Cons1,Cons1]);
(2.2)

() po= S eib/n), g0 = S ei(b/p), and p > 23 ¢y,
then (1.1) has a solution (fy,go) € C°(R,R;7,[0,b/u]) x CO(R,R;7,[0,b/ul),
where

n { . .
y— |CPG(0)| +>i lgft:—l"_cn+1+l)(b/u)' (2.3)
p—=2i G
PROOF. We arbitrarily choose a constant 6 € (0,1/co]. It follows from con-
dition (i) that 6 < 1/co < 1/u. Let ¥Ysgu be defined as in (1.15). Let X, =
C%(R,R;7,[0,b/u]). Consider any (f,g) € X, x X,. Write f = Y56(f,g). If
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G € CY(R?"*3 R) and f,g € C'(R,R), then for any x € R, we have f'(x) €
Ay c[0,b/ul, g'(x) € Ay C [0,b/u], and

n+1
T (xX) = F/ () +6Gy(Vig(x) +68 S Gi(Vig(x)) - f(x+i—1)
n+2 = (2_4)
+8 > Gy (Veg(x)) - g' (x+i-2).
i=2

Noting the upper and lower bounds of G;(V4(x)) given in condition (i), from
(2.4) and condition (ii) we get

2n+1
Cib

F (0= f/(x) +8p0—dcof (x) -8 >
i=1

2n+1 (2.5)
=(1—660)f’(x)+6<uo— > C;f’) >0,

i=1

Ny

2n+1
7/(x) 56(b—50)+(1—5u+5 z Ci)ﬁ
=t (2.6)

580 = !Z
M

sé(b—so)+W+

Combining (2.5) and (2.6), we obtain A(f) c [0,b/u], that is,
A(Ys5¢(f,9)) C [O,E]. (2.7)
u

If G ¢ CHR?™3 R), f ¢ CHR,R), or g ¢ C'(R,R), then for any two given
points u > v in R, we can take G; € CHR2"*3 R;[uo,b — &1,[—co,—u],
[—c1,c1],...,[=Cans1,C2ni1]) and f1,91 € CH(R,R;7,[0,b/u]) such that for all
jel{0,1,...,n} and w € {u,v},

filw+j)=fw+j), ag(w+j)=gw+j),
(2.8)
G1(Vyg(w)) = G(Vyg(w)).

Write fi = ¥s¢(f1,91). Then by (2.7), we have A(f1) c [0,b/u]; hence (f(u)—
Ffn/u-v) = (fitw) — fiw))/(u—-v) € [0,b/u]. Thus, (2.7) is still valid
when G ¢ CH(R?"*3 R), f ¢ C'(R,R), and g ¢ C'(R,R). Therefore, we have

Y56 (CO(R,[R; o, S]) xC°(R,R; [0, g])) c CO(R,R; o, S]) (2.9)
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Since f,g € C°(R,R;[0,b/u]) are increasing, we have f(k) < £(0) + k(b/u)
and g(k) < g(0)+k(b/u), for k =1,2,...,n. By condition (ii), we get

| FO)] = £(0)+68[G(Vsg(0) =@ (0)]+6@c(0) |

n n+1
< (16u+6zci> [f0)[+8 > cniilg(0)|

i=1 i=1

+6[|cp(;(0)| +Zi(ci+cn+1+i)(%>} (2.10)

i=1

n 2n+1
<T+5[|(PG(O)| +Zi(ci+cn+l+i)(%) - (H— Z Ci>7":|
i-1

i=1

=7.
By (2.9) and (2.10), we obtain
Y56 (Xr X X)) C X, (2.11)
Similarly, we can obtain that
Ysu (Xy X X;) C X, (2.12)
Therefore, it follows from (2.11) and (2.12) that
Ysou (Xp X Xi) C Xy X X, (2.13)

By [3, Proposition 3.1], under the metric py X po, X; X X, is compact. By
Lemma 1.2, ¥Ysgul(Xy X X5, po X po) is continuous. Since X, X X, is a convex
subspace of C°(R,R) x CO(R,R), by Theorem 1.1, ¥sgr | (X, x X,) has a fixed
point. This implies that (1.1) has a solution (fy,go) € Xy X X,. Theorem 2.1 is
proven. 0

For any h € C°(R,R), write BC°(R,R;h) = {f € CO(R,R) : ||f —hllg < }.

THEOREM 2.2. Suppose that G,H € C°(R?"*3 R) satisfy Theorem 2.1(i) and
(ii), and (fy,g0) € C°(R,R;[0,b/ul) x CO(R,R;[0,b/u]) is a solution of (1.1).
Then (1.1) has only a solution (fy,go) in BCO(R,R; fo) X BCO(R,R; go).

PROOF. Suppose that (fi,g91) € BCY(R,R;.fo) X BCO(R,R;go) is also a solu-
tion of (1.1). Consider the following two cases.
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CaSE 1 (llgo—gillo < Il.fo— fillo). For any x € R, there exists w; = w;(x) €
Aic (i=1,...,2n+2) such that

0=G(Viygo (X)) =G (Vi g, (x))

n+1
=wi (fo(x)=fi(x)+ > wi(fox+i-1) = filx+i-1))
i=2
n+2
+ D Wnei(go(x +i-2) — g1 (x +i-2))
i=2
n+1
> |wi (fo(x) = f1()) | =D |wi(folx+i-1)=filx+i-1))]
i=2 (2.14)
n+2
= Jwnsi(go(x+i-2)—gi1(x +i-2)) |
i=2

n+1

>l fox)=frx)| =D cillfo-fillo— D cn+illgo—a1llo
i-1 i-1
2n+1

> pl fo) = fia) | = > eillfo-fillo-

i=1

By (2.14), we have (u— 3" ¢))llfo = fillo < 0. Since p > 25 ¢y, IIfo -
fillo = 0 which implies f1 = f. It follows from ||go —g1llo < l.fo— fillo = O that
g1 = go- Hence, (f1,91) = (f0,90)-

CASE 2 (llgo—g1llo > llfo — fillo).- Analogous to Case 1, we can also show
that (f1,g1) = (fo,g0). Thus, (1.1) has only a solution (fy,go) in BC°(R, R; fo) X
BC°(R,R;go). Theorem 2.2 is proven. O

3. C™ solutions (m > 1) of (1.1)

THEOREM 3.1. Suppose that G,H € LC™(R?"*3 R) satisfy Theorem 2.1(i)
and (ii). Then there exist positive numbers ai,...,a, such that (1.1) has a solu-
tion

PROOF. Forany o € (0,1/cp], let the map Y5y be defined as in (1.15). Write
Xym = C"™(R,R;7,[0,b/ul). By (2.13), we have

‘PLSGH (er X er) C er X er (3-2)
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since G,H € C™(R?"*3 R). Consider any f,g € C"™(R,R;7,[0,b/u]) nLC™(R,
R). Let h(x) = G(Vyg4(x)). Then we can calculate the derivatives of h of order
1,2,...,m as follows:

n+1 n+2

W (x)=> Gi(Vig(x)) - f(x+i=1)+ > G i(Vig(x))-g' (x+i-2),
i=0 i=2
n+1 n+2

' (x)=> Gi(Vig())f (x+i-1+ > Gni(Vig(x))g" (x +i-2)
i=1 i=2
n+ln+l
+ 2, 2 Gl (Vg ) f (e +i=1)f (x+j-1)
i=0 j=0
(3.3)

n+ln+2

+ 3 > Gl (Vg () f (x +i-1)g (x +j-2)
i=0 j=2

n+2n+1

+ Z ZGn+lJ Vfg(X))f (x+j- l)g (x+i—-2)
i=2 j=0
n+2n+2

+ Z Z Gn+1n+J (Vig(x))g' (x+i-2)g" (x +j—2),
i=2 j=2

where dx/dx (= 1) is written as f'(x — 1) for convenience.
In general, for k = 2,...,m, it is easy to see that

n+1

h®(x)= > Gi(Vig(x) f® (x+i-1)
o (3.4)

n+2

+ 3 G i(Vig(x)) g™ (x +1-2) + & ({-},{-}, {-}),
i=2

where

§k<{-},{-},{-}>=§k({ciflz o (Vig(0):p €N, (i, 12, 1) €25, ],
{(fP(x+q-1):p eNk1,q4 € Znsa}, (3.5)

9P (x+q-1):peN1,9€ Zn+1})

(dPx/dx? (= 1) is written as f®) (x — 1) for convenience) is a polynomial
of fofz , (Vrg(x)) (where p € N i1,...,ip € Zons2), fP(x +q~1), and
gP (x+q—1) (where p € Ny_1, q € Z,41) whose coefficients are all positive
integers. The functional relation &y itself is related only to the rules of partial
derivatives of general functions of several variables and the rules of deriva-
tives of compositions and products of functions, but not related to specific G,
f, or g. Therefore, & is still well defined for k > m. If G € C™*1(R?"*3 R) and

f,g € C™1(R,R), then (3.4) also holds for k = m +1.
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For k =0,1,...,m, let
b =max {A(f©),A(g™)},  Be=max{Ad A :j=0,1,...k].  (3.6)

It follows from (1.4) and (1.3) that by = max{|lf* Vo, lg* o}, k = 0,...,
m—1. Since G,H € LC™(R?"*3 R), by (1.12), we have By < B; < - - - < By, < 0.
For 1 <p <k <m,by (1.8),(1.9), (1.10), and (1.13), we have |G;"), ; (Vyq(x))|
< Bx_1. Now, we choose a 6 € (0,1/cq] such that

1

0< ————.
2(u-3 ")

(3.7)

Write T = u— 37 ¢; and f = ¥s¢(f,g). Replacing all Gifi)z---ip(vfg(x))’
fP(f(x+q-1)), and g”(f(x + g —1)) in the polynomial E({-},{-},
{-}) by the upper bounds Bx-; and b,_; of their absolute values, from (3.4)

we get

2n+1

—(k
‘f )(x)‘ < (1—5u+5 > Ci>bk1+5nk(3k1,bo,b1,---,bk2) (3.8)
i=1 .

= (1_6H)hk*1 +6nk(Bk71,b(),...,bk72), k= 2!---1m!

where ng(Bk-1,bo,...,br_») is a polynomial of By_1,by,...,br_>, whose coeffi-
cients are all positive integers. The functional relation ny itself is determined
by & and is independent of specific G, H, f, and g. Therefore, ny is still well
defined for k > m.

For k = 2,...,m, noting that /\(?(kfl)) = ||?(k> llo, by (3.8) we obtain

AMF ) = (1= 51 + 67 (Beoi, bo,.. bi2). (3.9)

If G,H € C"*1(R2"*3 R) and f,g € C"*!(R,R), then f € C™*(R,R), (3.8)
and (3.9) are also true for k = m + 1. Adopting the method that is used in the
proof of Theorem 2.1 to show that (2.7) still holds when G ¢ C'(R2"*3 R),
f ¢ CHR,R), or g ¢ C1(R,R), we can verify that (3.9) still holds for k = m +1
evenif G,H ¢ C™*1(R2"*3 R) or f,g ¢ C"™*1(R,R).

Letag=b/u and

By A
g = Me(B 1’“0’;1’ Ak2) o, (3.10)
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Then ay_; only depends on G and H. Since ng (Bk-1, bo,b1,...,br_2) is a mono-
tone increasing function of by, b1,...,bx_2,and 1 —6u > 6 > 0, from (3.9) and
(3.10) it follows that if b; < a; for all i € Zy_1, then

—(k-1) _
A(f ) < (1—5[1)&](71 +5r]k(Bk,1,a0,...,ak,2) = Ak-1, k = 2,...,m+1.
(3.11)

Write X, = C"™(R,R;7,[0,b/ul,[-ai,ai],...,[—am,am]). Then X, is a convex
subset of C"™(R,R). By (3.2) and (3.11), we get

Y56 (Xim X Xm) C Xp. (3.12)
Similarly, we can obtain that
Yo (Xm X Xm) C Xom. (3.13)
Therefore, it follows from (3.12) and (3.13) that
Ysou (Xm X Xm) C X X X (3.14)

By [3, Proposition 3.1], under the metric py X pm, Xm X Xy, is compact. By
Lemma 1.2, ¥Yscu|(Xim X Xim, Pm X pm) is continuous. Thus, by Theorem 1.1,
Yseu | (Xm X X)) has a fixed point. This implies that (1.1) has a solution ( f;,,
Im) € Xm X Xm. Theorem 3.1 is proven. O

Noting that C"™(R,R) ¢ C9(R,R), we have the following proposition.

PROPOSITION 3.2. Let G,H € CO(R?"*3 R), F ¢ C°(R,R) x C°(R,R), and
m > 1. If (1.1) has at most a solution in F, then (1.1) has at most a solution
inFNn(C™(R,R) xC™(R,R)).

By Proposition 3.2, after obtaining Theorem 2.2, we need not discuss the
uniqueness of C™ solutions of (1.1), for m > 1, in detail unless we can give
some conditions weaker than those in Theorem 2.2 (or, at least, they do not im-
ply each other) or we can discuss the uniqueness of solutions in a subspace of
C%(R,R)x C(R,R) larger than the subspace of BCO(R,R; fin) X BCO(R,R;gm ).

4. Example. Let a > 10 be a real number. Suppose that the system of equa-
tions is

%x—af(x) +sin f(x)-cos f(x+1) +%sin(2g(x) —1) +arctang(x +1) =0,

2x+sin(x—g(x+1)+f(x)+f(x+1))—ag(x) +arctang(x) =0,
4.1)
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for all x € R. Then the representatives of the corresponding G,H : R> — R are

3 . 1 .
G(x0,Xx1,X2,X3,X4) = 5%X0—ax, +sinx; - cosx, + 5 sin (2x3 — 1) +arctanxy,

H (x0,x1,X2,X3,X4) = 2X0 + 8in (xog — X2 + X3 + X4) —ax] +arctanxy,
4.2)

for all (xo,x1,X2,X3,x4) € R>. We can easily calculate the derivatives of G
and H, and then obtain the supremums and infimums of A;c and Ay (i =
0,1,2,3,4); hence we can take po = 1, b = 3+ & (g9 = 0 is to be selected),
co=a+1l,u=a-1,andc; =cr =c3 =1.

Whena+1>a = a = 13, we choose ¢y = (a—10)/3. Then b/u = 1/3 and
Theorem 2.1(i) and (ii) hold. Thus, by Theorems 2.1, 2.2, 3.1, and Proposition
3.2, we have the following proposition.

PROPOSITION 4.1. Letm = 0 be given. Ifa+1>a >a = 13, then (4.1) has a
solution (fin,gm) € C™(R,R;[0,1/3]) x C"™(R,R;[0,1/3]), and (fm,gm) is the
unique solution of (4.1) in BCO(R,R; fin) X BCO(R,R; Gm).

Consider the following system of equations:
X +arctanx — 19 (x) + e L +2D?+(F(x+5)2+(g(x)? +(g(x+8)%] _ ()
§x+1—20g(x)+ln[(f(x+3))2+(g(x+4))2+1] (4.3)

2
+sin(g(x+5))-cos(f(x)+g(x+2))=0.

Analogous to the argument of Proposition 4.1, we can obtain the following
proposition.

PROPOSITION 4.2. Let m > 0 be given. Equation (4.3) has a solution (fy,,
gm) € C™(R,R;[0,1/6]) x C™(R,R;[0,1/6]), and it is the unique solution of
(4.3) in BCO(R, R; fin) X BCO(R,R; gm).
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