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We demonstrate an economic and concise method for representing the elements
of groups involved in the Suzuki chain. For example, we represent each element of
Suz : 2 by a permutation on 14 letters from L3(2) : 2 followed by four words, each
of length at most two, in 14, 36, 100, and 416 involutory symmetric generators,
respectively. Such expressions will have an obvious advantage over permutations
on 1782 provided that it is reasonably simple to multiply and invert them. We
refer to this as nested symmetric representation of an element of the group.
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1. Introduction. An element of order three in the class 3D (see [2]) of Con-

way’s group Co1 is centralized by 3×A9 and the chain of subgroups Ki (of

Co1) which are the centralizers of the subgroups Ai obtained by fixing all but

i points in this A9 is called Suzuki chain, see [2, 8, 9]. This chain of subgroups

in Co1, discovered by Thompson (unpublished), see [6], has been of interest in

finite groups.

In the present work, each of the Suzuki chain groups emerges as a group G
generated by a set of |(Ki : 2) : (Ki+1 : 2)| involutions whose set normalizer in

G is isomorphic to Ki : 2. Most of these groups are constructed by hand using

the double coset enumeration technique shown in [5].

The main purpose of this paper is to introduce the concept of nested sym-

metric representation of elements of a group. In general, if we wish to multiply

and invert elements in a straightforward manner, we must represent them

as either permutations or matrices. The two operations are particularly easy

to perform on permutations. Moreover, the cycle shape of an element immedi-

ately yields its order, and often its conjugacy class. However, for large sporadic

groups, the lowest degree of permutation representations are unmanageable.

Operations on matrices are much more difficult and basic information about

an element is not readily recovered from its matrix representation. The ap-

proach illustrated in this paper combines conciseness with acceptable ease

of manipulation and makes hand calculations with the elements possible. In-

version and multiplication can be performed manually or mechanically [1] by

means of short recursive algorithms.
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2. Involutory symmetric generators of groups. Let G be a group and let

T = {t0, t1, . . . , tn−1} be a set of elements of order m in G. Making the defini-

tions Ti = 〈ti〉 and T = {T0,T1, . . . ,Tn−1} allows us to define N =�G(T), the set

normalizer in G of T . We say that T is a symmetric generating set for G if the

following two conditions hold:

(i) G = 〈T 〉,
(ii) N permutes T transitively.

We call N the control subgroup. Conditions (i) and (ii) imply that G is a homo-

morphic image of the progenitor

m∗n :N, (2.1)

wherem∗n represents a free product of n copies of the cyclic group Cm and N
is a group of automorphisms of m∗n which permutes the n cyclic subgroups

by conjugation, see [3, 4, 5].

Since in this paper we are only concerned with involutory symmetric gener-

ators, we restrict our attention to the case m = 2 (while N will simply act by

conjugation as permutations of the n involutory symmetric generators).

Theorem 2.1. All non-abelian finite simple groups can arise as finite homo-

morphic images of progenitors of the form 2∗n :N.

Proof. Let H be a maximal subgroup of a finite simple group G. Suppose

that 1≠ t∈G, t2 = 1. Under the subgroup H, tG, the conjugacy class of t in G,

splits into orbits as

tG =�1∪̇�2∪̇···∪̇�r . (2.2)

Without loss of generality, we may assume that �1 = {t0,t1, . . . ,tn−1} is not a

subset of H. It is clear that

�G
(〈

�1
〉)≥ 〈H,�1

〉=G (2.3)

since H is maximal in G and �1 is not a subset of H. Therefore,

1≠
〈
�1
〉
�G, (2.4)

and, since G is simple, we have

〈
�1
〉=G. (2.5)

Moreover, if π ∈H and tπi = ti (i= 0,1, . . . ,n−1), then π ∈�(G) and so π = 1,

that is, H permutes the elements of �1 faithfully (and transitively). Now, let

2∗n denote a free product of n copies of the cyclic group C2 with involutory

generators t0, t1, . . . , tn−1 and let N � H consist of all automorphisms of 2∗n

which permute the ti as H permutes the ti:

π−1tiπ = tπi = tπ(i) for π ∈N. (2.6)
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Then, clearly G is a homomorphic image of 2∗n :N, a split extension of 2∗n by

the permutation automorphisms N.

Since the progenitor is a semidirect product (of 〈T 〉 with N), it follows that,

in any homomorphic image G, we may use the equation

tiπ =πtπi =πtπ(i) (2.7)

or iπ =πiπ as we will more commonly write (see below) to gather the elements

of N over to the left. Another consequence of this is that a relation of the form

(πti)n = 1 for some π ∈N in a permutation progenitor becomes

πn = titπ(i) ···tπn−1(i). (2.8)

Each element of the progenitor can be represented as πw, where π ∈ N and

w is a word in the symmetric generators. Indeed, this representation is unique

provided thatw is simplified so that those adjacent symmetric generators are

distinct. Thus any additional relator by which we must factor the progenitor

to obtain G must have the form πw(t0, t1, . . . , tn−1), where π ∈ N and w is a

word in T .

Now, if NxN is a double coset of N in G, we have

NxN =NπwN =NwN, (2.9)

where x =πw ∈G, withπ ∈N, andw a word in the symmetric generators. We

denote this double coset by [w]; for example, [01] denotes the double coset

Nt0t1N. The double cosetNeN =N, where e is the identity element, is denoted

by [∗].
Notation 2.2. We will allow i to stand for the coset Nti, ij for the coset

Ntitj , and so on. We will also let i stand for the symmetric generator ti when

there is no danger of confusion. Thus we write, for instance, ij ∼ k to mean

Ntitj =Ntk and ij = k to mean titj = tk.
We define the subgroups Ni,Nij,Nijk, . . . (for i,j, and k distinct) as follows:

Ni =�N
(〈
ti
〉)
, Nij =�N

(〈
ti,tj

〉)
, Nijk =�N

(〈
ti,tj,tk

〉)
(2.10)

or, more generally,

Ni1i2···im =�N
(〈
ti1 , ti2 , . . . , tim

〉)
(2.11)

for i1, i2, . . . , im distinct.

Let g be an element of G. Then we define

N(g) = {π ∈N |Ngπ =Ng}, (2.12)
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where N(g) is called the coset stabilizing subgroup (of Ng in N). Clearly, Nw ≤
N(w) forw being a word in the symmetric generators and the number of cosets

in the double coset [w]=NwN is given by |N|/|N(w)|, see [5, 7].

Lemma 2.3. In 2∗n :N, 〈ti,tj〉∩N ≤�N(Nij).

Proof. Suppose that some element of G is in 〈ti,tj〉 and N; then it must

centralize everything in Nij—since, by definition, everything in Nij commutes

with everything in 〈ti,tj〉—and also in N, see [4]. Of course, this result can be

readily generalized to more than two symmetric generators, and the general

result is

〈
ti1 , ti2 , . . . , tim

〉∩N ≤�N
(
Ni1i2···im

)
. (2.13)

Lemma 2.4. In (2n :N)/(πab = aba) (ab is called a special pair),

N(ij) ≥ 〈Nij,πkj with ik and kj special pairs
〉
. (2.14)

Proof. Since ij ∼ ik ·kj ∼ i ·πkj ·k ∼ iπkj ·k = (ij)πkj , then πkj fixes the

coset ij. Then πkj ∈N(ij).

3. Manual double coset enumeration. It is now clear that we intend to take

our progenitor of shape 2∗n :N, where N is a transitive permutation group on

n letters. A canonical presentation for this progenitor is

〈
x,y,t | 〈x,y〉 �N, t2 = 1= [N0, t

]〉
, (3.1)

where x and y generateN, and t corresponds to t0. The meaning of 1= [N0, t]
is that we adjoin the relations 1 = [x1, t] = [x2, t] = ··· = [xp,t], where x1,

x2, . . . ,xp generateN0, and 〈x,y〉 �N means that we adjoin sufficient relations

between x and y to define N.

3.1. The progenitor 2∗(7+7) : (L3(2) : 2). A presentation for the progenitor is

〈
x,y,s | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]= [s,[x,y]2]= 1

〉
, (3.2)

where the action of the elements of the control subgroupN �L3(2) : 2 on the 14

symmetric generators may be given by x = (0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)
and y = (0,5,6)(1,2,4)(1,6,5)(2,4,3). Here the symmetric generators are de-

noted by seven points 0,1,2,3,4,5, and 6, and seven lines 0,1,2,3,4,5, and 6 in the

projective plane shown in Figure 3.1. In order to obtain a finite homomorphic

image of such a progenitor, we must factor by some additional relations. There

are three two-point stabilizers Nij , depending on whether i is a point and j is

a line not through it, i is a point and j is a line through it, or i and j are two

different points or two different lines. Now consider the first case

N00 = 〈(2,4)(5,6)(2,4)(5,6),(1,2)(3,6)(1,2)(3,6)〉� S3, (3.3)
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Figure 3.1. Seven-point projective plane.

which is centralized by the involutionπ00 = (0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6).
Lemma 2.3 stated that π00 is the only permutation of N which can be written

in terms of s0 and s0. We make the assumption that π00 = s0s0s0, a word in the

symmetric generators s0 and s0 of the shortest length that does not lead to

collapse. Also

N65 = 〈(0,1)(2,5)(0,4)(2,3),(0,2)(1,5)(0,4)(1,6),
(0,1,2,5)(3,4)(0,6,4,1)(2,3)

〉
�D8,

(3.4)

which is centralized by the involution π65 = (0,2)(1,5)(0,4)(1,6). If we can

write the involution π65 as a word in the symmetric generators s6 and s5, the

shortest possibility is π65 = (s6s5)2. The third relation is π01 = (s0s1)2, where

π01 = (2,5)(4,6)(0,3)(2,4)∈�N(N01).
Consider the group

G � 2∗(7+7) :
(
L3(2) : 2

)
π00 = s0s0s0, π65 =

(
s6s5

)2 , (3.5)

from which a simple presentation follows:

〈
x,y,s | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]

= [s,[x,y]2]= (sx)3 = (xysxyx)4 = 1
〉
.

(3.6)

We are now in a position to carry out the double coset enumeration ofG over

N. The set of all double cosets [w] = NwN, the coset stabilizing subgroups

N(w), and the number of single cosets each contains are shown in Table 3.1.

The double coset enumeration shows that the group defined by the symmetric

presentation contains a homomorphic image of L3(2) : 2 to index at most 36,

and gives a convenient name to each of the 36 cosets in terms of 14 symmetric

generators. Moreover, the action of the generators on the 36 cosets, by right
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Table 3.1. Double coset enumeration for U3(3) : 2.

Label [w] Coset stabilizing subgroup N(w) No. of cosets

[∗] N 1

[0]
N0 =N(0) � S4,

with orbits 1+6+3+4 on the 14 points
14

[00]= [0] Since 000∼∗⇒ 00∼ 0

[01]

N01 � V4.
Since 01∼ 05·51∼ 05·π15 ·5∼ 61·5∼ 65,
π15= (0,6)(1,5)(2,4)(3,1)(4,0)(5,2)(6,3)

⇒N(01)≥〈(2,4)(5,6)(2,4)(5,6),ρ〉�D12,
ρ = (0,6,1,5)(3,1)(2,0,4,4,5,3,6,2),
with orbits 2+4+8 on the 14 points

21

[01]= [01]
01∼ 06·61∼ 06·616·6∼ 06·π61 ·6
∼ 216∼ 1·26∼ 46·2∼ 42∼ 13∼ 31,

π61 = (0,2)(1,3)(2,4)(3,5)(4,6)(5,0)(6,1)

[012]= [01]

012∼ 312∼ 3·121·1∼ 3·π21 ·1∼ 61∼ 46,
π21 = (0,2)(1,0)(2,1)(3,6)(4,3)(5,5)(6,4).
Also 31∼ 36·61∼ 36·616·6∼ 36·π61 ·6
∼ 516∼ 1·56∼ 66·5∼ 65∼ 56∼ 01∼ 10

��
��

��
��

��
��	
�� 	
��

[∗] [0] [01]

1 14 21
14 1 3+6 2+4

4 8

Figure 3.2

multiplication, is implicit in the enumeration and so it is readily checked that

these permutations satisfy the given relations. Thus, |G : N| ≤ 36, so |G| ≤
12096 = |U3(3) : 2|, and the (relatively) easy task of finding generators for

U3(3) : 2 satisfying the required relations completes the identification of G
with U3(3) : 2. Table 3.1 shows that the Cayley graph of G over N has the form

shown in Figure 3.2.

We conclude our work on G by giving symmetrically represented generators

for each of the maximal subgroups of:G � 〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0〉:U3(3)� 〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0,
(0,5,6)(1,2,4)(1,6,5)(2,4,3)〉 is a simple subgroup of index 2 in G;

31+2
+ : 8 : 2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),

(0,2,2,0,4,5,3,1)(1,4,6,6)(5,3)s6s3

〉 (3.7)
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is a subgroup of order 432 with index 28 in G and is the normalizer of

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s6, (3.8)

an element of order 3 in class 3A;

L3(2) : 2� 〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3)

〉 (3.9)

is a subgroup of order 336 with index 36 in G and is the stabilizer of a point

in the 36-point graph; and

4·S4 : 2� 〈s0,(2,6)(4,5)(0,3)(5,6)s1s0
〉

(3.10)

is a subgroup of order 192 with index 63 in G and is the centralizer of

(2,4)(5,6)(2,4)(5,6), (3.11)

an involution in class 2A.

3.2. The progenitor 2∗36 : (U3(3) : 2). A presentation for the progenitor is

〈
x,y,s,r | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]= [s,[x,y]2]

= (xs)3 = (xysxyx)4 = r 2 = [r ,x]= [r ,y]= 1
〉
.

(3.12)

Here the symmetric generators are labeled with the vertices of the 36-point

graph as follows. A single vertex is labeled∞, 14 vertices are labeled 0,1,2,3,4,

5,6,0,1,2,3, 4,5, and 6, and the 21 vertices are labeled by the 21 flags (a point with

a line through it) 01, 02, 04, 10, 11, 13, 20, 22, 26, 31, 35, 36, 40, 44, 45, 53, 54, 56,

62, 63, and 65. We would like to know which elements of the control subgroup

N �U3(3) : 2 can be written in terms of two symmetric generators. Lemma 2.3

says that �N(N∞0) = 〈s〉. We make the assumption that π∞0(= s) = r∞r0r∞, a

word in the symmetric generators r∞ and r0 of the shortest length that does

not lead to collapse.

Consider the group

G � 2∗36 :
(
U3(3) : 2

)
π∞0 = r∞r0r∞

, (3.13)

from which a simple presentation follows:

〈
x,y,s,r | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]= [s,[x,y]2]

= (xs)3 = (xysxyx)4 = r 2 = [r ,x]= [r ,y]= (sr)3 = 1
〉
.

(3.14)

The double cosets and coset stabilizing subgroups are shown in Table 3.2. The

double coset enumeration yields a Cayley diagram of G overN (see Figure 3.3).
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Table 3.2. Double coset enumeration for J2 : 2.

Label [w] Coset stabilizing subgroup N(w) No. of cosets

[∗] N 1

[∞] N∞ =N(∞) � L3(2) : 2,

with orbits 1+14+21 on the 36 points
36

[∞0]= [∞] Since ∞0∞∼∗⇒∞0∼∞

[∞11]

N∞11 = 〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(0,3)
(2,5,4,6)(0,3)(2,6,4,5),(2,4)(5,6)(0,3)(2,4)〉� D16.
Each element i of the (2+4)-orbits of D16 is joined
to both ∞ and 11, that is, ∞i and i11 are special
pairs ⇒N(∞11) ≥ 〈π011,π111,π311,π011,π111,π311,
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(2,4)(5,6)(0,3)
(2,4),(0,3)(2,5,4,6)(0,3)(2,6,4,5)〉 � 4·S4 : 2,
π011 = s0s3s0 = (2,4)(5,6)(2,4)(5,6)s3,
π111 = s1s1s1 = (2,4)(5,6)(2,4)(5,6)s1,
π311 = s3s0s3 = (2,4)(5,6)(2,4)(5,6)s0,
π011 = s0s3s0 = (2,4)(5,6)(2,4)(5,6)s3,
π111 = s1s1s1 = (2,4)(5,6)(2,4)(5,6)s1,
π311 = s3s0s3 = (2,4)(5,6)(2,4)(5,6)s0,
with orbits 12+24 on the 36 points

63

[∞112]= [∞11]
r∞r11r2 = r11r∞r2 = r11 ·π∞2 ·r∞ = r11s2r∞
∼ r13r∞ since 11·2∼ 112∼ 1·1212·21
∼ 1·(0,5)(3,6)(1,3)(2,6)·21∼ 321∼ 31

��
��

��
��

��
��	
�� 	
��

[∗] [∞] [∞11]

1 36 63
36 1 21 12

14 24

Figure 3.3

One should note that the graph obtained above is not the regular graph, but

the Cayley one. The regular graph whose automorphism group is G is obtained

from the above one by joining the cosetw to the coset iw. We may readily con-

struct our symmetric generators as permutations of 1+36+63 = 100 letters

and verify that they do indeed satisfy the relations we assumed, thus proving

that the group G has order 12096×100 = 1209600 = |J2 : 2|. Identifying G
with J2 : 2 is straightforward and follows immediately from the construction

of J2 : 2 as the automorphism group of a rank-3 graph on 100 points, with

suborbits 1, 36, and 63, and point stabilizer U3(3) : 2, see [2].
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Every element of G can be represented by a permutation on 36 letters fol-

lowed by a word in the symmetric generators of length at most two. Alterna-

tively and more concisely, we can represent each element ofG by an expression

of the form πuv , where π is a permutation on 14 letters (element of L3(2) : 2)

and u and v are words of length at most two in the symmetric generators

s’s and r ’s, respectively. The nested symmetrical representation of generators

for each of the maximal subgroups of G � 〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0,r∞〉

J2 �
〈
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0,(0,5,6)(1,2,4)(1,6,5)(2,4,3),

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)r∞
〉

(3.15)

is a simple subgroup of index 2 in G;

U3(3) : 2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0

〉 (3.16)

is a subgroup of order 12096 with index 100 in G and is the stabilizer of a

point in the 100-point graph;

3·A6 ·22 � 〈(0,3)(1,1)(2,5)(3,0)(4,6)(5,4)(6,2)s6s2r3r02,s0

〉
(3.17)

is a subgroup of order 4320 with index 280 in G and is the normalizer of

(0,3)(1,1)(2,6)(3,0)(4,5)(5,2)(6,4)s3, (3.18)

an element of order 3 in class 3A;

21+4
− : S5 �

〈
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0,

(0,3)(5,6)(2,6)(4,5)s3s1r∞
〉 (3.19)

is a subgroup of order 3840 with index 315 in G and is the normalizer of

(2,4)(5,6)(2,4)(5,6), (3.20)

an involution in class 2A;

22+4 : (3×S3) : 2

� 〈(0,5,6)(1,2,4)(1,6,5)(2,4,3),(1,2)(3,6)(1,2)(3,6),s0,r1
〉 (3.21)

is a subgroup of order 2304 with index 525 in G and is the normalizer of

〈
(0,5)(3,6)(1,3)(2,6),(0,6)(3,5)(1,3)(4,5)

〉
, (3.22)

a four-group whose involutions are in class 2A;(
A4×A5

)
: 2�〈(0,0)(1,4)(2,2)(3,5)(4,1)(5,3)(6,6)s6r6,

(1,2)(3,6)(1,2)(3,6)s0r∞
〉 (3.23)
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is a subgroup of order 1440 with index 840 in G;

(
A5×D10

)·2� 〈(0,0,3,4,2,1,4,6)(1,5,5,2)(6,3)s6s5,

(0,1)(1,2,3,4)(2,5,5,0,6,6,4,3)s6r3r53

〉 (3.24)

is a subgroup of order 1200 with index 1008 in G and is the normalizer of

(0,2,6)(1,3,5)(0,5,4)(1,6,3)s2s2r4r36, (3.25)

an element of order 5 in class 5A;

L3(2) : 2×2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),r∞

〉 (3.26)

is a subgroup of order 672 with index 1800 in G and is the centralizer of r∞,

an involution in class 2C ;

52 :
(
4×S3

)�〈(0,6,5,4,3,2,1)(0,1,2,3,4,5,6)s4r0,

(0,3,2)(1,5,6)(0,4,5)(1,6,2)s6s3,

(0,6)(1,3)(2,2)(3,4)(4,5)(5,1)(6,0)s6
〉 (3.27)

is a subgroup of order 600 with index 2016 in G; and

S5 �
〈
(0,2,6)(1,3,5)(0,5,4)(1,6,3)s2s2r4r36,r∞

〉
(3.28)

is a subgroup of order 120 with index 10080 in G.

There are 63 such sets of six couples corresponding to the choices of

N(ij)(� 4 · S4 : 2) in N. Now we label each set of six couples corresponding

to N(ij) by i.j. It is clear that i.j has 6 (unordered) images under N(ij). Exam-

ples of set of six couples are

∞.11≡




(∞,11),

(1,1),

(0,3),

(0,3),

(10,13),

(01,31),

2.13≡




(2,13),

(4,11),

(1,40),

(3,20),

(04,35),

(56,62).

(3.29)

3.3. The progenitor 2∗100 : (J2 : 2). A presentation for the progenitor is

〈
x,y,s,r ,q | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]= [s,[x,y]2]

= (xs)3 = (xysxyx)4 = r 2 = [r ,x]= [r ,y]= (sr)3

= q2 = [q,x]= [q,y]= [q,s]= 1
〉
.

(3.30)
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Table 3.3. Double coset enumeration for G2(4) : 2.

Label [w] Coset stabilizing subgroup N(w) No. of cosets

[∗] N 1

[x]
Nx =N(x) �U3(3) : 2,

with orbits 1+36+63 on the 100 points
100

[x∞]= [x] Since x∞x∼∗⇒ x∞∼ x

[x0.5]

Nx0.5 = 〈(0,5)(1,6)(2,3)(3,1)(4,4)(5,0)(6,2)s4s4,
(1,2)(3,6)(1,2)(3,6),(1,6)(2,3)(0,5)(1,2),(1,3)
(2,6)(0,5)(3,6)s4s5〉 � 2·S4 : 2.
Each element i of the 12-orbits of 2·S4 : 2 is
joined to both of x and 0.5, that is, xi and i0.5
are special pairs ⇒N(x0.5) ≥ 〈π∞0.5,π00.5,π40.5,
π50.5π00.5,π40.5,π50.5,π040.5,π400.5,π440.5,π450.5,
π540.5,(1,3)(2,6)(0,5)(3.6)s4s5,(0,5)(1,6)(2,3)
(3,1)(4,4)(5,0)(6,2)s4s4〉 � 21+4− .S5,
with 20+80 orbits on 100 points

315

[x0.51]=[x0.5]
qxq0.5q1 = q0.5qxq1 = q0.5πx1qx = q0.5r1qx ∼ q0.4qx

since r0r5r1 = r0r5r1r5r5 = r0π15r5 ∼ r4r5 ∼ r0r4

��
��

��
��

��
��	
�� 	
��

[∗] [x] [x 0.5]

1 100 315
100 1 63 20

36 80

Figure 3.4

Here the symmetric generators are labeled with the vertices of the 100-point

graph. A single vertex is labeled x, 36 vertices are labeled∞,0,1,2,3,4,5,6,0,1,2,3,

4,5,6, 01, 02, 04, 10, 11, 13, 20, 22, 26, 31, 35, 36, 40, 44, 45, 53, 54, 56, 62, 63, and

65 and 63 vertices are labeled by the elements of the set of all six couples.

We would like to know which elements of the control subgroup N � J2 : 2

can be written in terms of two symmetric generators. Lemma 2.3 says that

�N(Nx∞) = 〈r〉. We make the assumption that πx∞(= r) = qxq∞qx, a word in

the symmetric generators qx and q∞ of the shortest length that does not lead

to collapse.

Consider the group

G � 2∗100 :
(
J2 : 2

)
πx∞ = qxq∞qx

. (3.31)

The double cosets and coset stabilizing subgroups are shown in Table 3.3. The

double coset enumeration yields a Cayley diagram of G overN (see Figure 3.4).
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The coset enumeration shows that the group defined by the symmetric presen-

tation contains a homomorphic image ofN to index at most 1+100+315= 416,

and gives a convenient name to each 416 cosets in terms of 100 symmetric gen-

erators. Moreover, the action of the generators on the 416 cosets, by right mul-

tiplication, is implicit in the enumeration and so it is readily checked that these

permutations satisfy the given relation. Moreover, G has order |J2 : 2|×416=
503193600, and G is the automorphism group of a rank-3 graph (obtained

from the above diagram by joining the cosetw to the coset iw) of valence 100

on 416 points in which the point stabilizer is J2 : 2. This is, of course, the group

G2(4) : 2, see [2].

Every element of G can be represented by a permutation on 100 letters (el-

ements of J2 : 2) followed by a word in the symmetric generators of length at

most two. Also each element ofG can be represented by the expressionπuvw,

where π is a permutation on 14 letters (element of L3(2) : 2) and u,v,w are

words of length at most two in the symmetric generators s’s, r ’s, and q’s, re-

spectively. We refer to this as nested symmetric representation of an element of

the group. The (nested) symmetrically represented generators for each of the

maximal subgroups of G � 〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(0,5,6)(1,2,4)
(1,6,5)(2,4,3),s0,r∞,qx〉

G2(4)�
〈
(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0r∞qx,

(0,5,6)(1,2,4)(1,6,5)(2,4,3)
〉 (3.32)

is a simple group of index 2 in G;

J2 : 2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0,r∞

〉 (3.33)

is a subgroup of index 416 in G and is the stabilizer of a point in the 416-point

graph;

22+8 :
(
3×A5

)
: 2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)r2r13q6q1.65,s0

〉
(3.34)

is a subgroup of index 1365 in G;

24+6 :
(
A5×3

)
: 2�〈(0,1,2,6,5,3,4)(0,2,3,6,5,4,1)r1q1q4.63,

(0,1)(2,4,5,6)(0,4,3,2)(5,6)s6s5r2r54q3.53

〉 (3.35)

is a subgroup of index 1365 in G;

U3(4) : 4�〈(0,5,2)(3,6,4)(0,1,3)(2,6,4)s5r26,

(0,1,4)(2,5,3)(0,4,1)(2,3,5)s6r22q11

〉 (3.36)
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is a subgroup of index 2016 in G;

3·L3(4) : 22 � 〈(0,0)(1,1)(2,4)(3,3)(4,2)(5,6)(6,5)qx,

(0,5)(1,6,2,3)(0,5)(1,3,2,6)s4,

(0,5,5,0)(1,1,3,6,2,2,6,3)(4,4)r0r5

〉 (3.37)

is a subgroup of index 2080 in G and is the normalizer of

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0, (3.38)

an element of order 3 in class 3A;

U3(3) : 2×2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0,qx

〉 (3.39)

is a subgroup of index 20800 in G and is the centralizer of qx, an involution in

class 2C ;(
A5×A5

)
: 2�〈(0,5,1,4,6,1,4,3)(2,6)(3,0,5,2)s0r0r2q3,

(0,4,3)(1,5,6)(0,6,2)(1,4,5)s4s0r1r45q5q3.40

〉 (3.40)

is a subgroup of index 69888 in G; and

L2(13) : 2� 〈(0,4,4,0,2,2)(1,6,6,1,5,5)(3,3)s0r∞qx,

(0,6)(1,4)(1,5)(3,4)q0.6
〉 (3.41)

is a subgroup of index 230400 in G.

3.4. The progenitor 2∗416 : (G2(4) : 2). A presentation for the progenitor is

〈
x,y,s,r ,q,p | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]= [s,[x,y]2]

= (xs)3 = (xysxyx)4 = r 2 = [r ,x]= [r ,y]= (sr)3

= q2 = [q,x]= [q,y]= [q,s]= (rq)3 = [p,x]
= [p,y]= [p,s]= [p,r]= 1

〉
.

(3.42)

Here the symmetric generators which correspond to the vertices of the 416-

point graph are denoted by 0,1, . . . ,415, where p0 = pq∗ , p1 = pqx , and p2 =
pq∞ , . . . . We would like to know which elements of the control subgroup N �
G2(4) : 2 can be written in terms of two symmetric generators. Lemma 2.3

states that �N(N01) = 〈q〉. We make the assumption that π01(= q) = p0p1p0,

a word in the symmetric generators p0 and p1 of the shortest length that does

not lead to collapse.

A nice way of looking at Suz : 2 is the way Suzuki constructed the group [2]

as a rank-3 extension of G2(4) : 2 of degree 1782 with suborbit sizes 1, 416,

and 1365. We will be looking at the group from this point of view to identify

our homomorphic image of the progenitor with Suz : 2.
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Table 3.4. Double coset enumeration for 3·Suz : 2.

Label [w] Coset stabilizing subgroup N(w) No. of cosets

[∗] N 1

[0]
N0 =N(0) � J2 : 2,

with orbits 1+100+315 on the 416 points
416

[01]= [0] Since 010∼∗⇒01∼1, 0 is an element of the 100-orbit

[0i]

N0i � 21+4− : S5, i is an element of the 315-orbit,

|N(0i)| = 32×|StabN(0i) (0)| ≥ 32×3840.
N(0i) � 22+8 : S5, thus the double coset [0i] has
at most 4095 single cosets, N(0i) has orbits
32+320+64 on the 416 points

4095

[0il]= [0i] 0il∼ 0πili∼ 0πil i, i joined to l, l is an element

of 320-orbit

[0ij]

N0ij � 21+4− :A5, j is an element of the 64-orbit since

N0ij is maximal in J2, adding any permutation of N
which fixes the coset Np0pipj to N0ij ⇒N(0ij) � J2,

with orbits 315+100+1 on the 416 points

832

[0ijl]= [0ij] 0ijl∼ 0iπjlj ∼ (0i)πjl j, j joined to l, l is an element

of 100-orbit

[0ijk]

N0ijk is maximal in G2(4), adding any permutation
of N which fixes the coset Np0pipjpk to

N0ijk ⇒N(0ijk) �G2(4), which is transitive on the
symmetric generators

2

Consider the group

G � 2∗416 :
(
G2(4) : 2

)
π01 = p0p1p0

. (3.43)

The double cosets and coset stabilizing subgroups are given in Table 3.4. The

double coset enumeration shown in Table 3.4 yields a Cayley diagram of G
over N (see Figure 3.5).

The coset enumeration shows that the group defined by the symmetric pre-

sentation contains a homomorphic image of N to index at most (1+ 416+
4095+832+2) = 5346, and gives a convenient name to each 5346 cosets in

terms of 416 symmetric generators. Moreover, the action of the generators on

the 5346 cosets, by right multiplication, is implicit in the enumeration and so

it is readily checked that these permutations satisfy the given relation. Thus

|G| = |G2(4) : 2|×5346= 2690072965600, and G is isomorphic to the group

3 ·Suz : 2. Finally, adding the relator (πp0)13 [2], where π induces a permu-

tation of cyclic shape 1 · 3 · 4 · 62 · 1233 on 416 letters, to those of G gives

Suz : 2. Again the double coset enumeration over N gives a Cayley diagram

(see Figure 3.6).
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[∗] [0] [0i] [0ij] [0ijk]

1 416 4095 832 2
416 1 315 32 64 315 1 416

100 320 100

Figure 3.5
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[∗] [0] [0i]

1 416 1365
416 1 315 96

100 320

Figure 3.6

Every element of G(� Suz : 2) can be represented by a permutation on 416

letters (elements of G2(4) : 2) followed by a word in the symmetric genera-

tors of length at most two. Also each element of G can be represented by

the expression πuvwz, where π is a permutation on 14 letters (element

of L3(2) : 2) and u, v , w, and z are words of length at most two in the

symmetric generators s’s, r ’s, q’s, and p’s, respectively. We refer to this as

nested symmetric representation of an element of the group. The (nested) sym-

metrically represented generators for each of the maximal subgroups of G �
〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0,r∞,qx,p0〉

Suz�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0,

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)r∞,

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)qx,

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)p0,

(0,5,6)(1,2,4)(1,6,5)(2,4,3)
〉

(3.44)

is a subgroup of index 2 in G;

G2(4) : 2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0,r∞,qx

〉 (3.45)

is a subgroup of index 1782 in G and is the stabilizer of a point in the 1782-

point graph;

3U4(3) :
(
22)

133 �
〈
(0,6,3,5)(2,4)(1,3)(2,5,6,4)s0s2r0r6p0,s0qx

〉
(3.46)
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is a subgroup of index 22880 in G and is the normalizer of

(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)s0, (3.47)

an element of order 3 in class 3A;

21+6
− ·U4(2) : 2� 〈(0,0)(1,2)(2,1)(3,6)(4,4)(5,5)(6,3)s0qx,s4r∞p0

〉
(3.48)

is a subgroup of index 135135 in G and is the normalizer of (1,2)(3,6)(1,2)(3,6),
an involution in class 2A;

J2 : 2×2�〈(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6),
(0,5,6)(1,2,4)(1,6,5)(2,4,3),s0,r∞,p0

〉 (3.49)

is a subgroup of index 370656 in G and is the centralizer of p0, an involution

in class 2C ; and

M12 : 2×2�〈(0,6)(1,0,4,5,6,3)(2,4,3,2,5,1)r5r4qxq4.5p0,

(1,6)(2,3)(0,5)(1,2)q∞p0,(1,4)(3,5)(1,4)(3,5)s6r0

〉 (3.50)

is a subgroup of index 2358720 in G and is the centralizer of

(0,6)(1,5)(2,2)(3,1)(4,3)(5,4)(6,0)r∞p0, (3.51)

an involution in class 3D.

3.5. The progenitor (22)∗1782 : (3·Suz : 2). A presentation for the progeni-

tor is

〈
x,y,s,r ,q,p,t | x2 =y3 = (xy)8 = [x,y]4 = s2 = [s,y]= [s,[x,y]2]

= (xs)3 = (xysxyx)4 = r 2 = [r ,x]= [r ,y]
= (sr)3 = q2 = [q,x]= [q,y]= [q,s]= (rq)3

= [p,x]= [p,y]= [p,s]= [p,r]= (qp)3

= [t,x]= [t,y]= [t,s]= [t,q]= 1
〉
.

(3.52)

We seek a monomial semilinear 1782-dimensional representation of N � 3 ·
Suz : 2 over GF4, the Galois field of order 4. Elements in 3·Suz : 2 can thus act

as permutations of 1782 Klein four-groups, followed by the field automorphism

σ of GF4. The cyclic groups Ti are replaced by copies of the Klein four-groups

which we label by Vi = 〈ti1 , ti2ti3〉. The centralizer in N of V1 is isomorphic

to G2(4) with orbits 1+416+1365. Centralizing a further four-group in the

416-orbit, say V2, yeilds a subgroup isomorphic to J2 whose centralizer in N
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[∗] [1] [1i] [1ik]

[1j]

1 5346
111

1968
22880

405405

5346 1 832 4 100 4860

4095 1260

54 3456

2+416 3982 486

1836

Figure 3.7

is a copy of S3:

〈
V1,V2

〉∩N ≤�N
(
N12)� S3. (3.53)

Elements of order 3 in S3 cycle the involutions in each of the two fixed four-

groups, while its involutions interchange them and apply the field automor-

phism σ . We thus seek an image of (22)∗2 : S3, where

S3 �
〈
a=


ω ·
· ω


 ,b =


· 1

1 ·


σ

〉
. (3.54)

Factoring this by the relator (bt11)3 is easily seen to give the image A5. For

example, if a= (3,4,5), b = (1,2)(4,5), t11 = (1,3)(4,5), then

t11 = (1,3)(4,5), t21 = (2,3)(4,5),
t12 =ωt11 = (1,4)(3,5), t22 =ωt21 = (2,4)(3,5),
t13 =ωt11 = (1,5)(3,4), t23 =ωt21 = (2,5)(3,4).

(3.55)

If the progenitor (22)∗1782 : 3·Suz : 2 is factored by a corresponding relation,

we obtain

Co1 �
(
22
)∗1782

: (3·Suz : 2)(( · 1
1 ·
)
σt11

)3 . (3.56)

The central element of order three [2], which fixes each of the 1782 four-groups

while cycling its nontrivial element, is ([x,y]2([x,y]2)yx([x,y]2)yxsrqp)13.

With the help of the program in [5], the enumeration over N gives a Cayley

diagram (see Figure 3.7).
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