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The Ishikawa iterative sequences with errors are studied for Lipschitzian strongly pseudo-
contractive operators in arbitrary real Banach spaces; some well-known results of Chidume
(1998) and Zeng (2001) are generalized.
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1. Introduction. Let E be an arbitrary real Banach space with norm ‖·‖ and let E∗

be the dual space of E. The duality mapping J : E→ 2E
∗

is defined by

Jx = {f ∈ E∗ : 〈x,f 〉 = ‖x‖·‖f‖, ‖f‖ = ‖x‖}, (1.1)

where 〈x,f 〉 denotes the value of the continuous linear function f ∈ E∗ at x ∈ E. It is

well known that if E∗ is strictly convex, then J is single valued.

An operator T :D(T)⊂ E→ E is said to be accretive if the inequality

‖x−y‖ ≤ ∥∥x−y+s(Tx−Ty)∥∥ (1.2)

holds for every x,y ∈D(T) and for all s > 0.

An operator T with domain D(T) and range R(T) in E is said to be a strong pseudo-

contraction if there exists t > 1 such that for all x,y ∈ D(T) and r > 0, the following

inequality holds:

‖x−y‖ ≤ ∥∥(1+r)(x−y)−rt(Tx−Ty)∥∥. (1.3)

If t = 1 in inequality (1.3), then T is called pseudocontractive.

As a consequence of the result of Kato [3], T is pseudocontractive if and only if for

each x,y ∈D(T), there exists j(x−y)∈ J(x−y) such that

〈
(I−T)x−(I−T)y,j(x−y)〉≥ 0. (1.4)

Furthermore, T is strongly pseudocontractive if and only if there exists k > 0 such

that

〈
(I−T)x−(I−T)y,j(x−y)〉≥ k‖x−y‖2. (1.5)
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Chidume [2] proved that if E is a real uniformly smooth Banach space,K is a nonempty

closed convex bounded subset of E, and T :K→K is a strongly pseudocontraction with

a fixed point x∗ in K, then both the Mann and Ishikawa iteration schemes converge

strongly to x∗ for an arbitrary initial point x0 ∈K. Zeng [6] and Li and Liu [4] consider

an iterative process for Lipschitzian strongly pseudocontractive operator in arbitrary

real Banach spaces. In [2], Chidume proved the following theorem.

Theorem 1.1 [2]. Suppose E is a real uniformly smooth Banach space and K is a

bounded closed convex and nonempty subset of E. Suppose T : E→ E is a strongly pseu-

docontractive map such that Tx∗ = x∗ for somex∗ ∈K. Let {αn},{βn} be real satisfying

the following conditions:

(i) 0≤αn,βn ≤ 1 for all n≥ 0;

(ii) limn→∞αn = 0, limn→∞βn = 0;

(iii)
∑∞
n=1αn =∞.

Then, for arbitrary x0 ∈K, the sequence {xn} defined iteratively by

xn+1 =
(
1−αn

)
xn+αnTyn,

yn =
(
1−βn

)
xn+βnTxn, n≥ 0,

(1.6)

converges strongly to x∗; moreover, x∗ is unique.

Our objective in this note is to consider an iterative sequence with errors for Lip-

schitzian strongly pseudocontractive operators in arbitrary real Banach spaces. Our

results improve and extend the results of Chidume [2] and Zeng [6].

The following lemmas play an important role in proving our main results.

Lemma 1.2 [5]. Let {an},{bn},{cn} be a nonnegative sequence satisfying

an+1 ≤
(
1−tn

)
an+bn+cn. (1.7)

With {tn : n = 0,1,2, . . .} ⊂ [0,1], ∑∞
n=1 tn = ∞, bn = o(tn), and

∑∞
n=1 cn < ∞, then

limn→∞an = 0.

2. Main results. Now, we state and prove the following theorems.

Theorem 2.1. Suppose E is an arbitrary real Banach space and T : E → E is a Lips-

chitzian strongly pseudocontractive map such that Tx∗ = x∗ for some x∗ ∈ E. Suppose

{un},{vn} are sequences in E and {αn},{βn} are sequences in [0,1] such that

(1)
∑∞
n=1‖un‖<∞,

∑∞
n=1‖vn‖<∞;

(2)
∑∞
n=1αn =∞, αn→ 0 as n→∞;

(3) βn→ 0 as n→∞.

Then for any x0 ∈ E, the Ishikawa iteration sequence {xn} with errors defined by

yn =
(
1−βn

)
xn+βnTxn+vn,

xn+1 =
(
1−αn

)
xn+αnTyn+un,

(2.1)

converges strongly to x∗; moreover, x∗ is unique.
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Proof. Since T : E→ E is strongly pseudocontractive, we have that (I−T) is strongly

accretive, so for any x,y ∈ E, (1.5) holds, where k= (t−1)/t and t ∈ (1,∞).
Thus

〈(
(1−k)I−T)x−((1−k)I−T)y,j(x−y)〉≥ 0 (2.2)

and so it follows from [3, Lemma 1.1] that

‖x−y‖ ≤ ∥∥x−y+r[((1−k)I−T)x−((1−k)I−T)y]∥∥ (2.3)

for all x,y ∈ E and r > 0.

From xn+1 = (1−αn)xn+αnTyn+un, we obtain

xn = xn+1+αnxn−αnTyn−un
= (1+αn)xn+1+αn

[
(I−T)xn+1−kxn+1

]−(1−k)αnxn
+(2−k)α2

n
(
xn−Tyn

)+αn(Txn+1−Tyn
)−[(2−k)αn+1

]
un.

(2.4)

It is easy to see that

x∗ = (1+αn)x∗+αn[((1−k)I−T)x∗]−(1−k)αnx∗ (2.5)

so that

xn−x∗ =
(
1+αn

)(
xn+1−x∗

)+αn[((1−k)I−T)xn+1−
(
(1−k)I−T)x∗]

−(1−k)αn
(
xn−x∗

)+(2−k)α2
n
(
xn−Tyn

)+αn(Txn+1−Tyn
)

−[(2−k)αn+1
]
un.

(2.6)

Hence

∥∥xn−x∗∥∥≥ (1+αn)
∥∥∥∥(xn+1−x∗

)+ αn
1+αn

[(
(1−k)I−T)xn+1−

(
(1−k)I−T)x∗]

∥∥∥∥
−(1−k)αn

∥∥xn−x∗∥∥−(2−k)α2
n
∥∥xn−Tyn∥∥

−αn
∥∥Txn+1−Tyn

∥∥−[(2−k)αn+1
]∥∥un∥∥

≥ (1+αn)∥∥(xn+1−x∗
)∥∥−(1−k)αn∥∥xn−x∗∥∥−(2−k)α2

n
∥∥xn−Tyn∥∥

−αn
∥∥Txn+1−Tyn

∥∥−[(2−k)αn+1
]∥∥un∥∥

(2.7)
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so that

∥∥xn+1−x∗
∥∥≤

[
1+(1−k)αn

1+αn
]∥∥xn−x∗∥∥+α2

n
∥∥xn−Tyn∥∥

+αn
∥∥Txn+1−Tyn

∥∥+(2αn+1
)∥∥un∥∥

≤
(

1− kαn
1+αn

)∥∥xn−x∗∥∥+α2
n
∥∥xn−Tyn∥∥

+αn
∥∥Txn+1−Tyn

∥∥+(2αn+1
)∥∥un∥∥

≤
(

1− kαn
2

)∥∥xn−x∗∥∥+α2
n
∥∥xn−Tyn∥∥

+αn
∥∥Txn+1−Tyn

∥∥+3
∥∥un∥∥.

(2.8)

Since T is a Lipschitzian operator and L is Lipschitz bound, we have

∥∥yn−x∗∥∥= ∥∥(1−βn)(xn−x∗)+βn(Txn−x∗)+vn∥∥
≤ [1+βn(L−1)

]∥∥xn−x∗∥∥+∥∥vn∥∥≤ L∥∥xn−x∗∥∥+∥∥vn∥∥,
∥∥xn−Tyn∥∥≤ ∥∥xn−x∗∥∥+L∥∥yn−x∗∥∥≤ (1+L2)∥∥xn−x∗∥∥+L∥∥vn∥∥,

∥∥Txn+1−Tyn
∥∥≤ L∥∥(1−αn)(xn−yn)+αn(Tyn−yn)+un∥∥
≤ L(1−αn)[βn(1+L)∥∥xn−x∗∥∥+∥∥vn∥∥]

+Lαn(1+L)
[
L
∥∥xn−x∗∥∥+∥∥vn∥∥]+L∥∥un∥∥

≤ [L(1+L)βn+(1+L)L2αn
]∥∥xn−x∗∥∥+L(1+L)∥∥vn∥∥+L∥∥un∥∥.

(2.9)

So there exist M1 > 0 and M2 > 0 such that

∥∥xn+1−x∗
∥∥≤

(
1− kαn

2

)∥∥xn−x∗∥∥
+[L(1+L)βn+(L3+3L2+2

)
αn
]
αn
∥∥xn−x∗∥∥+M1

∥∥un∥∥+M2

∥∥vn∥∥.
(2.10)

Since αn→ 0 and βn→ 0, there exists N > 0 such that for all n>N, we have

L(1+L)βn+
(
L3+3L2+2

)
αn <

k
4
. (2.11)

Thus

∥∥xn+1−x∗
∥∥≤

(
1− kαn

4

)∥∥xn−x∗∥∥+M1

∥∥un∥∥+M2

∥∥vn∥∥. (2.12)

Set

tn = kαn
4
, bn = 0, cn =M1

∥∥un∥∥+M2

∥∥vn∥∥. (2.13)
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Then we have

an+1 ≤
(
1−tn

)
an+bn+cn. (2.14)

According to the above argument, it is easily seen that

∞∑
k=0

tn =∞, bn = o
(
tn
)
,

∞∑
k=0

cn <∞ (2.15)

and so, by Lemma 1.2, we have liman = lim‖xn−x∗‖ = 0. Uniqueness follows as in [1].

The proof of the theorem is complete.

Remark 2.2. Our Theorem 2.1 generalized the theorem of Chidume [2] from uni-

formly smooth Banach space to arbitrary Banach space and from Ishikawa iteration to

Ishikawa iteration with errors. In addition, our results extend, generalize, and improve

the corresponding results obtained by Zeng [6] and Li and Liu [4].
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