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We establish inequalities between the Ricci curvature and the squared mean curvature,
and also between the k-Ricci curvature and the scalar curvature for a slant, semi-slant,
and bi-slant submanifold in a locally conformal almost cosymplectic manifold with arbi-
trary codimension.

1. Preliminaries

Let M̃ be a (2m+ 1)-dimensional almost contact manifold with almost contact structure
(ϕ,ξ,η), that is, a global vector field ξ, a (1,1) tensor field ϕ, and a 1-form η on M̃ such that
ϕ2X =−X +η(X)ξ, η(ξ)= 1 for any vector field X on M̃. We consider a product manifold
M̃×R, whereR denotes a real line. Then a vector field on M̃×R is given by (X , f (d/dt)),
where X is a vector field tangent to M̃, t the coordinate of R, and f a function on M̃ ×
R. We define a linear map J on the tangent space of M̃ ×R by J(X , f (d/dt)) = (ϕX −
f ξ,η(X)(d/dt)). Then we have J2 = −I , and hence J is an almost complex structure on
M̃×R. The manifold M̃ is said to be normal (see [6]) if the almost complex structure J
is integrable (i.e., J arises from a complex structure on M̃ ×R). Let g be a Riemannian
metric on M̃ compatible with (ϕ,ξ,η), that is, g(ϕX ,ϕY) = g(X ,Y)− η(X)η(Y) for any
vector fields X and Y tangent to M̃. Thus, the manifold M̃ is almost contact metric,
and (ϕ,ξ,η,g) is its almost contact metric structure. Clearly, we have η(X) = g(X ,ξ) for
any vector field X tangent to M̃. Let Φ denote the fundamental 2-form of M̃ defined by
Φ(X ,Y)= g(ϕX ,Y) for any vector fields X and Y tangent to M̃. The manifold M̃ is said to
be almost cosymplectic if the forms η andΦ are closed. That is, dη = 0 and dΦ= 0, where d
is the operator of exterior differentiation. If M̃ is almost cosymplectic and normal, then it
is called cosymplectic (see[1]). It is well known that the almost contact metric manifold is
cosymplectic if and only if ∇̃ϕ vanishes identically, where ∇̃ is the Levi-Civita connection
on M̃. An almost contact metric manifold M̃ is a locally conformal almost cosymplectic
manifold if and only if there exists a 1-form ω such that dΦ = 2ω∧Φ, dη = ω∧ η, and
dω = 0.

On the other hand, it is wellknown that the Riemannian curvature tensor R̃ on a locally
conformal almost cosymplectic manifold M̃ (m ≥ 2) of pointwise constant ϕ-sectional
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curvature c satisfies (see[6])

g
(
R̃(X ,Y)Z,W

)
= c− 3 f 2

4

{
g(X ,W)g(Y ,Z)− g(X ,Z)g(Y ,W)

}
+
c+ f 2

4

{
g(X ,ϕW)g(Y ,ϕZ)− g(X ,ϕZ)g(Y ,ϕW)− 2g(X ,ϕY)g(Z,ϕW)

}
−
(
c+ f 2

4
+ f ′

){
g(X ,W)η(Y)η(Z)− g(X ,Z)η(Y)η(W) + g(Y ,Z)η(X)η(W)

− g(Y ,W)η(X)η(Z)
}

, X ,Y ,Z,W ∈ TpM,
(1.1)

where f is the function such that ω = f η, f ′ = ξ f .
In [5], Lotta has introduced the following notion of slant submanifolds into almost

contact metric manifolds. A submanifold M tangent to ξ in locally conformal almost
cosymplectic manifold M̃ is said to be slant if for any p ∈M and any X ∈ TpM, linearly
independent of ξ, the angle between ϕX and TpM is a constant θ ∈ [0,π/2], called the

slant angle of M in M̃. Invariant and anti-invariant submanifolds of M̃ are slant subman-
ifolds with slant angles θ = 0 and θ = π/2, respectively.

We say that a submanifold M tangent to ξ is a bi-slant submanifold in M̃ if there exist
two orthogonal distributions �1 and �2 on M such that

(1) TM admits the orthogonal direct decomposition TM =�1⊕�2⊕{ξ};
(2) for any i= 1,2, �i is slant distribution with slant angle θi.

On the other hand, CR-submanifolds of M̃ are bi-slant submanifolds with θ1 = 0, θ2 =
π/2.

Let 2d1 = dim�1 and 2d2 = dim�2.

Remark 1.1. If either d1 or d2 vanishes, the bi-slant submanifold is a slant submanifold.
Thus, slant submanifolds are particular cases of bi-slant submanifolds.

A submanifold M tangent to ξ is called a semi-slant submanifold in M̃ if there exist
two orthogonal distributions �1 and �2 on M such that

(1) TM admits the orthogonal direct decomposition TM =�1⊕�2⊕{ξ};
(2) the distribution �1 is an invariant distribution, that is, ϕ(�1)=�1;
(3) the distribution �2 is slant with angle θ �= 0.

Remark 1.2. The invariant distribution of a semi-slant submanifold is a slant distribution
with zero angle. Thus, it is obvious that, in fact, semi-slant submanifolds are particular
cases of bi-slant submanifolds.

(1) If d2 = 0, then M is an invariant submanifold.
(2) If d1 = 0 and θ = π/2, then M is an anti-invariant submanifold.

For the other properties and examples of slant, bi-slant, and semi-slant submanifolds
in an almost contact metric manifold, we refer to [2, 3].

Let M be an n-dimensional submanifold of a locally conformal almost cosymplectic
manifold M̃ equipped with a Riemannian metric g. The Gauss and Weingarten formulas
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are given, respectively, by

∇̃XY =∇XY +h(X ,Y), ∇̃XN =−ANX +∇⊥XN , (1.2)

for all X ,Y ∈ TM and N ∈ T⊥M, where ∇̃, ∇, and ∇⊥ are the Riemannian, induced
Riemannian, and induced normal connections in M̃, M, and the normal bundle T⊥M of
M, respectively, and h is the second fundamental form related to the shape operator A by
g(h(X ,Y),N) = g(ANX ,Y). Also, let R be the Riemannian curvature tensor of M. Then
the equation of Gauss is given by

R̃(X ,Y ,Z,W)= R(X ,Y ,Z,W) + g
(
h(X ,W),h(Y ,Z)

)− g
(
h(X ,Z),h(Y ,W)

)
, (1.3)

for any vectors X , Y , Z, W tangent to M.
For any vector X tangent to M, we put ϕX = PX + FX , where PX and FX are the

tangential and the normal components of ϕX , respectively. Given an orthonormal basis
{e1, . . . ,en} of M, we define the squared norm of P by

‖P‖2 =
n∑

i, j=1

g2(Pei,ej) (1.4)

and the mean curvature vector H(p) at p ∈M is given by H = (1/n)
∑n

i=1h(ei,ei).
We put

hri j = g
(
h
(
ei,ej

)
,er
)
, ‖h‖2 =

n∑
i, j=1

g
(
h
(
ei,ej

)
,h
(
ei,ej

))
, (1.5)

where {en+1, . . . ,e2m+1} is an orthonormal basis of T⊥p M and r = n+ 1, . . . ,2m+ 1. A sub-

manifold M in M̃ is called totally geodesic if the second fundamental form vanishes iden-
tically and totally umbilical if there is a real number λ such that h(X ,Y)= λg(X ,Y)H for
any tangent vectors X , Y on M.

For an n-dimensional Riemannian manifold M, we denote by K(π) the sectional cur-
vature of M associated with a plane section π ⊂ TpM, p ∈M. For an orthonormal basis
{e1, . . . ,en} of the tangent space TpM, the scalar curvature τ is defined by

τ =
∑
i< j

Ki j , (1.6)

where Kij denotes the sectional curvature of the 2-plane section spanned by ei and ej .
Suppose that L is a k-plane section of TpM and X a unit vector in L. We choose an

orthonormal basis {e1, . . . ,ek} of L such that e1 = X . Define the Ricci curvature RicL of L
at X by

RicL(X)= K12 + ···+K1k. (1.7)
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We simply called such a curvature a k-Ricci curvature. The scalar curvature τ of the k-
plane section L is given by

τ(L)=
∑

1≤i< j≤k
Ki j . (1.8)

For each integer k, 2 ≤ k ≤ n, the Riemannain invariant Θk on an n-dimensional Rie-
mannian manifold M is defined by

Θk(p)= 1
k− 1

inf
L,X

RicL(X), p ∈M, (1.9)

where L runs over all k-plane sections in TpM and X runs over all unit vectors in L.
Recall that for a submanifold M in a Riemannain manifold, the relative null space of

M at a point p ∈M is defined by

Np =
{
X ∈ TpM | h(X ,Y)= 0∀Y ∈ TpM

}
. (1.10)

2. Ricci curvature and squared mean curvature

Chen established a sharp relationship between the Ricci curvature and the squared mean
curvature for submanifolds in real space forms (see [4]). We prove similar inequalities for
slant, bi-slant, and semi-slant submanifolds in a locally conformal almost cosymplectic
manifold M̃. We consider submanifolds M tangent to ξ.

Theorem 2.1. Let M be an n-dimensional θ-slant submanifold tangent to ξ into a (2m+ 1)-
dimensional locally conformal almost cosymplectic manifold M̃. Then, the following hold.

(1) For each unit vector X ∈ TpM orthogonal to ξ,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)+

3
2

(
c+ f 2)cos2 θ− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
. (2.1)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.1) if and only if X ∈Np.

(3) The equality case of (2.1) holds identically for all unit tangent vectors orthogonal to ξ
at p if and only if p is a totally geodesic point.

Proof. (1) Let X ∈ TpM be a unit tangent vector at p orthogonal to ξ. We choose an
orthonormal basis e1, . . . ,en = ξ,en+1, . . . ,e2m+1, such that e1, . . . ,en are tangent to M at p
with e1 = X . Then, from the equation of Gauss, we have

n2‖H‖2 = 2τ +‖h‖2− n(n− 1)
(
c− 3 f 2

)
4

− 3(n− 1)
(
c+ f 2

)
4

cos2 θ + 2(n− 1)

(
c+ f 2

4
+ f ′

)
.

(2.2)
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From (2.2), we get

n2‖H‖2 = 2τ +
2m+1∑
r=n+1

[(
hr11

)2
+
(
hr22 + ···+hrnn

)2
+ 2

∑
1≤i< j≤n

(
hri j
)2
]

− 2
2m+1∑
r=n+1

∑
2≤i< j≤n

hriih
r
j j −

n(n− 1)
(
c− 3 f 2

)
4

− 3(n− 1)
(
c+ f 2

)
4

cos2 θ + 2(n− 1)

(
c+ f 2

4
+ f ′

)

= 2τ +
1
2

2m+1∑
r=n+1

[(
hr11 +hr22 + ···+hrnn

)2
+
(
hr11−hr22−···−hrnn

)2
]

+ 2
2m+1∑
r=n+1

∑
1≤i< j≤n

(
hri j
)2− 2

2m+1∑
r=n+1

∑
2≤i< j≤n

hriih
r
j j

− n(n− 1)
(
c− 3 f 2

)
4

− 3(n− 1)
(
c+ f 2

)
4

cos2 θ + 2(n− 1)

(
c+ f 2

4
+ f ′

)
.

(2.3)

By using the equation of Gauss, we have

∑
2≤i< j≤n

Ki j =
2m+1∑
r=n+1

∑
2≤i< j≤n

[
hriih

r
j j −

(
hri j
)2
]

+
(n− 1)(n− 2)

(
c− 3 f 2

)
8

+
3(n− 2)

(
c+ f 2

)
8

cos2 θ +
1
2

(
c+ f 2

4
+ f ′

)
(−2n+ 4).

(2.4)

Substituting (2.4) in (2.3), we get

1
2
n2‖H‖2 ≥ 2Ric(X)− (n− 1)

(
c− 3 f 2

)
2

− 3
(
c+ f 2

)
4

cos2 θ + 2

(
c+ f 2

4
+ f ′

)
, (2.5)

or equivalently (2.1).
(2) Assume that H(P)= 0. Equality holds in (2.1) if and only if

hr12 = ··· = hr1n = 0,

hr11 = hr22 + ···+hrnn, r ∈ {n+ 1, . . . ,2m+ 1}. (2.6)

Then hr1 j = 0 for all j ∈ {1, . . . ,n}, r ∈ {n+ 1, . . . ,2m+ 1}, that is, X ∈Np.
(3) Then equality case of (2.1) holds for all unit tangent vectors orthogonal to ξ at p if

and only if

hri j = 0, i �= j,r ∈ {n+ 1, . . . ,2m+ 1},
hr11 + ···+hrnn− 2hrii = 0, i∈ {1, . . . ,n}, r ∈ {n+ 1, . . . ,2m+ 1}. (2.7)

In this case, it follows that p is a totally geodesic point. The converse is trivial. �
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Theorem 2.2. Let M be an n-dimensional bi-slant submanifold satisfying g(X ,ϕY) = 0,
for any X ∈�1 and any Y ∈�2, tangent to ξ in a (2m+ 1)-dimensional locally conformal
almost cosymplectic manifold M̃. Then, the following hold.

(1) For each unit vector X ∈ TpM orthogonal to ξ and if
(i) X is tangent to �1,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)+

3
2

(
c+ f 2)cos2 θ1− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
,

(2.8)

and if
(ii) X is tangent to �2,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)+

3
2

(
c+ f 2)cos2 θ2− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
. (2.9)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.8) and (2.9) if and only if X ∈Np.

(3) The equality case of (2.8) and (2.9) holds identically for all unit tangent vectors or-
thogonal to ξ at p if and only if p is a totally geodesic point.

Proof. (1) Let X ∈ TpM be a unit tangent vector at p orthogonal to ξ. We choose an
othonormal basis e1, . . . ,en = ξ,en+1, . . . ,e2m+1 such that e1, . . . ,en are tangent to M at p
with e1 = X . Then, from the equation of Gauss, we have

n2‖H‖2 = 2τ +‖h‖2− n(n− 1)
(
c− 3 f 2

)
4

− 6
(
c+ f 2

)
4

(
d1 cos2 θ1 +d2 cos2 θ2

)
+ 2(n− 1)

(
c+ f 2

4
+ f ′

)
,

(2.10)

where 2d1 = dim�1 and 2d2 = dim�2.
From (2.10), we get

n2‖H‖2 = 2τ +
2m+1∑
r=n+1

[(
hr11

)2
+
(
hr22 + ···+hrnn

)2
+ 2

∑
1≤i< j≤n

(
hri j
)2
]

− 2
2m+1∑
r=n+1

∑
2≤i< j≤n

hriih
r
j j −

n(n− 1)
(
c− 3 f 2

)
4

− 6
(
c+ f 2

)
4

(
d1 cos2 θ1 +d2 cos2 θ2

)
+ 2(n− 1)

(
c+ f 2

4
+ f ′

)
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= 2τ +
1
2

2m+1∑
r=n+1

[(
hr11 +hr22 + ···+hrnn

)2
+
(
hr11−hr22−···−hrnn

)2
]

+ 2
2m+1∑
r=n+1

∑
1≤i< j≤n

(
hri j
)2− 2

2m+1∑
r=n+1

∑
2≤i< j≤n

hriih
r
j j −

n(n− 1)
(
c− 3 f 2

)
4

− 6
(
c+ f 2

)
4

(
d1 cos2 θ1 +d2 cos2 θ2

)
+ 2(n− 1)

(
c+ f 2

4
+ f ′

)
.

(2.11)

We distinguish two cases.
(i) If X is tangent to �1, then we have

∑
2≤i< j≤n

Ki j =
2m+1∑
r=n+1

∑
2≤i< j≤n

[
hriih

r
j j −

(
hri j
)2
]

+
(n− 1)(n− 2)

(
c− 3 f 2

)
8

+
c+ f 2

8

[
6
(
d1 cos2 θ1 +d2 cos2 θ2

)− 3cos2 θ1
]

+
1
2

(
c+ f 2

4
+ f ′

)
(−2n+ 4).

(2.12)

Substituting (2.12) in (2.11), one gets

1
2
n2‖H‖2 ≥ 2Ric(X)− (n− 1)

(
c− 3 f 2

)
2

− 3
(
c+ f 2

)
4

cos2 θ1 + 2

(
c+ f 2

4
+ f ′

)
, (2.13)

which is equivalent to (2.8).
(ii) If X is tangent to �2, then we have

∑
2≤i< j≤n

Ki j =
2m+1∑
r=n+1

∑
2≤i< j≤n

[
hriih

r
j j −

(
hri j
)2
]

+
(n− 1)(n− 2)

(
c− 3 f 2

)
8

+
c+ f 2

8

[
6
(
d1 cos2 θ1 +d2 cos2 θ2

)− 3cos2 θ2
]

+
1
2

(
c+ f 2

4
+ f ′

)
(−2n+ 4).

(2.14)

Substituting (2.14) in (2.11), one gets

1
2
n2‖H‖2 ≥ 2Ric(X)− (n− 1)

(
c− 3 f 2

)
2

− 3
(
c+ f 2

)
4

cos2 θ2 + 2

(
c+ f 2

4
+ f ′

)
,

(2.15)
which is equivalent to (2.9).

(2) Assume that H(p)= 0. Equality holds in (2.8) and (2.9) if and only if

hr12 = ··· = hr1n = 0,

hr11 = hr22 + ···+hrnn, r ∈ {n+ 1, . . . ,2m+ 1}. (2.16)

Then hr1 j = 0 for all j ∈ {1, . . . ,n}, r ∈ {n+ 1, . . . ,2m+ 1}, that is, X ∈Np.
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(3) Then equality case of (2.8) and (2.9) holds for all unit tangent vectors orthogonal
to ξ at p if and only if

hri j = 0, i �= j, r ∈ {n+ 1, . . . ,2m+ 1},
hr11 + ···+hrnn− 2hrii = 0, i∈ {1, . . . ,n}, r ∈ {n+ 1, . . . ,2m+ 1}. (2.17)

In this case, it follows that p is a totally geodesic point. The converse is trivial. �

Corollary 2.3. Let M be an n-dimensional semi-slant submanifold in a (2m + 1)-
dimensional locally conformal almost cosymplectic manifold M̃. Then, the following hold.

(1) For each unit vector X ∈ TpM orthogonal to ξ and if
(i) X is tangent to �1,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
, (2.18)

and if
(ii) X is tangent to �2,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)+

3
2

(
c+ f 2)cos2 θ− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
. (2.19)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.18) and (2.19) if and only if X ∈Np.

(3) The equality case of (2.18) and (2.19) holds identically for all unit tangent vectors
orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.4. Let M be an n-dimensional invariant submanifold in a (2m + 1)-
dimensional cosymplectic space form M̃(c). Then, the following hold.

(1) For each unit vector X ∈ TpM orthogonal to ξ,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)+

3
2

(
c+ f 2)− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
. (2.20)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.20) if and only if X ∈Np.

(3) The equality case of (2.20) holds identically for all unit tangent vectors orthogonal to
ξ at p if and only if p is a totally geodesic point.

Corollary 2.5. Let M be an n-dimensional anti-invariant submanifold in a (2m + 1)-
dimensional cosymplectic space form M̃(c). Then, the following hold.

(1) For each unit vector X ∈ TpM orthogonal to ξ,

Ric(X)≤ 1
4

{
(n− 1)

(
c− 3 f 2)− 4

(
c+ f 2

4
+ f ′

)
+n2‖H‖2

}
. (2.21)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.21) if and only if X ∈Np.
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(3) The equality case of (2.21) holds identically for all unit tangent vectors orthogonal to
ξ at p if and only if p is a totally geodesic point.

3. k-Ricci curvature and squared mean curvature

In this section, we prove relationship between the k-Ricci curvature and the squared mean
curvature for slant, bi-slant, and semi-slant submanifolds in a locally conformal almost
cosymplectic manifold M̃. We state an inequality between the scalar curvature and the
squared mean curvature for submanifolds M tangent to the vector field ξ.

Theorem 3.1. Let M be an n-dimensional θ-slant submanifold tangent to ξ into a (2m+ 1)-
dimensional locally conformal almost cosymplectic manifold M̃. Then,

‖H‖2 ≥ 2τ
n(n− 1)

− 1
4n

[
n
(
c− 3 f 2)+ 3

(
c+ f 2)cos2 θ− 8

(
c+ f 2

4
+ f ′

)]
, (3.1)

equality holding at a point p ∈M if and only if p is a totally umbilical point.

Proof. Let p be a point of M. We choose an orthonormal basis {e1,e2, . . . ,en = ξ} for
the tangent space TpM and {en+1, . . . ,e2m+1} for the normal space T⊥p M at p such that
the normal vector en+1 is in the direction of the mean curvature vector and e1,e2, . . . ,en
diagonalize the shape operator An+1. Then, we have

An+1 =



a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . an

 ,

Ar =
(
hri j
)
,

n∑
i=1

hrii = 0, n+ 2≤ r ≤ 2m+ 1.

(3.2)

From the equation of Gauss,

n2‖H‖2 = 2τ +
n∑
i=1

a2
i +

2m+1∑
r=n+2

n∑
i, j=1

(
hri j
)2− n(n− 1)

(
c− 3 f 2

)
4

− 3(n− 1)
(
c+ f 2

)
4

cos2 θ + 2(n− 1)

(
c+ f 2

4
+ f ′

)
.

(3.3)

On the other hand,

∑
i< j

(
ai− aj

)2 = (n− 1)
n∑
i=1

a2
i − 2

∑
i< j

aiaj . (3.4)
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Therefore, from the above equation, we have

n2‖H‖2 =
( n∑

i=1

ai

)2

=
n∑
i=1

a2
i + 2

∑
i< j

aiaj ≤ n
n∑
i=1

a2
i . (3.5)

Combining (3.3) and (3.5),

n(n− 1)‖H‖2 ≥ 2τ +
2m+1∑
r=n+2

n∑
i, j=1

(
hri j
)2− n(n− 1)

(
c− 3 f 2

)
4

− 3(n− 1)
(
c+ f 2

)
4

cos2 θ + 2(n− 1)

(
c+ f 2

4
+ f ′

)
,

(3.6)

which implies inequality (3.1). If the equality sign of (3.1) holds at a point p ∈M, then
from (3.4) and (3.6) we get Ar = 0 (r = n + 2, . . . ,2m + 1) and a1 = ··· = an. Conse-
quently, p is a totally umbilical point. The converse is trivial. �

Theorem 3.2. Let M be an n-dimensional bi-slant submanifold satisfying g(X ,ϕY)= 0, for
any X ∈�1 and any Y ∈�2, tangent to ξ into a (2m+ 1)-dimensional locally conformal
almost cosymplectic manifold M̃. Then,

‖H‖2 ≥ 2τ
n(n− 1)

− 1
4n(n− 1)

[
n(n− 1)

(
c− 3 f 2)+ 6

(
d1 cos2 θ1 +d2 cos2 θ2

)(
c+ f 2)

− 8(n− 1)

(
c+ f 2

4
+ f ′

)]
,

(3.7)

where 2d1 = dim�1 and 2d2 = dim�2.

Theorem 3.3. Let M be an n-dimensional semi-slant submanifold tangent to ξ into a (2m+
1)-dimensional locally conformal almost cosymplectic manifold M̃. Then,

‖H‖2 ≥ 2τ
n(n− 1)

− 1
4n(n− 1)

[
n(n− 1)

(
c− 3 f 2)+ 6

(
d1 +d2 cos2 θ

)(
c+ f 2)

− 8(n− 1)

(
c+ f 2

4
+ f ′

)]
,

(3.8)

where 2d1 = dim�1 and 2d2 = dim�2.

Theorem 3.4. Let M be an n-dimensional θ-slant submanifold tangent to ξ into a (2m+ 1)-
dimensional locally conformal almost cosymplectic manifold M̃. Then, for any integer k (2≤
k ≤ n) and any point p ∈M,

‖H‖2 ≥Θk(p)− 1
4n

[
n
(
c− 3 f 2)+ 3

(
c+ f 2)cos2 θ− 8

(
c+ f 2

4
+ f ′

)]
. (3.9)
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Proof. Let {e1, . . . ,en} be an orthonormal basis of TpM. Denote by Li1···ik the k-plane
section spanned by ei1 , . . . ,eik . It follows from (1.7) and (1.8) that

τ
(
Li1···ik

)= 1
2

∑
i∈{i1,...,ik}

RicLi1···ik
(
ei
)
,

τ(p)= 1(
n−2
k−2

) ∑
1≤i1<···<ik≤n

τ
(
Li1···ik

)
.

(3.10)

Combining (1.9) and (3.10), we obtain

τ(p)≥ n(n− 1)
2

Θk(p). (3.11)

Therefore, by using (3.1) and (3.11), we can obtain the inequality in Theorem 3.4. �

Theorem 3.5. Let M be an n-dimensional bi-slant submanifold tangent to ξ into a (2m+
1)-dimensional locally conformal almost cosymplectic manifold M̃. Then, for any integer
k (2≤ k ≤ n) and any point p ∈M,

‖H‖2 ≥Θk(p)− 1
4n(n− 1)

[
n(n− 1)

(
c− 3 f 2)+ 6

(
d1 cos2 θ1 +d2 cos2 θ2

)(
c+ f 2)

− 8(n− 1)

(
c+ f 2

4
+ f ′

)]
,

(3.12)

where 2d1 = dim�1 and 2d2 = dim�2.

Theorem 3.6. Let M be an n-dimensional semi-slant submanifold tangent to ξ into a (2m+
1)-dimensional locally conformal almost cosymplectic manifold M̃. Then, for any integer
k (2≤ k ≤ n) and any point p ∈M,

‖H‖2 ≥Θk(p)− 1
4n(n− 1)

[
n(n− 1)

(
c− 3 f 2)+ 6

(
d1 +d2 cos2 θ

)(
c+ f 2)

− 8(n− 1)

(
c+ f 2

4
+ f ′

)]
,

(3.13)

where 2d1 = dim�1 and 2d2 = dim�2.

Corollary 3.7. Let M be an n-dimensional invariant submanifold tangent to ξ into a
(2m+ 1)-dimensional locally conformal almost cosymplectic manifold M̃. Then, for any in-
teger k (2≤ k ≤ n) and any point p ∈M,

‖H‖2 ≥Θk(p)− 1
4n

[
n
(
c− 3 f 2)+ 3

(
c+ f 2)− 8

(
c+ f 2

4
+ f ′

)]
. (3.14)
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Corollary 3.8. Let M be an n-dimensional anti-invariant submanifold tangent to ξ into
a (2m+ 1)-dimensional locally conformal almost cosymplectic manifold M̃. Then, for any
integer k (2≤ k ≤ n) and any point p ∈M,

‖H‖2 ≥Θk(p)− 1
4n

[
n
(
c− 3 f 2)− 8

(
c+ f 2

4
+ f ′

)]
. (3.15)

Corollary 3.9. Let M be an n-dimensional contact CR-submanifold tangent to ξ into
a (2m+ 1)-dimensional locally conformal almost cosymplectic manifold M̃. Then, for any
integer k (2≤ k ≤ n) and any point p ∈M,

‖H‖2 ≥Θk(p)− 1
4n(n− 1)

[
n(n− 1)

(
c− 3 f 2)+ 6d1

(
c+ f 2)− 8(n− 1)

(
c+ f 2

4
+ f ′

)]
.

(3.16)
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