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We prove some properties of the first eigenvalue for the elliptic system−∆pu= λ|u|α|v|βv
in Ω, −∆qv = λ|u|α|v|βu in Ω, (u,v)∈W1,p

0 (Ω)×W1,q
0 (Ω). In particular, the first eigen-

value is shown to be simple. Moreover, the stability with respect to (p,q) is established.

1. Introduction

In this paper, we consider the nonlinear system

−∆pu= λ|u|α|v|βv in Ω,

−∆qv = λ|u|α|v|βu in Ω,

(u,v)∈W1,p
0 (Ω)×W1,q

0 (Ω),

(1.1)

where Ω is a bounded domain in RN , N ≥ 1, p > 1, q > 1, and α, β are real numbers
satisfying

(H)

α > 0, β > 0,
α+ 1
p

+
β+ 1
q

= 1. (1.2)

Note that the system (1.1) is of two second-order elliptic equations. It is weakly coupled
in the sense that interaction is present only in the “source terms,” while the differen-
tial terms have only one dependent variable. The differential operator involved is the
so-called p-Laplacian, that is, ∆pu = ∇ · (|∇u|p−2∇u), which reduces to the ordinary
Laplace operator ∆u when p = 2. We mention that problem (1.1) arises in several fields
of application. For instance, in the case where p > 2, problem (1.1) appears in the study of
non-Newtonian fluids, pseudoplastics for 1 < p < 2, and in reaction-diffusion problems,
flows through porous media, nonlinear elasticity, and glaciology for p = 4/3. We can cite
[5, 6], for more details.

Here, we define the first eigenvalue λ1(p,q) of (1.1) as the least real parameter λ for
which both equations of (1.1) have a nontrivial solution (u,v) in the product Sobolev

space W
1,p
0 (Ω)×W1,q

0 (Ω), with u �≡ 0 and v �≡ 0.
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Several special cases of problem (1.1) have been considered in literature. For the case
of the scalar equation, that is, (1.1) reduces to one equation when p = q and β = α =
(p− 2)/2, the simplicity of the first eigenvalue was apparently first proved by Lindqvist,
see [10]. The radial case has been studied in [3] by de Thélin when the case of smooth
domains was investigated—see, for example, [1] and the references therein.

Other problems have been considered in this direction—we refer to [3, 6, 7].
Concerning systems of the type (1.1), a lot of papers have appeared in recent years

dealing with equations involving p-Laplacian both in bounded and unbounded domains.
In particular, de Thélin in [4] obtained the existence of the first eigenvalue λ1(p,q) by
considering more real parameters α, β satisfying the condition (H) and by considering
also smooth bounded domains. The study of system (1.1) in the wholeRN was continued
in [9], where the authors considered systems of the form

−∆pu= λa(x)|u|p−2u+ λb(x)|u|α−1|v|β+1u in RN ,

−∆qv = λd(x)|u|q−2u+ λb(x)|u|α+1|v|β−1v in RN ,

u,v > 0, lim
|x|→+∞

u(x)= lim
|x|→+∞

v(x)= 0.

(1.3)

In particular, they gave an extension and generalized the results of [4] to unbounded
domains. In both these papers, the first eigenvalue λ1(p,q) is proven to be positive and
simple.

Recently, in [2], the author showed the simplicity of the first eigenvalue by extend-
ing the Saa’s inequality to the whole RN . We mention that the stability question is not
discussed there.

In this note, we show the uniqueness of the eigenvector corresponding to λ1(p,q),
that is, λ1(p,q) is simple. In other words, positive solutions of (1.1) are unique modulo
scaling. Especially, by establishing sufficient conditions and via some modifications of
[2], we prove the simplicity result, see Theorem 3.2. The uniqueness result will be needed
in the proof of the stability (continuity) of λ1(p,q) with respect to (p,q).

On the other hand, note that the dependence with respect to the rheological exponent
was studied both in the scalar p-Laplacian and system of two second-order equations,
see, for example, [9, 11]. Our purpose is also to extend these results to our case of system
(1.1), see Theorem 4.1. More precisely, we study the stability of the ground state when
the exponents p and q vary in the following constrained way:

Iα,β =
{

(p,q)∈]1 +∞[×]1 +∞[; p,q satisfies (H)
}
. (1.4)

Generally, the main difficulty lies in the fact that the appropriate Sobolev spaces W
1,p
0 (Ω)

and W
1,q
0 (Ω) change with the exponents p and q. Here, to overcome this obstacle, we use

a local argument based only on the variational characterization of λ1(p,q) and use the
fact that the underlying domain Ω in RN has the so-called segment property (a sufficient
regularity condition related to the geometry of Ω). Contrary to irregular domains with



Abdelouahed El Khalil et al. 1557

p ≤N or q ≤N , the situation

limsup
(s,t)→(p,q)

λ1(s, t) < λ1(p,q), (1.5)

becomes possible. An example is given in [11] in the scalar case.
The rest of this paper is organized as follows. In Section 2, we establish some defini-

tions, basic properties, and preliminary results. In Section 3, we prove the simplicity of
λ1, and in the last section, we prove the stability by using the segment property lemma.

2. Definitions and preliminaries

We define the following functionals on W
1,p
0 (Ω)×W1,q

0 (Ω) by

A(u,v)= α+ 1
p

∫
Ω
|∇u|pdx+

β+ 1
q

∫
Ω
|∇v|qdx,

B(u,v)=
∫
Ω
|u|α|v|βuvdx,

(2.1)

where the Sobolev space W1,t
0 (Ω) is the completion of C∞0 (Ω), 1 < t < +∞ equipped with

the norm ‖φ‖ = ‖∇φ‖t. It is well known that A,B ∈ C1(W
1,p
0 (Ω)×W1,q

0 (Ω)). We will
consider both equations of (1.1) in the weak sense.

2.1. Definition. We say that λ∈R is an eigenvalue of (1.1), if there exists a pair of func-

tions u∈W1,p
0 (Ω) and v ∈W1,q

0 (Ω) with u �= 0 and v �= 0 such that∫
Ω
|∇u|p−2∇u∇φdx = λ

∫
Ω
|u|α|v|βvφdx,∫

Ω
|∇v|q−2∇v∇ψdx = λ

∫
Ω
|u|α|v|βuψ dx,

(2.2)

where φ ∈W
1,p
0 (Ω) and ψ ∈W

1,q
0 (Ω). The pair (u,v) is called an eigenvector. Observe

that the solutions (u,v) of (1.1) correspond to the critical points of the energy functional
A on the set {

(u,v)∈W1,p
0 (Ω)×W1,q

0 (Ω); B(u,v)= 1
}
. (2.3)

2.2. Basic properties. The system (1.1) possesses a first positive eigenvalue denoted by
λ1(p,q) (for indicate the dependence with respect to (p,q)) obtained by the Ljusternick-
Schnirelmann theory by minimizing the functional A on the C1-manifold defined by
(2.3). So, we recall that λ1(p,q) can be variationally characterized as

λ1(p,q)= inf
{
A(u,v),(u,v)∈W1,p

0 (Ω)×W1,q
0 (Ω); B(u,v)= 1

}
. (2.4)

According to advanced regularity result of [12], every minimizer of (2.4) belongs to
C1(Ω)×C1(Ω). In addition, from the maximum principle of Vázquez, see [12], we de-
duce that the corresponding eigenpair of λ1(p,q), (u,v) are such that u,v > 0. Hereafter
such (u,v) will be called positive eigenvector.



1558 Simplicity and stability of a nonlinear elliptic system

2.3. The segment property. We begin by defining a class of domains for which the
boundary is smooth in order to guarantee that

W1,p(Ω)∩W1,s
0 (Ω)=W1,p

0 (Ω) ∀s∈ (1, p). (2.5)

Definition 2.1. An open subset Ω of RN is said to have the segment property if for any
x ∈ ∂Ω, there exists an open set Gx ∈RN with x ∈Gx and a point yx of RN\{0} such that
if z ∈ Ω̄∩Gx and t ∈ (0,1), then z+ tyx ∈Ω.

This property rules out that Ω lies on both sides on parts of its boundary. It also allows
us to push the support of a function in Ω via a translation.

The following results play an important role in the proof of Theorem 3.2 (cf. [10]).

Lemma 2.2. Let Ω be a bounded domain inRN having the segment property. If u∈W1,p(Ω)

∩W1,s
0 (Ω) for some s∈ (1, p), then u∈W1,p

0 (Ω).

3. Simplicity

Before giving the main result of this section, we recall and prove the following lemma
introduced in [8] which is needed below. We regive its proof for more convenience. First,
we introduce

Γp(u,φ)=
∫
Ω
|∇u|pdx+ (p− 1)

∫
Ω
|∇φ|p

( |u|
φ

)p
dx

− p
∫
Ω
|∇φ|p−2∇φ∇u

( |u|p−2u

φp−1

)
dx

=
∫
Ω
|∇u|pdx+

∫
Ω

∆pφ

φp−1 |u|pdx.

(3.1)

Lemma 3.1. For all (u,φ)∈ (W
1,p
0 (Ω)∩C1,ν(Ω))2 with φ > 0 in Ω and ν∈ (0,1), we have

Γp(u,φ)≥ 0, that is,

∫
Ω
|∇u|p ≥

∫
Ω

−∆pφ

φp−1 |u|p, (3.2)

and if Γp(u,φ)= 0 there is c ∈R such that u= cφ.

Proof. By Young’s inequality we have, for ε > 0,

∇u|∇φ|p−2∇φu|u|
p−2

φp−1 ≤ |∇u||∇φ|p−1
( |u|
φ

)p−1

≤ ε
p

p
|∇u|p +

p− 1
pεp

∣∣∣∣uφ
∣∣∣∣
p

|∇φ|p.
(3.3)

Let ε = 1, we have, by integration over Ω,

p
∫
Ω
|∇φ|p−2∇φ∇u

( |u|p−2u

φp−1

)
≤
∫
Ω
|∇u|p + (p− 1)

∫
Ω

∣∣∣∣uφ
∣∣∣∣
p

|∇φ|p. (3.4)
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Thus

Γp(u,φ)≥ 0. (3.5)

On the other hand, if Γp(u,φ)= 0, then we obtain

p
∫
Ω
|∇φ|p−2∇φ∇u

( |u|p−2u

φp−1

)
−
∫
Ω
|∇u|p− (p− 1)

∫
Ω

∣∣∣∣uφ
∣∣∣∣
p

|∇φ|p = 0, (3.6)

and by choosing ε = 1 in (3.3), we get

∫
Ω

{
∇u∇φ|∇φ|p−2 u|u|p−2

φp−1 −|∇u||∇φ|p−1
( |u|
φ

)p−1
}
dx = 0. (3.7)

By (3.6), we deduce that |∇u| = |(u/φ)∇φ| and from (3.7), it follows that ∇u = η(u/
φ)∇φ, where |η| = 1. Hence Γp(u,φ)= 0 implies η = 1 and ∇(u/φ)= 0. Therefore, there
is c ∈R such that u= cφ and the lemma follows. �

Theorem 3.2. λ1(p,q) is simple.

Proof. Let (u,v) and (φ,ψ) be two eigenvectors associated to λ1(p,q) with (u,v) positive
(i.e., u > 0, v > 0). Thanks to definition of λ1(p,q) and Hölder’s inequality, we have

A(φ,ψ)= λ1(p,q)B(φ,ψ)

≤ λ1(p,q)
∫
Ω
uα+1vβ+1 |φ|α+1|ψ|β+1

uα+1vβ+1

≤ λ1(p,q)
∫
Ω
uα+1vβ+1

[
α+ 1
p

|φ|p
up

+
β+ 1
q

|ψ|q
vq

]

≤ λ1(p,q)
∫
Ω

[
α+ 1
p

uαvβ+1

up−1 |φ|p +
β+ 1
q

uα+1vβ

vq−1 |ψ|q
]

≤ α+ 1
p

∫
Ω

−∆pu

up−1 |φ|p +
β+ 1
q

∫
Ω

−∆qv
vq−1 |ψ|q.

(3.8)

Now, by Lemma 3.1, we have

A(φ,ψ)= α+ 1
p

∫
Ω

−∆pu

up−1 |φ|p +
β+ 1
q

∫
Ω

−∆qv
vq−1 |ψ|q. (3.9)

Thus

∫
Ω
|∇φ|p =

∫
Ω

−∆pu

up−1 |φ|p,
∫
Ω
|∇φ|p =

∫
Ω

−∆qv
vq−1 |φ|q. (3.10)

Again due to Lemma 3.1, there exist k1 and k2 in R such that u= k1φ and v = k2ψ. This
ends the proof. �
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4. Stability

Theorem 4.1. Let Ω be a bounded domain having the segment property, then the function

(p,q)−→ λ1(p,q) (4.1)

is continuous from Iα,β into R+.

Proof. Let (tn)n≥1, tn = (pn,qn) be a sequence in Iα,β converging to t = (p,q), with t ∈ Iα,β.
We claim that

lim
n→+∞λ1

(
pn,qn

)= λ1(p,q). (4.2)

Indeed, let (φ,ψ)∈ C∞0 (Ω)×C∞0 (Ω) such that B(φ,ψ) > 0. Then by the variational char-
acterization of λ1(p,q), we have

λ1
(
pn,qn

)≤
(
(α+ 1)/pn

)‖∇φ‖pnpn +
(
(β+ 1)/qn

)‖∇ψ‖qnqn
B(φ,ψ)

. (4.3)

Applying the dominated convergence theorem, we find

limsup
n→+∞

λ1
(
pn,qn

)≤
(
(α+ 1)/p

)‖∇φ‖pp +
(
(β+ 1)/q

)‖∇ψ‖qq
B(φ,ψ)

. (4.4)

By passing to infimum of the right-hand side of (4.4), we obtain

limsup
n→+∞

λ1
(
pn,qn

)≤ λ1(p,q). (4.5)

Let now, {pnk ,qnk}k≥1 be a subsequence of (tn)n≥1 such that

lim
k→+∞

λ1
(
pnk ,qnk

)= liminf
n→+∞ λ1

(
pn,qn

)
. (4.6)

Fix ε0 > 0 small enough so that for all ε ∈ (0,ε0),

1 <min(p− ε,q− ε), (4.7)

max(p+ ε,q+ ε) <min
(
(p− ε)∗, (q− ε)∗

)
, (4.8)

where, for s∈ (1,+∞), s∗ =Ns/(N − s) if 1 < s < N and s∗ = +∞ if s≥N .
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For each k ∈N∗, let (u(pnk ,qnk ),v(pnk ,qnk ))∈W1,pnk
0 (Ω)×W1,qnk

0 (Ω) be the first eigenvec-
tor associated to λ1(pnk ,qnk ), that is, u(pnk ,qnk ),v(pnk ,qnk ) > 0 with

B
(
u(pnk ,qnk ),v(pnk ,qnk )

)
= 1; (4.9)

λ1
(
pnk ,qnk

)= α+ 1
pnk

∥∥∥∇u(pnk ,qnk )

∥∥∥pnk
pnk

+
β+ 1
qnk

∥∥∥∇v(pnk ,qnk )

∥∥∥qnk
qnk
. (4.10)

By using Hölder’s inequality, with ε ∈ (0,ε0), we get simultaneously
∥∥∥∇u(pnk ,qnk )

∥∥∥
p−ε ≤

∥∥∥∇u(pnk ,qnk )

∥∥∥
pnk
|Ω|(pnk−p+ε)/pnk (p−ε),

∥∥∥∇v(pnk ,qnk )

∥∥∥
q−ε ≤

∥∥∥∇v(pnk ,qnk )

∥∥∥
qnk
|Ω|(qnk−q+ε)/qnk (q−ε).

(4.11)

According to (4.10), we deduce

∥∥∥∇u(pnk ,qnk )

∥∥∥
p−ε ≤

{
pnkλ1

(
pnk ,qnk

)
α+ 1

}1/pnk

|Ω|(pnk−p+ε)/pnk (p−ε),

∥∥∥∇v(pnk ,qnk )

∥∥∥
q−ε ≤

{
qnkλ1

(
pnk ,qnk

)
β+ 1

}1/qnk |Ω|(qnk−q+ε)/qnk (q−ε).

(4.12)

Due to (4.5), it follows that (λ1(pnk ,qnk ))k≥1 is a bounded sequence. Then, from (4.12)

we conclude that (u(pnk ,qnk ))k≥1 (resp., (v(pnk ,qnk ))k≥1) is bounded in W
1,p−ε
0 (Ω) (resp.,

in W
1,q−ε
0 (Ω)). Therefore, by compactness and (4.8), we have u(pnk ,qnk ) ⇀ u weakly in

W
1,p−ε
0 (Ω), strongly in Lp+ε(Ω), and a.e in Ω (still denoted by u(pnk ,qnk )). We have also

v(pnk ,qnk ) → v strongly in Lq+ε(Ω) and a.e in Ω (for a subsequence if it is necessary). Clearly
u∈ Lp(Ω) and v ∈ Lq(Ω), and are independent of ε. On the other hand, the weak lower
semicontinuity of the norm implies that

‖∇u‖p−ε ≤
{

p

α+ 1

}1/p{
lim
k→+∞

λ1
(
pnk ,qnk

)}1/p

|Ω|ε/p(p−ε),

‖∇v‖q−ε ≤
{

q

β+ 1

}1/q{
lim
k→+∞

λ1
(
pnk ,qnk

)}1/q

|Ω|ε/q(q−ε).

(4.13)

Since |∇u|p−ε → |∇u|p and |∇v|q−ε → |∇v|q a.e on Ω, as ε→ 0+, then the Fatou lemma
yields with (4.13)

‖∇u‖pp ≤ p

α+ 1
lim
k→+∞

λ1
(
pnk ,qnk

)
< +∞,

‖∇v‖qq ≤ q

β+ 1
lim
k→+∞

λ1
(
pnk ,qnk

)
< +∞.

(4.14)

Consequently, we have u∈W1,p−ε
0 (Ω)∩W1,p(Ω) and v ∈W1,q−ε

0 (Ω)∩W1,q(Ω).
This implies by Lemma 2.2 that

u∈W1,p
0 (Ω), v ∈W1,q

0 (Ω). (4.15)
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Finally, from (4.10), (4.11), and from the weak lower semicontinuity of the norm, it fol-
lows by letting k tend to infinity that

1
|Ω|ε/(p−ε)

α+ 1
p
‖∇u‖pp−ε +

1
|Ω|ε/(q−ε)

β+ 1
q
‖∇v‖qq−ε ≤ lim

k→+∞
λ1
(
pnk ,qnk

)
. (4.16)

Letting now ε→ 0+, the Fatou Lemma implies

α+ 1
p
‖∇u‖pp +

β+ 1
q
‖∇v‖qq ≤ lim

k→+∞
λ1
(
pnk ,qnk

)
. (4.17)

Since u∈W
1,p
0 (Ω) and v ∈W

1,q
0 (Ω), then by the variational characterization of λ1(p,q)

and the simplicity of the first eigenvector, we deduce that

λ1(p,q)≤ lim
k→+∞

λ1
(
pnk ,qnk

)= lim
n→+∞λ1

(
pn,qn

)
. (4.18)

Due to (4.5) and (4.18), we conclude that

lim
n→+∞λ1

(
pn,qn

)= λ1(p,q). (4.19)

This completes the proof. �

Remark 4.2. Observe that the segment property is used only to prove that

λ1(p,q)≤ liminf
n→+∞ λ1

(
pn,qn

)
. (4.20)
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[2] K. Chaı̈b, Extension of Dı́az-Saá’s inequality in RNand application to a system of p-Laplacian,
Publ. Mat. 46 (2002), no. 2, 473–488.
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