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A time discretization technique by Euler forward scheme is proposed to deal with a
nonlocal parabolic problem. Existence and uniqueness of the approximate solution are
proved.

1. Introduction

In this work, we study the time discretization by Euler forward scheme of the nonlocal
initial boundary value problem

∂u

∂t
−�u= λ f (u)(∫

Ω f (u)dx
)2 in Ω× ]0;T[,

u= 0 on ∂Ω× ]0;T[,

u(0)= u0 in Ω,

(1.1)

with Ω⊂Rd (d ≥ 1) a bounded regular domain and λ a positive parameter. The hypothe-
ses we will assume on f are the same as in [6]. We recall first that (1.1) arises by reducing
the following system of two equations modeling the thermistor problem:

ut =∇·
(
k(u)∇u)+ σ(u)

∣∣∇ϕ∣∣2
,

∇(σ(u)∇ϕ)= 0,
(1.2)

where u represents the temperature generated by the electric current flowing through a
conductor, ϕ the electric potential, σ(u) and k(u) are, respectively, the electric and ther-
mal conductivities. For more description, we refer to [5, 6, 7, 8, 11] among others.

We recall also that the Euler forward method was used by several authors to treat
semidiscretization of nonlinear parabolic problems, see [3, 4]. Concerning problem (1.1),
results of existence and uniqueness of solutions are known under particular forms of
f , we refer to [2] and the references therein. On the other hand, little is known about
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the solutions to the discrete problem

Un− τ�Un =Un−1 + λτ
f
(
Un
)

(∫
Ω f

(
Un
)
dx
)2 in Ω,

Un = 0 on ∂Ω,

U0 = u0 in Ω.

(1.3)

Whereas, semidiscretization has been involved for the equations of the thermistor
problem in [1, 9]. Our aim here is to continue the study of problem (1.1) initiated in [6],
where an a priori L∞-estimate is derived. In addition to habitual existence and uniqueness
questions concerning the solutions of (1.3), we will prove some results of stability and
proceed to error estimates analysis. In [1], the authors derived an L2 and H1-norm error
by requiring more regularity on the solution u, for instance u,ut in H2(Ω)∩W1,∞(Ω).
Unfortunately, such smoothness is not always possible since the function f is nonlinear.

2. The semidiscrete problem

2.1. Existence and uniqueness. We consider the Euler scheme (1.3), with Nτ = T , T > 0
fixed, and 1≤ n≤N , under the following hypotheses.

(H1) f :R→R is a locally Lipschitzian function.
(H2) There exist positive constants σ ,c1,c2, and α such that α < 4/(d− 2) and for all

ξ ∈R,

σ ≤ f (ξ)≤ c1
∣∣ξ∣∣α+1

+ c2. (2.1)

In the sequel, we will denote the norms in the spaces L∞(Ω), Lk(Ω) by | · |L∞(Ω) and | · |k,
respectively, (·,·) will denote the associated inner product in L2(Ω) or the duality product
between H1

0 (Ω) and its dual H−1(Ω).

Theorem 2.1. Let (H1)-(H2) be satisfied. Then, for each n, there exists a unique solution
Un of (1.3) in H1

0 (Ω)∩L∞(Ω) provided that τ is small enough.

Proof. For simplicity, we write U =Un, h(x)=Un−1. Then (1.3) becomes

U − τ�U = h(x) + λ
f (U)(∫

Ω f (U)dx
)2 in Ω,

U = 0 on ∂Ω.
(2.2)

Existence. Define the map S(µ,·) by U = S(µ,v), µ∈ [0,1] if and only if

U − τ�U = µg(x,v) in Ω,

U = 0 on ∂Ω,

U0 = µu0,

(2.3)
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where g(x,v) = h(x) + λ( f (v)/(
∫
Ω f (v)dx)2). For a fixed v ∈ H1

0 (Ω), (2.3) has a unique
solution U ∈H1

0 (Ω). Then, for each µ∈ [0,1], the operator S(µ,·) is well defined. More-
over, S(µ,·) is compact from H1

0 (Ω) into it self. Indeed, using (H2), we have the estimate

∣∣U∣∣2
2 + τ

∣∣∇U∣∣2
2 ≤ c3. (2.4)

We can easily see that µ→ S(µ,v) is continuous and that S(0,v)=U , for any v, if and only
if U = 0. From Leray-Schauder fixed point theorem, there exists therefore a fixed point U
of S(µ,·). �

Now, we derive an a priori estimate.

Lemma 2.2. If u0 ∈ L∞(Ω), then for all n∈ {1, . . . ,N}, Un ∈ L∞(Ω).

Proof. The proof is similar to the one used by De Thélin in [10] concerning a very differ-
ent problem and we will give here only a sketch. Suppose that d ≥ 2 and define

δ =



2d
d− 2

if 2 < d,

2(α+ 2) if d = 2.
(2.5)

For each k ∈N∗, we consider the number

qk =
{(

δ

2

)k−1

(δ− γ)− (2− γ)

}
δ

δ− 2
, k ≥ 2,

q1 = δ,

(2.6)

we have

qk+1 =
(
qk + 2− γ)δ

2
with γ = α+ 2, ∀k ∈N∗. (2.7)

�

Lemma 2.3. For all k ∈N∗, Un ∈ Lqk (Ω), and moreover

∣∣Un
∣∣∞ = lim

∣∣Un
∣∣
qk
< +∞. (2.8)

Proof. We prove by recurrence thatU ∈ Lqk . The property is true for k = 1, sinceH1
0 (Ω)⊂

Lδ(Ω). We show now thatU∈Lqk+1 . Letm∈N, 1≤m≤ k. Multiplying (2.2) by |U|qm−γU ,
using (H2), and Young’s inequality, we get

(
qm− γ+ 1

)∫
Ω
|∇U|2|U|qm−γdx ≤ c4|U|qmqm + c5. (2.9)

On the other hand, we have

|U|qm+2−γ
qm+1 ≤ c6

(
1 +

qm− γ
2

)2∫
Ω
|∇U|2|U|qm−γdx. (2.10)
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Therefore, we obtain

|U|qm+2−γ
qm+1 ≤ (c7 + c8|U|qmqm

)(
qm + 2− γ). (2.11)

Thus,

(|U|qk+1
qk+1

)2/δ ≤ (c7 + c8|U|qkqk
)(
qk + 2− γ). (2.12)

The rest of the proof follows the same lines as in [10, pages 383-384].

Uniqueness. Consider U and V two different solutions of (2.2) and define w = U −V .
Then, we have

w− τ�w = λτ(∫
Ω f (U)dx

)2

(
f (U)− f (V)

)

+ λτ

(∫
Ω f (U)− f (V)dx

)(∫
Ω f (V) + f (U)dx

)
(∫

Ω f (U)dx
)2(∫

Ω f (V)dx
)2 f (V).

(2.13)

Multiplying (2.13) byw, integrating on Ω, and using the L∞-estimate obtained in Lemma
2.2, we get

|w|22 + τ|∇w|22 ≤ c9τ|w|22. (2.14)

Therefore, w = 0 if τ ≤ 1/c9. �

We address now the question of stability.

3. Stability

Theorem 3.1. Assume (H1)-(H2) hold. Then, there exists c(T ,u0) > 0 depending on data
but not on N such that for any n∈ {1, . . . ,N},

(a) |Un|L∞(Ω) ≤ c(T ,u0);
(b) |Un|22 + τ

∑n
k=1 |∇Uk|22 ≤ c(T ,u0);

(c)
∑n

k=1 |Uk −Uk−1|22 ≤ c(T ,u0).

Proof. (i) Multiplying (1.3) by |Uk|mUk for some integer m ≥ 1, using Lemma 2.2, and
Hölder’s inequality, we obtain after simplification

∣∣Uk
∣∣
m+2 ≤

∣∣Uk−1
∣∣
m+2 + c10τ. (3.1)

By induction and taking the limit in the resulting inequality as m→ +∞, we get

∣∣Uk
∣∣
L∞(Ω) ≤ c

(
T ,u0

)
. (3.2)

(ii) Multiplying the first equation of (1.3) by Uk and using the hypotheses on f , one
easily has

(
Uk −Uk−1,Uk

)
+ τ
∣∣∇Uk

∣∣2
2 ≤ c11τ

∣∣Uk
∣∣

1. (3.3)
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Using the elementary identity 2a(a− b)= a2− b2 + (a− b)2 and summing from k = 1 to
n, we obtain

∣∣Un
∣∣2

2 +
n∑
k=1

∣∣Uk −Uk−1
∣∣2

2 + τ
n∑
k=1

∣∣∇Uk
∣∣2

2 ≤
∣∣u0

∣∣2
2 + τc12

n∑
k=1

∣∣Uk
∣∣

1. (3.4)

Then, the inequalities (b)-(c) hold by using the uniform bound of Un in L∞ which is
established in part (a). �

4. Error estimates for solutions

We will adopt the following notations concerning the time discretization for problem
(1.1). We denote the time step τ = T/N , tn = nτ, and In = (tn, tn−1) for n = 1, . . . ,N . If z
is a continuous function (resp., summable), defined in (0,T) with values in H−1(Ω) or
L2(Ω) or H1

0 (Ω), we define zn = z(tn,·), zn = (1/τ)
∫
In z(t,·)dt, z0 = z0 = z(0,·); the error

en = u(t)−Un for all t ∈ In and the local errors enu and en defined by enu = un(t)−Un,
en = un−Un.

We have the following theorem.

Theorem 4.1. Let (H1)-(H2) hold. Then, the following error bounds are satisfied:
(1) ‖en‖2

L∞(0,T ,H−1(Ω)) +
∫ T

0 |en|2dt ≤ c13τ,
(2) ‖em‖H−1(Ω) ≤ c14τ1/2,

(3) |∇∫ T0 en(t)dt|2 ≤ c15τ1/4.

Proof. For the proof, we consider the following variational formulation of discrete prob-
lem (1.3):

(
Un−Un−1,ϕ

)
+ τ
(∇Un,∇ϕ)= λτ(∫

Ω f
(
Un
)
dx
)2

(
f
(
Un
)
,ϕ
)
, ∀ϕ∈H1

0 (Ω). (4.1)

Integrating the continuous problem (1.1) over In, we get

(
un−un−1,ϕ

)
+ τ
(∇un,∇ϕ)= λτ

(
f
(
un
)
,ϕ
)

(∫
Ω f

(
un
)
dx
)2 , ∀ϕ∈H1

0 (Ω). (4.2)

Substracting (4.2) from (4.1) and adding from n= 1 to m with m≤N , we obtain

m∑
n=1

(
en− en−1,ϕ

)
+ τ

m∑
n=1

(∇enu,∇ϕ)

≤ c16τ

∣∣∣∣∣
m∑
n=1

(
f (u)

n− f
(
Un
)
,ϕ
)∣∣∣∣∣+ c17τ

∣∣∣∣∣
m∑
n=1

(
f (Un

)
,ϕ
)∣∣∣∣∣.

(4.3)
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Let (−�)−1 be the green operator satisfying

(∇(−�)−1ψ,∇ϕ)= (ψ,ϕ)H−1(Ω),H1
0 (Ω) (4.4)

for all ψ ∈H−1(Ω), ϕ∈H1
0 (Ω). Choosing ϕ= (−�)−1(en) as test function, we then ob-

tain

I1 + I2 ≤ I3 + I4, (4.5)

where

I1 =
m∑
n=1

(
en− en−1, (−�)−1(en)),

I2 = τ
m∑
n=1

(
enu,en

)
,

I3 ≤ c16τ

∣∣∣∣∣
m∑
n=1

(
f (u)

n− f
(
Un
)
, (−�)−1(en))

∣∣∣∣∣,

I4 = c17τ

∣∣∣∣∣
m∑
n=1

(
f
(
Un
)
, (−�)−1(en))

∣∣∣∣∣.

(4.6)

With the aid of the elementary identity 2a(a− b)= a2− b2 + (a− b)2 and the property of
(−�)−1, I1 reduces after straightforward calculations to

I1 = 1
2

∥∥em∥∥2
H−1(Ω) +

1
2

m∑
n=1

∥∥en− en−1
∥∥2
H−1(Ω). (4.7)

On the other hand,

I2 = τ
m∑
n=1

(
enu,en

)

=
m∑
n=1

∫
In

(
u(t)−Un,u(t)−Un

)
dt+

m∑
n=1

∫
In

(
u(t)−Un,un−u(t)

)
dt

= I21 + I22,

(4.8)

where

I21 =
m∑
n=1

∫
In

(
u(t)−Un,u(t)−Un

)
dt =

m∑
n=1

∫
In

∣∣en∣∣2
2dt,

I22 =
m∑
n=1

∫
In

(
u(t),un−u(t)

)
dt−

m∑
n=1

∫
In

(
Un,un−u(t)

)
dt

= I1
22 + I2

22.

(4.9)
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We now estimate I1
22. Using the boundedness of ∂u/∂s (see [6]), we have

∣∣I1
22

∣∣=
∣∣∣∣∣

m∑
n=1

∫
In

(
u(t),

∫ tn
t

∂u

∂s
ds
)
dt

∣∣∣∣∣
≤

m∑
n=1

∫
In

(∫ tn
t

∥∥∥∥∂u∂s
∥∥∥∥
H−1(Ω)

ds

)∥∥u(t)
∥∥
H1

0 (Ω)dt

≤ τ
∥∥∥∥∂u∂s

∥∥∥∥
L2(0,tm,H−1(Ω))

‖u‖L2(0,tm,H1
0 (Ω))

≤ c18τ.

(4.10)

In the same manner, we have

∣∣I2
22

∣∣≤ τ
∥∥∥∥∂u∂s

∥∥∥∥
L2(0,tm,H−1(Ω))

(
τ

m∑
n=1

∥∥Un
∥∥2
H1

0 (Ω)

)1/2

≤ c18τ.

(4.11)

Next, we estimate the first term on the right-hand side of (4.5) by using Hölder’s and
Young’s inequalities and (H1),

∣∣I3∣∣≤
∣∣∣∣∣

m∑
n=1

(∫
In

[
f (u)− f

(
Un
)]
dt, (−�)−1(en))

∣∣∣∣∣
≤ c20τ

1/2
m∑
n=1

(∫
In

∣∣ f (u)− f
(
Un
)∣∣2

2dt
)1/2∥∥en∥∥H−1(Ω)

≤ η
m∑
n=1

(∫
In

∣∣ f (u)− f
(
Un
)∣∣2

2dt
)

+
c21

η
τ

m∑
n=1

∥∥en∥∥2
H−1(Ω)

≤ c22η
m∑
n=1

(∫
In

∣∣en∣∣2
2dt
)

+
c21

η
τ

m∑
n=1

∥∥en∥∥2
H−1(Ω).

(4.12)

Moreover, we have

∣∣I4∣∣≤ c23τ + c24τ
m∑
n=1

∥∥en∥∥2
H−1(Ω). (4.13)

Choosing suitable η, we conclude that

∥∥em∥∥2
H−1(Ω) +

m∑
n=1

∥∥en− en−1
∥∥2
H−1(Ω) +

m∑
n=1

∫
In

∣∣en∣∣2
2dt

≤ c25τ + c26τ
m∑
n=1

∥∥en∥∥2
H−1(Ω).

(4.14)

On the other hand, setting ym =∑m
n=1‖en‖2

H−1(Ω), then from (4.14), we get

ym− ym−1 ≤ c25τ + c26τ y
m. (4.15)
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By applying the discrete Gronwall inequality, we deduce that ym ≤ c(T). Therefore, we
have

∥∥em∥∥H−1(Ω) ≤ c27τ
1/2. (4.16)

On the other hand, we have

sup
t∈(0,tm)

∥∥en(t)
∥∥
H−1(Ω)− c27τ

1/2 ≤ max
1≤n≤m

∥∥en(tn)∥∥H−1(Ω) = max
1≤n≤m

∥∥en∥∥H−1(Ω). (4.17)

Thus, we get

∥∥en∥∥L∞(0,T ,H−1(Ω))− c27τ
1/2 ≤ max

1≤n≤m
∥∥en∥∥H−1(Ω). (4.18)

From the last inequality, we obtain

∥∥en∥∥2
L∞(0,T ,H−1(Ω)) +

∫ T
0

∣∣en∣∣2
2dt ≤ c29τ,

m∑
n=1

∥∥en− en−1
∥∥2
H−1(Ω) ≤ c29τ.

(4.19)

Choosing ϕ= τ∑m
n=1(un−Un) in (4.3), we get

τ
∫
Ω

(
um−Um

)( m∑
n=1

(
un−Un

)
dx

)
+ τ2

∣∣∣∣∣
m∑
n=1

∇(un−Un
)∣∣∣∣∣

2

2

≤ c30τ
2

∣∣∣∣∣
∫
Ω

m∑
n=1

(
f (u)

n− f
(
Un
))( m∑

n=1

(
un−Un

))
dx

∣∣∣∣∣
+ c31τ

2

∣∣∣∣∣
m∑
n=1

(
f
(
Un
)
,
m∑
n=1

(
un−Un

))∣∣∣∣∣.

(4.20)

Thus,

τ2

∣∣∣∣∣
m∑
n=1

∇(un−Un
)∣∣∣∣∣

2

2

=
∣∣∣∣∇

∫ tm
0
endt

∣∣∣∣
2

2
≤ τ

∣∣∣∣∣
∫
Ω

(
um−Um

)( m∑
n=1

(
un−Un

)
dx

)∣∣∣∣∣
+ c30τ

2

∣∣∣∣∣
∫
Ω

m∑
n=1

(
f (u)

n− f
(
Un
))( m∑

n=1

(
un−Un

))
dx

∣∣∣∣∣
+ c31τ

2

∣∣∣∣∣
m∑
n=1

(
f
(
Un
)
,
m∑
n=1

(
un−Un

))∣∣∣∣∣
≤ I + II + III.

(4.21)
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Clearly,

I ≤ ∥∥em∥∥H−1(Ω)

( m∑
n=1

∫
In

∥∥u(t)
∥∥
H1

0 (Ω)dt+ τ
m∑
n=1

∥∥Un
∥∥
H1

0 (Ω)

)

≤ c32
∥∥em∥∥H−1(Ω)

≤ c33τ
1/2.

(4.22)

We also get

II ≤

∫

Ω

( m∑
n=1

∫
In

(
f (u)− f

(
Un
))
dt

)2

dx




1/2

×

∫

Ω

( m∑
n=1

∫
In

(
u(t)−Un

)
dt

)2

dx




1/2

≤ T2

( m∑
n=1

∫
In

∣∣ f (u)− f
(
Un
)∣∣2

2dt

)1/2

×
( m∑
n=1

∫
In

∣∣u(t)−Un
∣∣2

2dt

)1/2

≤ T2

( m∑
n=1

∫
In

∣∣ f (u)− f (Un
)∣∣2

2dt

)1/2

×
(

2‖u‖2
L2(0,T ,H1

0 (Ω)) + 2τ
m∑
n=1

∣∣Un
∣∣2

2

)1/2

≤ c34τ
1/2.

(4.23)

The last inequality follows by using simultaneously the L∞-estimate of u(t) (see [6]), Un,
and the error bound given in (a). Arguing exactly as in the previous estimate, we get

III ≤ T2

( m∑
n=1

∫
In

∣∣ f (Un
)∣∣2

2dt

)1/2

×
(

2‖u‖2
L2(0,T ,H1

0 (Ω)) + 2τ
m∑
n=1

∣∣Un
∣∣2

2

)1/2

. (4.24)

Using again the hypothesis (H1) and the estimates above, we obtain

III ≤ c35τ
1/2. (4.25)

Finally collecting these results, it follows that

∣∣∣∣∇
∫ T

0
endt

∣∣∣∣
2

2
≤ c36τ

1/2. (4.26)

This completes the proof. �

Corollary 4.2. Under hypotheses (H1)-(H2), problem (1.3) generates a continuous semi-
group Sτ defined by SτUn−1 =Un.
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