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It is known that signals (which could be functions of space or time) belonging to L2-
space cannot be localized simultaneously in space/time and frequency domains. Alter-
natively, signals have a positive lower bound on the product of their effective spatial and
effective spectral widths, for simplicity, hereafter called the effective space-bandwidth prod-
uct (ESBP). This is the classical uncertainty inequality (UI), attributed to many, but, from
a signal processing perspective, to Gabor who, in his seminal paper, established the un-
certainty relation and proposed a joint time-frequency representation in which the basis
functions have minimal ESBP. It is found that the Gaussian function is the only signal
that has the lowest ESBP. Since the Gaussian function is not bandlimited, no bandlimited
signal can have the lowest ESBP. We deal with the problem of determining finite-energy,
bandlimited signals which have the lowest ESBP. The main result is as follows. By choos-
ing the convolution product of a Gaussian signal (with σ as the variance parameter) and a
bandlimited filter with a continuous spectrum, we demonstrate that there exists a finite-
energy, bandlimited signal whose ESBP can be made to be arbitrarily close (dependent
on the choice of σ) to the optimal value specified by the UI.

1. Introduction

We deal with real signals f which are treated as functions of the real variable x ∈ R :
{ f (x) : f (x)∈ L2}, that is, the class of square integrable functions, centered at the origin.
The independent variable “x” can denote either time (for dealing with time-dependent
phenomena) or space (for describing space-dependent functions like images). In what
follows, we use the terms “space” and “time” interchangeably. Let F(ω) denote the Fourier
transform of f (x). Note that F(ω)∈ L2.

The energy (E) and the effective spatial and spectral widths (∆x,∆ω) of f (x) are defined
as follows:

E =
∫∞
−∞

f 2(x)dx, (1.1)

∆x =
√∫∞

−∞
x2 f 2(x)dx, ∆ω =

√∫∞
−∞

ω2
∣∣F(ω)

∣∣2
dω. (1.2)
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Note that the formulas in (1.2) are the second-order moments of the energy distribu-
tion of the signal in the spatial and spectral domains, respectively. In physical terms, ∆x

represents the effective spread (or, more simply, concentration) of the signal in the spatial
domain, and ∆ω that in the spectral domain. The term “bandwidth” used by (electrical
and other) engineers is quite different from the effective spectral width of a signal (and
also from, e.g., the “Q” factor in the analysis of LCR circuits). See Bracewell [2] for a
comparison of the various measures of spread of signals.

It follows by the Parseval identity that

E = 1
2π

∫∞
−∞

∣∣F(ω)
∣∣2
dω,

∆2
x =

1
2π

∫∞
−∞

∣∣∣∣dF(ω)
dω

∣∣∣∣
2

dω.

(1.3)

(In the latter case, we assume that F(ω) is continuous.) Further, it is well known that f (x)
and F(ω) cannot both be of short duration. And this is made explicit (a) qualitatively by
the scaling theorem,

a f (ax)⇐⇒ F
(
ω

a

)
, (1.4)

and (b) quantitatively by the uncertainty inequality (UI) which places a lower bound on
the product of effective spatial and spectral widths (ESBP) of continuous signals [10]:

∆x∆ω ≥
√

2πE
2

. (1.5)

Note that the equality sign holds only if the signal f (x) is the Gaussian function, g(x)=
exp(−x2/2σ2), where σ is the variance parameter, governing the spread of g(x) in both the
spatial and spectral domains. In practical terms, the interpretation of inequality (1.5) is
that the optimal localization in both the spectral and spatial domains can be achieved only
by the Gaussian function. It is important to note here that Gabor [6] invoked the Schwarz
inequality in order to establish (1.5) (and this seems to be the only method of proof in the
literature).

We now restrict ourselves to the class � of continuous and finite energy signals f (x),
which are bandlimited, (this assumption is crucial when we want to sample signals, using
the Shannon-Whittaker theorem [10], for processing on a computer) that is,

∣∣F(ω)
∣∣= 0, ∀|ω| >W. (1.6)

Since the Gaussian function is not bandlimited, there is obviously no f (x) ∈� that
satisfies the equality in (1.5). In fact, the ESBP of any f (x) ∈� is strictly greater than
the lower bound as given in (1.5). This motivates us to formulate the following problem.
What is the greatest lower limit (infimum) for the ESBP of signals in �, and how close is this
limit to the optimal value in (1.5)?

Ishii and Furukawa [7], Calvez and Vilbe [4] obtain a strict uncertainty inequality
for signals in � using their discrete samples. However, they do not answer the question
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raised above. Doroslovacki [5] proposes a generalized uncertainty principle that holds for
both continuous- and discrete-time signals under appropriate conditions. More specifi-
cally, if a certain convolution-invariance condition is satisfied for the optimal signals, the
generalized UI of Doroslovacki [5] is the same as (1.5). But the question of the lower limit
for the ESBP of functions in � is not examined in [5]. However, optimal functions for
the discrete case are presented in [5], which are different from the optimal bandlimited
functions we are looking for.

The rest of the paper is organized as follows. In Section 2, we provide a mathematical
formulation of the above problem, and derive inequalities for effective spatial and spectral
widths. Using these inequalities, we derive an upper bound for the ESBP in Section 2.3,
and show that this upper bound can be brought arbitrarily close to the limit specified in
(1.5). We conclude the paper in Section 3.

2. Proposed approach and main results

The main result of this paper is to prove the existence of bandlimited signals whose ESBP
is arbitrarily close to the optimal value. To this end, we employ the following notations.
The normalized effective spatial and spectral widths of the signal f (x) are defined by

Sx
def= ∆x√

E
=
√√√√∫∞−∞∣∣dF(ω)/dω

∣∣2
dω∫∞

−∞
∣∣F(ω)

∣∣2
dω

, (2.1)

Bω
def= ∆ω√

2πE
=
√√√√∫∞−∞ω2

∣∣F(ω)
∣∣2
dω∫∞

−∞
∣∣F(ω)

∣∣2
dω

. (2.2)

Using the above notations, the UI can be written as

SxBω ≥ 1
2
. (2.3)

It is to be noted here that inequality (2.3) applies to real signals in L2, whose Fourier
transform magnitude is an even function. The effective spatial and spectral widths corre-
spond to second-order moments centered at the origin in the spatial and frequency domains,
respectively. The spectral width is therefore two sided.

We now generate a bandlimited signal f (x) by convolving a Gaussian function g(x)
(with the Fourier transformG(ω)) with a bandlimited function h(x) whose Fourier trans-
form H(ω) is assumed to be given by

H(ω)=




X cos

(
π(ω+W)

2ε

)
−W − ε ≤ ω <−W ,

X −W ≤ ω ≤W ,

X cos

(
π(ω−W)

2ε

)
W <ω ≤W + ε,

0 elsewhere.

(2.4)
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Therefore, the Fourier transform of f (x) is given by F(ω)=G(ω)H(ω); it belongs to L2,
is real and differentiable. As a consequence, Sx and Bω are finite. In order to prove our
main result, the strategy is to derive upper bounds for Sx and Bω, and show that, for a
suitable choice of σ , the ESBP can be made arbitrarily close to the optimal value in (1.5).

Let ξ = S2
x, λ= B2

ω, and P = ξλ. Note that P is a function of σ ,W , and ε. And in order
to make this dependence explicit, we write P(σ ;W ,ε). (The semicolon separates σ from the
other two parameters, W and ε, which are assumed to be prescribed in the specifications of
the optimal f (x).) Therefore, our goal is to determine σ , for a given δ0 > 0, such that

P(σ ;W ,ε)≤ 1
4

+ δ0. (2.5)

In what follows, we find upper bounds for ξ and λ (and hence for P(σ ;W ,ε)) for the
above choice of f (x).

2.1. Effective spectral width. In order to facilitate the computation of λ = B2
ω, we split

the (square of the) numerator in (2.2) into three parts:

∫∞
−∞

ω2
∣∣F(ω)

∣∣2
dω =

∫ −W
−W−ε

ω2
∣∣F(ω)

∣∣2
dω+

∫W

−W
ω2
∣∣F(ω)

∣∣2
dω+

∫W+ε

W
ω2
∣∣F(ω)

∣∣2
dω.

(2.6)

It is shown in Appendix A that the right-hand side (RHS) of (2.6) obeys the following
inequality:

RHS of (2.6)≤ 2
∫W+ε

0
X2ω2G2(ω)dω,

≤ X2

σ2

∫W+ε

0
G2(ω)dω.

(2.7)

Since
∫∞
−∞

∣∣F(ω)
∣∣2
dω ≥

∫W

−W
X2G2(ω)dω = 2X2

∫W

0
G2(ω)dω, (2.8)

we obtain the following upper bound for λ (defined above):

λ≤ 1
2σ2

∫W+ε
0 G2(ω)dω∫W

0 G2(ω)dω
. (2.9)

2.2. Effective spatial width. Since F(ω) is real and differentiable, the integral in the nu-
merator of (2.1) can be simplified as follows:

∫∞
−∞

∣∣∣∣dF(ω)
dω

∣∣∣∣
2

dω =
∫W+ε

−W−ε

(
dG(ω)
dω

H(ω)
)2

dω+
∫W+ε

−W−ε

(
dH(ω)
dω

G(ω)
)2

dω

+ 2
∫W+ε

−W−ε
dG(ω)
dω

G(ω)
dH(ω)
dω

H(ω)dω.

(2.10)
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It is shown in Appendix B that the RHS of (2.10) obeys the following inequality:

RHS of (2.10)≤ X2σ2
∫W+ε

0
G2(ω)dω+

π2X2

ε2

∫W+ε

W
G2(ω)dω. (2.11)

Using (2.11) and (2.8), we get an upper bound for ξ (defined earlier):

ξ ≤ σ2
∫W+ε

0 G2(ω)dω+
(
π2/ε2

)∫W+ε
W G2(ω)dω

2
∫W

0 G2(ω)dω
. (2.12)

2.3. Product of effective spatial and spectral widths (ESBP). An inequality for the
square of ESBP is obtained by multiplying (2.9) and (2.12):

ξλ≤


∫W+ε

0 G2(ω)dω+
(
π2/ε2σ2

)∫W+ε
W G2(ω)dω

4
(∫W

0 G2(ω)dω
)2



(∫W+ε

0
G2(ω)dω

)
. (2.13)

The upper bound (2.13) on the square of ESBP has been obtained without a refer-
ence to the Schwarz inequality. In Appendix C, it is shown that the RHS of (2.13) can be
simplified to obtain the inequality

ξλ≤ 1
4

+
C(σ ;W ,ε)

4

[
2 +

π2

ε2σ2
+
(

π2

ε2σ2
+ 1
)
C(σ ;W ,ε)

]
, (2.14)

where C (which is a function of σ , W , and ε) is given by

C(σ ;W ,ε)
def=
∫W+ε
W G2(ω)dω∫W

0 G2(ω)dω
=
∫ (W+ε)σ
Wσ exp

(−ω2
)
dω∫Wσ

0 exp
(−ω2

)
dω

. (2.15)

Note that C→ 0 as W →∞, independent of the choice of σ . It is clear from (2.14) and
(2.15) that, for a given δ0 > 0, there exists a σ0 such that

ξλ≤ 1
4

+ δ0, ∀σ > σ0, (2.16)

which in combination with (2.3) (observe that ξλ is the square of ESBP SxBω in (2.3))
gives the inequality

1
4
≤ ξλ≤ 1

4
+ δ0. (2.17)



1594 Signals with minimum space-bandwidth product

2

1.5

1

0.5

0
2 2.3 2.6 2.9 3.2 3.5

σ

δ

Figure 2.1. Plot of δ versus σ .

Note that as σ becomes larger, the spread of G(ω) becomes smaller. Let the second term
on the RHS of (2.14) be denoted by δ(σ ;W ,ε). For an illustration of the nature of the
dependence of δ(σ ;W ,ε) on σ , see Figure 2.1 for fixed values of W and ε (W = 1.0,
ε = 0.1). It should be noted that, as W →∞, δ→ 0. This is the special case of the equality
sign in (2.17) for the Gaussian function. It is interesting to note here that this result has
been obtained without invoking the Schwarz inequality.

3. Conclusions

It is known that only the Gaussian function (with the variance parameter σ) attains the
lowest ESBP value of 1/2. In an attempt to check on the existence of bandlimited functions
whose ESBP is arbitrarily close to this number, we synthesize a bandlimited signal f (x)
by filtering the Gaussian function with a bandlimited function h(x) having a continuous
spectrum. We have shown that, by appropriately choosing σ , the ESBP of f (x) can be
made arbitrarily close to 1/2 (but without reaching it), that is, the infimum of the ESBP
of signals in � is 1/2.

Appendices

A. Effective spectral width

In order to facilitate the computation of ξ = B2
ω, we split the (square of the) numerator in

(2.2) into three parts:

∫∞
−∞

ω2
∣∣F(ω)

∣∣2
dω =

∫ −W
−W−ε

ω2
∣∣F(ω)

∣∣2
dω+

∫W

−W
ω2
∣∣F(ω)

∣∣2
dω+

∫W+ε

W
ω2
∣∣F(ω)

∣∣2
dω.

⇓ ⇓ ⇓
B1 B2 B3

(A.1)
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The sum of the integrals B1 and B3 can be written as

B1 +B3 =
∫ −W
−W−ε

X2ω2 cos2
[

(ω+W)π
2ε

]
G2(ω)dω

+
∫W+ε

W
X2ω2 cos2

[
(ω−W)π

2ε

]
G2(ω)dω

= 2
∫ ε

0
X2(ω+W)2 cos2

(
ωπ

2ε

)
G2(ω+W)dω.

(A.2)

The above simplification is achieved by substituting ω+W =−ω′ and ω−W = ω′ in B1

and B3, respectively. Since cos2(ωπ/2ε)≤ 1, we have

B2 +B1 +B3 ≤
∫W

−W
X2ω2G2(ω)dω+ 2

∫ ε
0
X2(ω+W)2G2(ω+W)dω

= 2
∫W

0
X2ω2G2(ω)dω+ 2

∫W+ε

W
X2ω2G2(ω)dω

= 2
∫W+ε

0
X2ω2G2(ω)dω.

(A.3)

Using the method of integration by parts, the integral in the above expression can be
simplified as

∫W+ε

0
ω2G2(ω)dω =

∫W+ε

0
ω22πσ2 exp

(−ω2σ2)dω =−π
∫W+ε

0
ω d

(
exp

(−ω2σ2))

=−π
[
ω
(

exp
(−ω2σ2))∣∣W+ε

0 −
∫W+ε

0
exp

(−ω2σ2)dω].
(A.4)

Simplifying further, we get

∫W+ε

0
ω2G2(ω)dω = π

∫W+ε

0
exp

(−ω2σ2)dω−π(W + ε)exp
(− (W + ε)2σ2)

= 1
2σ2

∫W+ε

0
G2(ω)dω−π(W + ε)exp

(− (W + ε)2σ2).
(A.5)

Since the second term in the RHS of the above equation is strictly a positive quantity, we
obtain the inequality

∫W+ε

0
ω2G2(ω)dω ≤ 1

2σ2

∫W+ε

0
G2(ω)dω. (A.6)
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Combining the above inequality with (A.3), we have

B1 +B2 +B3 ≤ X2

σ2

∫W+ε

0
G2(ω)dω. (A.7)

Finally, using the fact that

∫∞
−∞

∣∣F(ω)
∣∣2
dω ≥

∫W

−W
X2G2(ω)dω = 2X2

∫W

0
G2(ω)dω, (A.8)

we obtain an upper bound for B as

B = B1 +B2 +B3∫∞
−∞
∣∣F(ω)

∣∣2
dω

≤ 1
2σ2

∫W+ε
0 G2(ω)dω∫W

0 G2(ω)dω
. (A.9)

B. Effective spatial width

Let the first, second, and third integrals on the RHS of (2.10) be denoted as Sa, Sb, and Sc,
respectively. Consider the term Sa. We observe that

dG(ω)
dω

=−σ2ωG(ω). (B.1)

Therefore,

Sa =
∫W+ε

−W−ε

(
dG(ω)
dω

H(ω)
)2

dω =
∫W+ε

−W−ε
σ4ω2G2(ω)H2(ω)dω

=
∫W+ε

−W−ε
σ4ω2F2(ω)dω = σ4(∆ω)2.

(B.2)

The term Sb can be written as

Sb =
∫W+ε

−W−ε

(
dH(ω)
dω

G(ω)
)2

dω

= π2X2

4ε2

∫ −W
−W−ε

G2(ω)sin2
(
π(ω+W)

2ε

)
dω

+
π2X2

4ε2

∫W+ε

W
G2(ω)sin2

(
π(ω−W)

2ε

)
dω.

(B.3)

Substituting ω+W = ω′ and ω−W = ω′ in the first and second integral in the RHS of
the above expression, respectively, we get

Sb = π2X2

2ε2

∫ ε
0
G2(ω+W)sin2

(
π(ω)

2ε

)
dω

≤ π2X2

2ε2

∫W+ε

W
G2(ω)dω.

(B.4)
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Using (B.1) and the derivative of H(ω), the term Sc can be written as

Sc = 2
∫W+ε

−W−ε
dG(ω)
dω

G(ω)
dH(ω)
dω

H(ω)dω

= 2
∫ −W
−W−ε

σ2ωG2(ω)X cos
(

(ω+W)π
2ε

)(
Xπ

2ε

)
sin
(

(ω+W)π
2ε

)
dω

+ 2
∫W+ε

W
σ2ωG2(ω)X cos

(
(ω−W)π

2ε

)(
Xπ

2ε

)
sin
(

(ω−W)π
2ε

)
dω

= πX2σ2

ε

∫ ε
0

(ω+W)G2(ω+W)sin
(
ωπ

ε

)
dω.

(B.5)

The above simplification is achieved by substituting ω+W =−ω′ and ω−W = ω′ in the
first and second integrals, respectively. Now, using integration by parts, the above integral
can be further simplified as

∫ ε
0

(ω+W)G2(ω+W)sin
(
ωπ

ε

)
dω = π

2εσ2

∫ ε
0
G2(ω+W)cos

(
ωπ

ε

)
dω. (B.6)

Finally, substituting (B.6) in (B.5), we can express Sc as

Sc = X2π2

2ε2

∫ ε
0
G2(ω+W)cos

(
ωπ

ε

)
dω

≤ X2π2

2ε2

∫W+ε

W
G2(ω)dω.

(B.7)

Combining (B.2) and the inequality (A.7), we obtain the following inequalities:

Sa ≤ X2σ2
∫W+ε

0
G2(ω)dω,

Sb ≤ π2X2

2ε2

∫W+ε

W
G2(ω)dω,

Sc ≤ π2X2

2ε2

∫W+ε

W
G2(ω)dω.

(B.8)

C. Product of effective spatial and spectral widths (ESBP)

Consider the RHS of (2.13). Splitting the definite integrals from 0 to W + ε into two
definite integrals from 0 to W and W to W + ε, respectively, and using the definition of
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C(σ ;W ,ε), we get

RHS of (2.13)

=


∫W

0 G2(ω)dω+
∫W+ε
W G2(ω)dω+

(
π2/ε2σ2

)∫W+ε
W G2(ω)dω

4
(∫W

0 G2(ω)dω
)2




×
(∫W

0
G2(ω)dω+

∫W+ε

W
G2(ω)dω

)

=
[∫W

0 G2(ω)dω+
(
π2/ε2σ2 + 1

)∫W+ε
W G2(ω)dω

][∫W
0 G2(ω)dω+

∫W+ε
W G2(ω)dω

]
4
(∫W

0 G2(ω)dω
)2

= 1
4

(
1 +

(
1 +

π2

ε2σ2

)
C(σ ;W ,ε)

)(
1 +C(σ ;W ,ε)

)
.

(C.1)

By expanding the terms in the above equation, we get the final expression:

RHS of (2.13)= 1
4

+
C(σ ;W ,ε)

4

[
2 +

π2

ε2σ2
+
(

π2

ε2σ2
+ 1
)
C(σ ;W ,ε)

]
. (C.2)
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