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We consider the existence, the nonexistence, and the uniqueness of solutions of some
special systems of nonlinear elliptic equations with boundary conditions. In a particu-
lar case, the system reduces to the homogeneous Dirichlet problem for the biharmonic
equation ∆2u= |u|p in a ball with p > 0.

1. Introduction

In this paper, we are interested in the existence, the nonexistence, and the uniqueness
question for the following problem:

∆u= |v|q−1v in BR,

∆v = |u|p in BR,

u= ∂u

∂ν
= 0 on ∂BR,

(1.1)

where BR denotes the open ball of radius R centered at the origin in Rn (n ≥ 1), ∂/∂ν is
the outward normal derivative, and p,q > 0.

Concerning uniqueness, we have the following theorem.

Theorem 1.1. (i) Let p > 0, q ≥ 1 with pq �= 1. Then (1.1) has at most one nontrivial radial
solution (u,v)∈ (C2(BR))2.

(ii) Let p > 0, q ≥ 1 with pq = 1. Assume that (1.1) has a nontrivial radial solution
(u,v) ∈ (C2(BR))2. Then all nontrivial radial solutions are given by (θqu,θv), where θ > 0
is an arbitrary constant.

When q = 1 and p ∈ (0,1)∪ (1,∞), Theorem 1.1 was established in [4] (see also the
references therein). When n= 1, q = 1, and p > 1, the uniqueness of a nontrivial solution
follows from a general result given in [5].

When q = 1, p > 1, and

p <
n+ 4
n− 4

if n≥ 5, (1.2)
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the existence of a nontrivial solution was proved in [2, 5, 11]. The case q = 1 and 0 < p < 1
is well known: see, for instance, [4, 6]. Moreover, when q = 1, any nontrivial solution of
(1.1) is positive in BR because the Green function of ∆2 with Dirichlet boundary condi-
tions is positive in BR [1, 8]. Then it was proved in [2, 11, 12] that problem (1.1) has no
nontrivial solutions, whether radial or not, if

p ≥ n+ 4
n− 4

(n≥ 5). (1.3)

We will prove a nonexistence result and an existence result.

Theorem 1.2. Suppose n≥ 3. Let p,q > 0 satisfy

1
p+ 1

+
1

q+ 1
≤ n− 2

n
. (1.4)

(i) Let (u,v) ∈ (C2(BR))2 be a solution of problem (1.1) such that u ≥ 0 in BR. Then
u= v = 0.

(ii) If (u,v)∈ (C2(BR))2 is a radial solution of problem (1.1), then u= v = 0.

Theorem 1.3. (i) Let p > 0, q ≥ 1 with pq �= 1 satisfy

1
p+ 1

+
1

q+ 1
>
n− 2
n

if n≥ 3. (1.5)

Then (1.1) has a nontrivial radial solution (u,v)∈ (C2(BR))2.
(ii) Let p > 0, q ≥ 1 with pq = 1. Then there exists R > 0 such that (1.1) has a nontrivial

radial solution (u,v)∈ (C2(BR))2.

Remark 1.4. Notice that when pq ≤ 1, (1.5) holds.

In the sequel, ∆ denotes equally the Cartesian and the polar form of the Laplacian.
In Section 2, we give some preliminary results. Theorem 1.1 is proved in Section 3

using the same approach as in [4, 7]. In Section 4, we prove Theorem 1.2. We prove
Theorem 1.3 in Section 5: the proof is based on a two-dimensional shooting argument for
the ordinary differential equations associated to radial solutions of (1.1) [3, 5, 7, 15, 16].
The fact that q ≥ 1 is crucial in the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we first examine the structure of nontrivial radial solutions of (1.1).

Lemma 2.1. Let (u,v)∈ (C2(BR))2 be a nontrivial radial solution of (1.1). Then u′ < 0 on
(0,R), ∆u(R)= u′′(R) > 0 and v′ > 0 on (0,R], v(0) < 0 < v(R).

Proof. Clearly u= 0 if and only if v = 0. We have

rn−1v′(r)=
∫ r

0
sn−1

∣∣u(s)
∣∣pds≥ 0, 0≤ r ≤ R. (2.1)

Assume that v(0) ≥ 0. Then (2.1) implies that v ≥ 0 on [0,R], hence ∆u ≥ 0 on [0,R].
Therefore rn−1u′(r) is nondecreasing in [0,R]. Since u′(0)= u′(R)= u(R)= 0, we deduce
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that u= 0 and we reach a contradiction. The case where v(R)≤ 0 can be handled in the
same way. Therefore we have v(0) < 0 < v(R). We claim that u(0) �= 0. Indeed assume that
u(0) = 0. Using (2.1) and the first equation in (1.1), we deduce that there exists R′ ∈
(0,R) such that rn−1u′(r) is nonincreasing in [0,R′] and nondecreasing in [R′,R]. Since
u′(0)= u′(R)= 0, we obtain that u′ ≤ 0 in [0,R]. Using the fact that u(0)= u(R)= 0, we
deduce that u = 0 in [0,R] and we get a contradiction. Now (2.1) implies that v′ > 0 in
(0,R]. Let R′ ∈ (0,R) be such that v(R′)= 0. Using the first equation in (1.1), we deduce
that rn−1u′(r) is decreasing in [0,R′] and increasing in [R′,R]. Since u′(0) = u′(R) = 0,
we obtain u′ < 0 in (0,R). �

Lemma 2.2. Assume that n≥ 1 and p,q > 0. Let α,β > 0 be fixed. If (u,v)∈ (C2(Rn))2 is a
radial solution of

∆u= |v|q−1v, r > 0,

∆v = |u|p, r > 0,

u(0)= α, v(0)=−β, u′(0)= v′(0)= 0

(2.2)

such that uu′ < 0 on (0,∞), then v < 0 on (0,∞).

Proof. We have 0 < u≤ α on [0,∞). Therefore

rn−1v′(r)=
∫ r

0
sn−1u(s)pds > 0 for r > 0. (2.3)

Assume that the conclusion of the lemma is false. Then (2.3) implies that there exist
a,b > 0 such that

v(r)≥ a for r ≥ b. (2.4)

We deduce that (
rn−1u′(r)

)′ ≥ aqrn−1 for r ≥ b, (2.5)

hence

rn−1u′(r)≥ aq
rn− bn

n
+ bn−1u′(b) for r ≥ b, (2.6)

which implies that u′(r) > 0 for r large and we reach a contradiction. �

Now we give a lemma which is needed in the proof of Theorem 1.3.

Lemma 2.3. Assume that n ≥ 1 and p,q > 0. Let α,β > 0 be fixed. Assume that for some
a > 0, (u,v)∈ (C2(Ba))2 is a radial solution of

∆u= |v|q−1v in [0,a],

∆v = |u|p in [0,a],

u(0)= α, v(0)=−β, u′(0)= v′(0)= 0

(2.7)
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such that uu′ < 0 on (0,a). Then

∣∣v(r)
∣∣≤ dmax

(
β,α(p+1)/(q+1)

)
, 0≤ r ≤ a, (2.8)

where

d =
(

1 +
q+ 1
p+ 1

)1/(q+1)

. (2.9)

Proof. We have 0 < u≤ α on [0,a). As in Lemma 2.2 we deduce that v′ > 0 on (0,a]. We
have ∫ r

0
(v′∆u+u′∆v)ds=

∫ r

0

(|v|q−1vv′ +upu′
)
ds (2.10)

for r ∈ [0,a]. Since∫ r

0

(
v′∆u+u′∆v

)
ds=

∫ r

0

(
u′v′

)′
ds+ 2(n− 1)

∫ r

0

u′(s)v′(s)
s

ds

= u′(r)v′(r) + 2(n− 1)
∫ r

0

u′(s)v′(s)
s

ds,
(2.11)

∫ r

0

(|v|q−1vv′ +upu′
)
ds=

∣∣v(r)
∣∣q+1

q+ 1
+
u(r)p+1

p+ 1
− βq+1

q+ 1
− αp+1

p+ 1
, (2.12)

we obtain∣∣v(r)
∣∣q+1

q+ 1
+
u(r)p+1

p+ 1
= βq+1

q+ 1
+
αp+1

p+ 1
+u′(r)v′(r) + 2(n− 1)

∫ r

0

u′(s)v′(s)
s

ds (2.13)

for r ∈ [0,a], which implies that

∣∣v(r)
∣∣q+1 ≤ βq+1 +

q+ 1
p+ 1

αp+1, 0≤ r ≤ a, (2.14)

and the lemma follows. �

3. Proof of Theorem 1.1

(i) Let (u,v) and (w,z) be two nontrivial radial solutions of (1.1). Let s and t be defined
by

s= 2
q+ 1
pq− 1

, t = 2
p+ 1
pq− 1

. (3.1)

For λ > 0 we set

w̃(r)= λsw(λr), z̃(r)= λtz(λr), 0≤ r ≤ R

λ
. (3.2)
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By Lemma 2.1, w̃ > 0 on [0,R/λ) and then we have

∆w̃(r)= ∣∣z̃(r)
∣∣q−1

z(r), 0≤ r ≤ R

λ
,

∆z̃(r)= w̃(r)p, 0≤ r ≤ R

λ
,

w̃
(
R

λ

)
= w̃′

(
R

λ

)
= 0.

(3.3)

Choose λ such that λsw(0)= u(0). Then we have

w̃(0)= u(0). (3.4)

We want to show that

z̃(0)= v(0). (3.5)

Suppose that z̃(0) < v(0). If there exists a∈ (0,min(R,R/λ)] such that z̃− v < 0 on [0,a)
and (z̃− v)(a) = 0, then ∆(w̃− u) < 0 on [0,a). Equation (3.4) and the maximum prin-
ciple imply that w̃− u < 0 on (0,a]. Therefore ∆(z̃− v) < 0 on (0,a] and the maximum
principle implies that z̃− v > (z̃− v)(a)= 0 on [0,a), a contradiction. Thus z̃− v < 0 on
[0,min(R,R/λ)]. Then, as before, we show that w̃−u < 0 on (0,min(R,R/λ)]. Since

(w̃−u)
(

min
(
R,

R

λ

))
=


−u
(
R

λ

)
if λ > 1,

0 if λ= 1,

w̃(R) if λ < 1,

(3.6)

we deduce that λ > 1 with the help of Lemma 2.1. Now using the fact that rn−1(w̃−u)′(r)
is decreasing in [0,R/λ], we get (w̃−u)′(R/λ) < 0. Since (w̃−u)′(R/λ)=−u′(R/λ) > 0 by
Lemma 2.1, we again obtain a contradiction. The case z̃(0) > v(0) can be handled in the
same way. Thus (3.5) is proved.

Now we define the functions U , W , F, and Gn by

U(r)= (u(r),v(r)
)
, 0≤ r ≤ R,

W(r)= (w̃(r), z̃(r)
)
, 0≤ r ≤ R

λ
,

F(x, y)= (|y|q−1y,xp
)
, x ≥ 0, y ∈R,

(3.7)

Gn(r,s)=



r− s if n= 1,

s ln
(
r

s

)
if n= 2,

s

n− 2

(
1−

(
s

r

)n−2
)

if n≥ 3

(3.8)
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for 0 ≤ s ≤ r. Using (3.4), (3.5), and the fact that u′(0) = w̃′(0) = v′(0) = z̃′(0) = 0, we
easily obtain

U(r)−W(r)=
∫ r

0
Gn(r,s)

(
F
(
U(s)

)−F
(
W(s)

))
ds (3.9)

for r ∈ [0,min(R,R/λ)]. When p ≥ 1, F is locally Lipschitz continuous, and using Gron-
wall’s lemma we obtain U =W on [0,min(R,R/λ)]. When p ∈ (0,1), let a ∈ (0,min(R,
R/λ)) be fixed. Then u(0)≥ u(r)≥ u(a) > 0, w̃(0)= u(0)≥ w̃(r)≥ w̃(a) > 0 for r ∈ [0,a].
Since F is locally Lipschitz continuous on (0,+∞)×R, as before we obtain U =W on
[0,a]. By continuity we get U =W on [0,min(R,R/λ)]. Now we deduce that λ = 1 and
thus (u,v)= (w,z) on [0,R].

(ii) Let (u,v) be a nontrivial radial solution of problem (1.1). Then, for any θ > 0,
(w,z)= (θqu,θv) is a nontrivial radial solution of problem (1.1). Now let (w,z) be a non-
trivial radial solution of (1.1). Choose θ > 0 such that θqu(0)=w(0) and define w̃ = θqu,
z̃ = θv. Then (w̃, z̃) is a nontrivial radial solution of (1.1) such that w̃(0)=w(0). Arguing
as in part (i), we show that z̃(0)= z(0) and that (w̃, z̃)= (w,z).

Remark 3.1. Our technique also applies when there is a homogeneous dependence on the
radius |x|. More precisely, for p > 0, q ≥ 1, and pq �= 1, the following system

∆u= |x|µ|v|q−1v in BR,

∆v = |x|ν|u|p in BR,

u= ∂u

∂ν
= 0 on ∂BR,

(3.10)

where µ,ν ≥ 0, has at most one nontrivial radial solution (u,v). Indeed, the arguments
are the same with s and t in (2.1) replaced by

s= 2(q+ 1) + ν + qµ

pq− 1
, t = 2(p+ 1) +µ+ pν

pq− 1
. (3.11)

Now let p > 0, q ≥ 1 with pq = 1. Assume that problem (3.10) has a nontrivial radial
solution (u,v). Then all nontrivial radial solutions are given by (θqu,θv), where θ > 0 is
an arbitrary constant.

4. Proof of Theorem 1.2

(i) Let (u,v) ∈ (C2(BR))2 be a solution of problem (1.1) such that u ≥ 0 in BR. We
have x · ν(x) = R for all x ∈ ∂BR. Multiplying the first equation in (1.1) by x · ∇v and
integrating over BR, we get∫

BR

(x ·∇v)∆udx =
∫
BR

(x ·∇v)|v|q−1vdx. (4.1)

Integrating by parts, we obtain∫
BR

(x ·∇v)|v|q−1vdx =− n

q+ 1

∫
BR

|v|q+1dx+
R

q+ 1

∫
∂BR

|v|q+1dσ. (4.2)
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Similarly we get

∫
BR

(x ·∇u)∆vdx =
∫
BR

(x ·∇u)updx =− n

p+ 1

∫
BR

up+1dx. (4.3)

Now we have ∫
BR

(
(x ·∇v)∆u+ (x ·∇u)∆v

)
dx = (n− 2)

∫
BR

∇u ·∇vdx. (4.4)

Then we deduce that

R

q+ 1

∫
∂BR

|v|q+1dσ = n

q+ 1

∫
BR

|v|q+1dx+
n

p+ 1

∫
BR

up+1dx+ (n− 2)
∫
BR

∇u ·∇vdx.
(4.5)

Since ∫
BR

∇u ·∇vdx =−
∫
BR

v∆udx =−
∫
BR

|v|q+1dx,∫
BR

∇u ·∇vdx =−
∫
BR

u∆vdx =−
∫
BR

up+1dx,
(4.6)

we can write

R

q+ 1

∫
∂BR

|v|q+1dσ = n
(

1
p+ 1

+
1

q+ 1
− n− 2

n

)∫
BR

|v|q+1dx. (4.7)

Using (1.4) we deduce that v = 0 on ∂BR. The maximum principle implies that v ≤ 0 in
BR. Therefore ∆u ≤ 0 in BR. The Hopf boundary point lemma implies that u = 0 in BR

and (i) is proved.
(ii) follows from (i) and Lemma 2.1.

Remark 4.1. Clearly Theorem 1.2(i) can be extended to more general domains and more
general nonlinearities as in [2, 11, 12] and Theorem 1.2(ii) can be extended to more gen-
eral nonlinearities.

5. Proof of Theorem 1.3

We will use a two-dimensional shooting argument for the ordinary differential equations
associated to radial solutions of (1.1) [3, 5, 7, 15, 16]. We consider the one-dimensional
(singular if n≥ 2) initial value problem (2.2) where α > 0, β > 0.

We will need a series of lemmas. We begin with a standard local existence and unique-
ness result.

Lemma 5.1. For any α > 0, β > 0 there exists T = T(α,β) > 0 such that problem (2.2) on
[0,T] has a unique solution (u,v)∈ (C2[0,T])2.



1514 Existence and uniqueness for an elliptic system

Proof. Let α,β > 0 be given. Choose T = T(α,β) > 0 such that

T =min

((
nα

βq

)1/2

,
(
nβ

αp

)1/2
)

, (5.1)

and consider the set of functions

Z =
{

(u,v)∈ (C[0,T]
)2

;
α

2
≤ u(r)≤ α, −β ≤ v(r)≤−β

2
for 0≤ r ≤ T

}
. (5.2)

Clearly Z is a bounded closed convex subset of the Banach space (C[0,T])2 endowed with
the norm ‖(u,v)‖ =max(‖u‖∞,‖v‖∞). Define

L(u,v)(r)=
(
α+

∫ r

0
Gn(r,s)

∣∣v(s)
∣∣q−1

v(s)ds,−β+
∫ r

0
Gn(r,s)

∣∣u(s)
∣∣pds) (5.3)

for r ∈ [0,T] and (u,v) ∈ (C[0,T])2, where Gn is defined in (3.8). It is easily verified
that L is a compact operator mapping Z into itself, and so there exists (u,v) ∈ Z such
that (u,v)= L(u,v) by the Schauder fixed point theorem. Clearly (u,v)∈ (C2[0,T])2 and
(u,v) is a solution of (2.2) on [0,T]. Since the right-hand side in (2.2) is Lipschitz con-
tinuous in (u,v)∈ [α/2,α]× [−β,−β/2], the uniqueness follows. �

Remark 5.2. Notice that u(r) > 0 and v(r) < 0 for r ∈ [0,T]. Then direct integration of
the system (2.2) implies that u′ < 0 and v′ > 0 in (0,T].

In view of Lemma 5.1, for any α,β > 0 problem (2.2) has a unique local solution: let
[0,Rα,β) denote the maximum interval of existence of that solution (Rα,β = +∞ possibly).
If 0 < p < 1, the uniqueness of the solution could fail at any point r where u(r)= 0. In this
case, Rα,β could also depend on the particular solution itself. Define

Pα,β =
{
s∈ (0,Rα,β

)
; u(α,β,r)u′(α,β,r) < 0∀r ∈ (0,s]

}
, (5.4)

where (u(α,β,·),v(α,β,·)) is a solution of (2.2) in [0,Rα,β). Pα,β �= ∅ by Remark 5.2. Set

rα,β = supPα,β. (5.5)

Notice that the solution is unique on [0,rα,β], so rα,β depends only on α, β.

Lemma 5.3. u′(α,β,r) < 0 for r ∈ (0,rα,β) and v′(α,β,r) > 0 for r ∈ (0,Rα,β).

Proof. The first assertion follows from the definition of rα,β. Since u(α,β,r) > 0 for r ∈
[0,rα,β), integrating the second equation in (2.2) from 0 to r ∈ (0,Rα,β) we obtain v′(α,β,
r) > 0 for r ∈ (0,Rα,β). �

Lemma 5.4. For any α,β > 0, rα,β <∞.

Proof. Assume that rα,β =∞. We easily get a contradiction when n= 1 or 2. Now if n≥ 3,
we set z =−v. By Lemma 2.2, z > 0 on [0,∞) and we have

−∆u= zq, r > 0,

−∆z = up, r > 0.
(5.6)
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Since p, q satisfy (1.5), we obtain a contradiction with the help of the nonexistence results
established in [9, 10, 13, 14]. �

Lemma 5.5. For any a∈ [T(α,β),rα,β), there exists b = b(α,β,a) > 0 such that the maximal
extension of (u,v) includes the interval [0,a+ b]. Moreover,

b(α,β,a)= m(α,β)

a+
√
a2 +m(α,β)

, (5.7)

where

m(α,β)=min

(
nβ

2p−1αp ,
nα

2q−1dq
(

max
(
β,α(p+1)/(q+1)

))q
)

, (5.8)

with d given in Lemma 2.3.

Proof. Lemma 5.5 is essentially a local existence result, with initial data u(a), v(a), u′(a),
v′(a) at r = a. Let

W =
{

(u,v)∈ (C[a,a+ b]
)2

;
∣∣u(r)−u(a)

∣∣≤ α, 0≤ v(r)− v(a)≤ β for a≤ r ≤ a+ b
}

,
(5.9)

where b = b(α,β,a) is given in the lemma. W is a bounded closed convex subset of the Ba-
nach space (C[a,a+ b])2 equipped with the norm ‖(u,v)‖ =max(‖u‖∞,‖v‖∞). Consider
the mapping S(u,v)= (S1(u,v),S2(u,v)) on (C[a,a+ b])2 given by

S1(u,v)(r)= u(a) +
∫ r

a

dt

tn−1

∫ t

0
sn−1

∣∣v(s)
∣∣q−1

v(s)ds,

S2(u,v)(r)= v(a) +
∫ r

a

dt

tn−1

∫ t

0
sn−1

∣∣u(s)
∣∣pds (5.10)

for a≤ r ≤ a+ b, where we also denote by u, v the unique solution of (2.2) on [0,a]. Let
(u,v)∈W . Using Lemma 5.3, we have∣∣u(s)

∣∣≤ u(a) +α≤ 2α, s∈ [a,a+ b]. (5.11)

Therefore we get

0≤ S2(u,v)(r)− v(a)≤ 2p−1αp r
2− a2

n
≤ β, r ∈ [a,a+ b]. (5.12)

By Lemma 2.3 we have

∣∣v(s)
∣∣≤ ∣∣v(a)

∣∣+β ≤ 2dmax
(
β,α(p+1)/(q+1)

)
, s∈ [a,a+ b]. (5.13)

Therefore for a≤ r ≤ a+ b, we obtain

∣∣S1(u,v)(r)−u(a)
∣∣≤ 2q−1dq

(
max

(
β,α(p+1)/(q+1)

))q r2− a2

n
≤ α. (5.14)
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We have thus proved that S(W) ⊂W . Since S is a compact operator, there exists
(u,v)∈W such that (u,v)= S(u,v) by the Schauder fixed point theorem. Clearly (u,v)∈
(C2[a,a + b])2 and (u,v) is a solution of (2.2) on [a,a + b] which extends the solution
(u,v) on [0,a]. �

Lemma 5.6. For any α,β > 0,

Rα,β ≥ rα,β +
m(α,β)

rα,β +
√
r2
α,β +m(α,β)

. (5.15)

Proof. By Lemma 5.5, for any a∈ (T(α,β),rα,β) we have

Rα,β > a+
m(α,β)

a+
√
a2 +m(α,β)

. (5.16)

The lemma follows by letting a→ rα,β. �

Proposition 5.7. For any α > 0, there exists a unique β > 0 such that u(α,β,rα,β)= u′(α,β,
rα,β)= 0.

Proof. We first prove the uniqueness. Let α > 0 be fixed. Suppose that there exist β >
γ > 0 such that u(α,β,rα,β)= u′(α,β,rα,β)= u(α,γ,rα,γ)= u′(α,γ,rα,γ)= 0. Using the same
arguments as in the proof of (3.5) we obtain a contradiction.

Now we prove the existence. Suppose that there exists α > 0 such that for any β > 0
u(α,β,rα,β) > 0 or u′(α,β,rα,β) < 0. Define the sets

B = {β > 0; u
(
α,β,rα,β

)= 0, u′
(
α,β,rα,β

)
< 0
}

,

C = {β > 0; u
(
α,β,rα,β

)
> 0, u′

(
α,β,rα,β

)= 0
}
.

(5.17)

�

The proof of the proposition is completed by using the next two lemmas which con-
tradict the fact that

(0,+∞)= B∪C. (5.18)

Lemma 5.8. (i) Suppose B �= ∅. Then there exists m> 0 such that m≤ inf B.
(ii) Suppose C �= ∅. Then there exists M > 0 such that M ≥ supC.

Lemma 5.9. B and C are open.

Proof of Lemma 5.8. We have

u(α,β,r)= α+
∫ r

0
Gn(r,s)

∣∣v(α,β,s)
∣∣q−1

v(α,β,s)ds, 0≤ r < Rα,β, (5.19)

v(α,β,r)=−β+
∫ r

0
Gn(r,s)

∣∣u(α,β,s)
∣∣pds, 0≤ r < Rα,β. (5.20)
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(i) Let β ∈ B. Assume first that v(α,β,·) < 0 on [0,rα,β). Then Lemma 5.3 and (5.19)
imply

rα,β ≥
(

2nα
βq

)1/2

. (5.21)

Now, if there exists sα,β ∈ [0,rα,β) such that v(α,β,sα,β)= 0, Lemma 5.3 implies that −β ≤
v(α,β,·) < 0 in [0,sα,β) and v(α,β,·) > 0 in (sα,β,rα,β]. Then from (5.19) we get

α=−
∫ rα,β

0
Gn
(
rα,β,s

)∣∣v(α,β,s)
∣∣q−1

v(α,β,s)ds

≤
∫ sα,β

0
Gn
(
rα,β,s

)∣∣v(α,β,s)
∣∣qds≤ βq

∫ sα,β

0
Gn
(
rα,β,s

)
ds≤ βq

r2
α,β

2n
,

(5.22)

and (5.21) still holds.
Suppose that inf B = 0 and let (βj) be a sequence in B decreasing to zero. Then rα,βj →

+∞ by (5.21). Let r > 0 be fixed. We can assume that rα,βj > r for all j. If v(α,βj ,s) < 0 for
s∈ [0,r], we have

u
(
α,βj ,r

)= α−
∫ r

0
Gn(r,s)

∣∣v(α,βj ,s
)∣∣qds≥ α− r2β

q
j

2n
. (5.23)

If sα,βj < r, we have

u
(
α,βj ,r

)= α−
∫ sα,β j

0
Gn(r,s)

∣∣v(α,βj ,s
)∣∣qds+

∫ r

sα,β j

Gn(r,s)v
(
α,βj ,s

)q
ds

≥ α−
∫ sα,β j

0
Gn(r,s)

∣∣v(α,βj ,s
)∣∣qds

≥ α−β
q
j

∫ sα,β j

0
Gn(r,s)ds≥ α− r2β

q
j

2n
.

(5.24)

Therefore using Lemma 5.3 we obtain

u
(
α,βj ,s

)≥ α− r2β
q
j

2n
for s∈ [0,r], (5.25)

from which we deduce that

u
(
α,βj ,s

)≥ α

2
(5.26)

for s∈ [0,r] and j large. From (5.20) we get

v
(
α,βj ,r

)≥−βj +
r2αp

2p+1n
(5.27)

for j large. Thus if we choose r such that

−βj +
r2αp

2p+1n
≥ 1, (5.28)
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using Lemma 5.3 we get

v
(
α,βj ,s

)≥ 1 (5.29)

for r ≤ s≤ rα,βj and j large. We also have

−βj ≤ v
(
α,βj ,s

)≤−βj +
r2αp

2n
(5.30)

for s∈ [0,r]. Therefore there exists c > 0 such that∣∣v(α,βj ,s
)∣∣≤ c (5.31)

for s∈ [0,r] and all j. There exists k > 0 such that∫ rα,β j

r
Gn
(
rα,βj ,s

)
ds≥ kr2

α,βj
(5.32)

for j large. Now we write

α=−
∫ rα,β j

0
Gn
(
rα,βj ,s

)∣∣v(α,βj ,s
)∣∣q−1

v
(
α,βj ,s

)
ds

=−
∫ r

0
Gn
(
rα,βj ,s

)∣∣v(α,βj ,s
)∣∣q−1

v
(
α,βj ,s

)
ds

−
∫ rα,β j

r
Gn
(
rα,βj ,s

)
v
(
α,βj ,s

)q
ds

≤ cq
∫ r

0
Gn
(
rα,βj ,s

)
ds−

∫ rα,β j

r
Gn
(
rα,βj ,s

)
ds

≤ cqrrα,βj − kr2
α,βj

(5.33)

for j large, where we have used the fact that Gn(rα,βj ,s) ≤ rα,βj − s for 0 ≤ s ≤ rα,βj . Since
the last term above tends to −∞, we get a contradiction.

(ii) Let β ∈ C. We claim that v(α,β,rα,β) > 0. If not, by Lemma 5.3 we have ∆u(α,β,·) <
0 on [0,rα,β) for some β ∈ C. Since u′(α,β,0)= 0, we obtain u′(α,β,rα,β) < 0, a contradic-
tion. Therefore (5.20) implies

β <
∫ rα,β

0
Gn
(
rα,β,s

)
u(α,β,s)pds (5.34)

for β ∈ C. Suppose that supC = +∞ and let (βj) be a sequence in C increasing to +∞.
Since 0 < u(α,βj ,r)≤ α for r ∈ [0,rα,βj ], (5.34) implies that rα,βj → +∞ as j → +∞. Then
we can assume that rα,βj ≥ 1 and that αp ≤ βj for all j. From (5.20) we get

−βj ≤ v
(
α,βj ,r

)≤−2n− 1
2n

βj ≤−
βj

2
for r ∈ [0,1], (5.35)

and using (5.19) we deduce that u(α,βj ,1) ≤ α− β
q
j /n2q+1. But then u(α,βj ,1) < 0 for j

large and we reach a contradiction. �
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Remark 5.10. The proof above shows that, when β ∈ C, there exists sα,β ∈ (0,rα,β) such
that v(α,β,·) < 0 on [0,sα,β) and v(α,β,·) > 0 on (sα,β,rα,β]. When β ∈ B, sα,β may not
exist.

Proof of Lemma 5.9

Case 1 (p ≥ 1). Then the right-hand side of (2.2) is Lipschitz continuous. Let β ∈ B. We
have u(α,β,rα,β)= 0 and u′(α,β,rα,β) < 0. Therefore we can find ε > 0 such that

u
(
α,β,rα,β + ε

)
< 0, u′

(
α,β,rα,β + ε

)
< 0. (5.36)

But then by continuous dependence on initial data, there exists η > 0 such that

u
(
α,γ,rα,β + ε

)
< 0, u′

(
α,γ,rα,β + ε

)
< 0 (5.37)

for |γ − β| < η. The first inequality in (5.37) implies that there exists x ∈ (0,rα,β + ε)
such that u(α,γ,x) = 0 and u(α,γ,r) > 0 for r ∈ [0,x). ∆v(α,γ,r) > 0 for r ∈ [0,x) and
∆v(α,γ,r) ≥ 0 for r ∈ [x,rα,β + ε]. Then v′(α,γ,r) > 0 for r ∈ (0,rα,β + ε] and v(α,γ,·)
is increasing on [0,rα,β + ε]. We deduce that ∆u(α,γ,·) is increasing on [0,rα,β + ε]. If
∆u(α,γ,rα,β + ε) ≤ 0, then u′(α,γ,r) < 0 for r ∈ (0,rα,β + ε]. If ∆u(α,γ,rα,β + ε) > 0, then
there exists sα,γ ∈ (0,rα,β + ε) such that ∆u(α,γ,·) < 0 in [0,sα,γ) and ∆u(α,γ,·) > 0 in
(sα,γ,rα,β + ε]. We deduce that u′(α,γ,·) is decreasing (resp., increasing) in [0,sα,γ]
(resp., [sα,γ,rα,β + ε]). Since u′(α,γ,0) = 0, the second inequality in (5.37) implies that
u′(α,γ,r) < 0 for r ∈ (0,rα,β + ε]. Therefore x = rα,γ for |γ− β| < η and (β− η,β + η) ⊂
B. Thus B is open. Now let β ∈ C. We have u(α,β,rα,β) > 0 and u′(α,β,rα,β) = 0. By
Remark 5.10, we have v(α,β,rα,β) > 0, hence ∆u(α,β,rα,β) = u′′(α,β,rα,β) > 0. Therefore
we can find ε > 0 such that

u(α,β,r) > 0, r ∈ [0,rα,β + ε
]
, u′

(
α,β,rα,β + ε

)
> 0. (5.38)

Then by continuous dependence on initial data, there exists η > 0 such that

u(α,γ,r) > 0, r ∈ [0,rα,β + ε
]
, u′

(
α,γ,rα,β + ε

)
> 0 (5.39)

for |γ− β| < η. The second inequality in (5.39) implies that there exists x ∈ (0,rα,β + ε)
such that u′(α,γ,x)= 0 and u′(α,γ,r) < 0 for r ∈ (0,x). Therefore x = rα,γ for |γ− β| < η
and (β−η,β+η)⊂ C. Thus C is open.

Case 2 (0 < p < 1). We first show that C is open. Indeed let β ∈ C. Since u(α,β,r) > 0
for r ∈ [0,rα,β], the system (2.2) is Lipschitz continuous in u and v when u is in a neigh-
borhood of the interval [u(α,β,rα,β),α] in (0,∞), and the solution u(α,β,·), v(α,β,·) can
be uniquely extended to [0,rα,β + t] for some t > 0, with u(α,β,r) > 0 for r ∈ [0,rα,β + t].
Then we can argue as in Case 1. Now we show that B is open. As in [15], this case is much
more difficult. We begin with the following two steps. Let β ∈ B.

Step 1. There exists c > 0 and η > 0 such that when |β− γ| < η, the solutions u(α,γ,·),
v(α,γ,·), and u(α,β,·), v(α,β,·) are defined on [0,rα,β + c].
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By Lemma 5.6, u(α,β,·), v(α,β,·) can be extended to the interval [0,rα,β + b(α,β,rα,β))
where

b
(
α,β,rα,β

)= m(α,β)

rα,β +
√
r2
α,β +m(α,β)

. (5.40)

Fix ω ∈ (0,rα,β−T(α,β)) and µ= rα,β−ω. Then T(α,β) < µ < rα,β and by Lemma 5.3

0 < u(α,β,µ)≤ u(α,β,r)≤ α, 0≤ r ≤ µ. (5.41)

Since the system (2.2) is Lipschitz continuous in u and v when u is in a neighborhood
of the interval [u(α,β,µ),α] in (0,∞), the continuous dependence on initial data implies
that there exists η > 0 such that when |γ−β| < η the solution u(α,γ,·), v(α,γ,·) is defined
on [0,µ] and u(α,γ,r) > 0 for r ∈ [0,µ], u′(α,γ,r) < 0 for r ∈ (0,µ], hence rα,γ > µ. By
taking η smaller if necessary, we can assume that T(α,γ) < µ, hence T(α,γ) < µ < rα,γ. By
Lemma 5.5 we can extend u(α,γ,·), v(α,γ,·) to [0,µ+ b(α,γ,µ)]. By taking η smaller if
necessary, we can assume that

b(α,γ,µ) >
b(α,β,µ)

2
>
b
(
α,β,rα,β

)
2

= 2c. (5.42)

Thus if we choose ω to satisfy also ω ≤ c, we get

µ+ b(α,γ,µ)= rα,β−ω+ b(α,γ,µ)≥ rα,β + c. (5.43)

Thus u(α,γ,·), v(α,γ,·) extend to the interval [0,rα,β + c] and c < b(α,β,rα,β) so that
u(α,β,·), v(α,β,·) also exist on [0,rα,β + c].

Step 2. We claim that there exist ε ∈ (0,c) and δ ∈ (0,η) such that

∣∣u′(α,γ,r)−u′
(
α,β,rα,β

)∣∣≤ 1
2

∣∣u′(α,β,rα,β
)∣∣ (5.44)

(recall that u′(α,β,rα,β) < 0) when |γ−β| < δ and |r− rα,β| ≤ ε. Let ε ∈ (0,c), |γ−β| < η,
and r ∈ [rα,β− ε,rα,β + ε]. By Step 1 and integration of (2.2) we have

u′(α,γ,r)−u′
(
α,β,rα,β

)
= u′(α,γ,r)−u′(α,β,r) +u′(α,β,r)−u′

(
α,β,rα,β

)
= (u′(α,γ,rα,β− ε

)−u′
(
α,β,rα,β− ε

))(rα,β− ε
)n−1

rn−1

+
∫ r

rα,β−ε
sn−1

rn−1

(∣∣v(α,γ,s)
∣∣q−1

v(α,γ,s)−∣∣v(α,β,s)
∣∣q−1

v(α,β,s)
)
ds

+u′
(
α,β,rα,β

)( rn−1
α,β

rn−1
− 1

)
+
∫ r

rα,β

sn−1

rn−1

∣∣v(α,β,s)
∣∣q−1

v(α,β,s)ds.

(5.45)
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We deduce that∣∣u′(α,γ,r)−u′
(
α,β,rα,β

)∣∣
≤ ∣∣u′(α,γ,rα,β− ε

)−u′
(
α,β,rα,β− ε

)∣∣+
∣∣u′(α,β,rα,β

)∣∣∣∣∣∣∣ r
n−1
α,β

rn−1
− 1

∣∣∣∣∣
+
∫ r

rα,β−ε
sn−1

rn−1

∣∣v(α,γ,s)
∣∣qds+

∫ rα,β

rα,β−ε
sn−1

rn−1

∣∣v(α,β,s)
∣∣qds.

(5.46)

The proof of Lemma 5.5 gives the following estimate for |γ−β| < η:

∣∣v(α,γ,r)
∣∣≤ 2dmax

(
γ,α(p+1)/(q+1)

)
, rα,β− ε ≤ r ≤ rα,β + ε. (5.47)

By making ε smaller if necessary we have∫ r

rα,β−ε
sn−1

rn−1

∣∣v(α,γ,s)
∣∣qds+

∫ rα,β

rα,β−ε
sn−1

rn−1

∣∣v(α,β,s)
∣∣qds≤ 1

4

∣∣u′(α,β,rα,β
)∣∣,

∣∣∣∣∣ r
n−1
α,β

rn−1
− 1

∣∣∣∣∣≤ 1
8

(5.48)

for rα,β− ε ≤ r ≤ rα,β + ε. Then from (5.46) we obtain

∣∣u′(α,γ,r)−u′
(
α,β,rα,β

)∣∣≤ ∣∣u′(α,γ,rα,β− ε
)−u′

(
α,β,rα,β− ε

)∣∣+
3
8

∣∣u′(α,β,rα,β
)∣∣

(5.49)

for |γ−β| < η and |r− rα,β| ≤ ε. Now let ε be fixed. By continuous dependence on initial
data and the fact that u(α,β,r) > u(α,β,rα,β − ε) for r ∈ [0,rα,β − ε), we can choose δ ∈
(0,η) such that

∣∣u′(α,γ,rα,β− ε
)−u′

(
α,β,rα,β− ε

)∣∣≤ 1
8

∣∣u′(α,β,rα,β)
∣∣ (5.50)

for |γ−β| < δ and our claim follows.
Now assume that B is not open. Equation (5.18) implies that there exist β ∈ B and

a sequence (βj) in C such that βj → β and rα,βj → T ∈ [0,∞]. Assume first that T > rα,β.
Then we can assume that there exists c′ ∈ (0,c) such that rα,βj ≥ rα,β + c′ for all j. We can
also assume that ε in Step 2 is such that 0 < ε < c′. Since u(α,β,rα,β)= 0 and u′(α,β,rα,β) <
0, there exists 0 < ε′ ≤ ε such that

0 < u
(
α,β,rα,β− ε′

)
<

1
4

∣∣u′(α,β,rα,β
)∣∣ε. (5.51)

By continuous dependence on initial data, there exists δ′ ∈ (0,δ) such that

u
(
α,γ,rα,β− ε′

)
< 2u

(
α,β,rα,β− ε′

)
(5.52)
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when |γ− β| < δ′. Now let j0 be such that |βj − β| < δ′ for j ≥ j0. By Step 2, for |r −
rα,β| ≤ ε and j ≥ j0 we have

∣∣u′(α,βj ,r
)∣∣= ∣∣u′(α,β,rα,β

)∣∣+u′
(
α,β,rα,β

)−u′
(
α,βj ,r

)≥ 1
2

∣∣u′(α,β,rα,β
)∣∣. (5.53)

Therefore for j ≥ j0,

u
(
α,βj ,rα,β + ε

)≤ u
(
α,βj ,rα,β− ε′

)− min
|r−rα,β|≤ε

∣∣u′(α,βj ,r
)∣∣(ε+ ε′)

< 2u
(
α,β,rα,β− ε′

)− 1
2

∣∣u′(α,β,rα,β
)∣∣ε < 0.

(5.54)

Then we obtain a contradiction since βj ∈ C. Now assume that T ≤ rα,β. By Step 2 we have

∣∣u′(α,βj ,rα,βj

)−u′
(
α,β,rα,β

)∣∣= ∣∣u′(α,β,rα,β
)∣∣≤ 1

2

∣∣u′(α,β,rα,β
)∣∣ (5.55)

for j ≥ j0 and we get a contradiction.

Now we can complete the proof of Theorem 1.3.
(i) Let α > 0 be fixed. By Proposition 5.7, there exists a unique β > 0 such that u(α,β,

rα,β)= u′(α,β,rα,β)= 0. With s and t defined in (2.1), we set

w(r)=
(
rα,β

R

)s
u
(
α,β,

rα,β

R
r
)

, z(r)=
(
rα,β

R

)t
v
(
α,β,

rα,β

R
r
)

, 0≤ r ≤ R. (5.56)

Then (w,z) is a nontrivial radial solution of problem (1.1).
(ii) follows from Proposition 5.7. �
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