EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SEMILINEAR ELLIPTIC SYSTEM

ROBERT DALMASSO

Received 23 February 2005 and in revised form 4 May 2005

We consider the existence, the nonexistence, and the uniqueness of solutions of some special systems of nonlinear elliptic equations with boundary conditions. In a particular case, the system reduces to the homogeneous Dirichlet problem for the biharmonic equation $\Delta^2 u = |u|^p$ in a ball with p > 0.

1. Introduction

In this paper, we are interested in the existence, the nonexistence, and the uniqueness question for the following problem:

$$\Delta u = |v|^{q-1}v \quad \text{in } B_R,$$

$$\Delta v = |u|^p \quad \text{in } B_R,$$

$$u = \frac{\partial u}{\partial v} = 0 \quad \text{on } \partial B_R,$$

(1.1)

where B_R denotes the open ball of radius R centered at the origin in \mathbb{R}^n $(n \ge 1)$, $\partial/\partial \nu$ is the outward normal derivative, and p, q > 0.

Concerning uniqueness, we have the following theorem.

THEOREM 1.1. (i) Let p > 0, $q \ge 1$ with $pq \ne 1$. Then (1.1) has at most one nontrivial radial solution $(u, v) \in (C^2(\overline{B}_R))^2$.

(ii) Let p > 0, $q \ge 1$ with pq = 1. Assume that (1.1) has a nontrivial radial solution $(u,v) \in (C^2(\overline{B}_R))^2$. Then all nontrivial radial solutions are given by $(\theta^q u, \theta v)$, where $\theta > 0$ is an arbitrary constant.

When q = 1 and $p \in (0,1) \cup (1,\infty)$, Theorem 1.1 was established in [4] (see also the references therein). When n = 1, q = 1, and p > 1, the uniqueness of a nontrivial solution follows from a general result given in [5].

When q = 1, p > 1, and

$$p < \frac{n+4}{n-4} \quad \text{if } n \ge 5, \tag{1.2}$$

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:10 (2005) 1507–1523 DOI: 10.1155/IJMMS.2005.1507

the existence of a nontrivial solution was proved in [2, 5, 11]. The case q = 1 and 0 is well known: see, for instance, [4, 6]. Moreover, when <math>q = 1, any nontrivial solution of (1.1) is positive in B_R because the Green function of Δ^2 with Dirichlet boundary conditions is positive in B_R [1, 8]. Then it was proved in [2, 11, 12] that problem (1.1) has no nontrivial solutions, whether radial or not, if

$$p \ge \frac{n+4}{n-4}$$
 $(n \ge 5).$ (1.3)

We will prove a nonexistence result and an existence result.

THEOREM 1.2. Suppose $n \ge 3$. Let p, q > 0 satisfy

$$\frac{1}{p+1} + \frac{1}{q+1} \le \frac{n-2}{n}.$$
(1.4)

(i) Let $(u,v) \in (C^2(\overline{B}_R))^2$ be a solution of problem (1.1) such that $u \ge 0$ in B_R . Then u = v = 0.

(ii) If $(u, v) \in (C^2(\overline{B}_R))^2$ is a radial solution of problem (1.1), then u = v = 0.

THEOREM 1.3. (i) Let p > 0, $q \ge 1$ with $pq \ne 1$ satisfy

$$\frac{1}{p+1} + \frac{1}{q+1} > \frac{n-2}{n} \quad if n \ge 3.$$
(1.5)

Then (1.1) has a nontrivial radial solution $(u, v) \in (C^2(\overline{B}_R))^2$.

(ii) Let p > 0, $q \ge 1$ with pq = 1. Then there exists R > 0 such that (1.1) has a nontrivial radial solution $(u, v) \in (C^2(\overline{B}_R))^2$.

Remark 1.4. Notice that when $pq \le 1$, (1.5) holds.

In the sequel, Δ denotes equally the Cartesian and the polar form of the Laplacian.

In Section 2, we give some preliminary results. Theorem 1.1 is proved in Section 3 using the same approach as in [4, 7]. In Section 4, we prove Theorem 1.2. We prove Theorem 1.3 in Section 5: the proof is based on a two-dimensional shooting argument for the ordinary differential equations associated to radial solutions of (1.1) [3, 5, 7, 15, 16]. The fact that $q \ge 1$ is crucial in the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we first examine the structure of nontrivial radial solutions of (1.1).

LEMMA 2.1. Let $(u, v) \in (C^2(\overline{B}_R))^2$ be a nontrivial radial solution of (1.1). Then u' < 0 on (0, R), $\Delta u(R) = u''(R) > 0$ and v' > 0 on (0, R], v(0) < 0 < v(R).

Proof. Clearly u = 0 if and only if v = 0. We have

$$r^{n-1}v'(r) = \int_0^r s^{n-1} |u(s)|^p ds \ge 0, \quad 0 \le r \le R.$$
(2.1)

Assume that $v(0) \ge 0$. Then (2.1) implies that $v \ge 0$ on [0,R], hence $\Delta u \ge 0$ on [0,R]. Therefore $r^{n-1}u'(r)$ is nondecreasing in [0,R]. Since u'(0) = u'(R) = u(R) = 0, we deduce that u = 0 and we reach a contradiction. The case where $v(R) \le 0$ can be handled in the same way. Therefore we have v(0) < 0 < v(R). We claim that $u(0) \ne 0$. Indeed assume that u(0) = 0. Using (2.1) and the first equation in (1.1), we deduce that there exists $R' \in (0,R)$ such that $r^{n-1}u'(r)$ is nonincreasing in [0,R'] and nondecreasing in [R',R]. Since u'(0) = u'(R) = 0, we obtain that $u' \le 0$ in [0,R]. Using the fact that u(0) = u(R) = 0, we deduce that u = 0 in [0,R] and we get a contradiction. Now (2.1) implies that v' > 0 in (0,R]. Let $R' \in (0,R)$ be such that v(R') = 0. Using the first equation in (1.1), we deduce that $r^{n-1}u'(r)$ is decreasing in [0,R'] and increasing in [R',R]. Since u'(0) = u'(R) = 0, we obtain u' < 0 in (0,R).

LEMMA 2.2. Assume that $n \ge 1$ and p, q > 0. Let $\alpha, \beta > 0$ be fixed. If $(u, v) \in (C^2(\mathbb{R}^n))^2$ is a radial solution of

$$\Delta u = |v|^{q-1}v, \quad r > 0,$$

$$\Delta v = |u|^{p}, \quad r > 0,$$

$$u(0) = \alpha, \qquad v(0) = -\beta, \qquad u'(0) = v'(0) = 0$$
(2.2)

such that uu' < 0 on $(0, \infty)$, then v < 0 on $(0, \infty)$.

Proof. We have $0 < u \le \alpha$ on $[0, \infty)$. Therefore

$$r^{n-1}v'(r) = \int_0^r s^{n-1}u(s)^p ds > 0 \quad \text{for } r > 0.$$
 (2.3)

Assume that the conclusion of the lemma is false. Then (2.3) implies that there exist a, b > 0 such that

$$v(r) \ge a \quad \text{for } r \ge b. \tag{2.4}$$

We deduce that

$$(r^{n-1}u'(r))' \ge a^q r^{n-1} \quad \text{for } r \ge b,$$
 (2.5)

hence

$$r^{n-1}u'(r) \ge a^q \frac{r^n - b^n}{n} + b^{n-1}u'(b) \quad \text{for } r \ge b,$$
 (2.6)

which implies that u'(r) > 0 for *r* large and we reach a contradiction.

Now we give a lemma which is needed in the proof of Theorem 1.3.

LEMMA 2.3. Assume that $n \ge 1$ and p,q > 0. Let $\alpha,\beta > 0$ be fixed. Assume that for some a > 0, $(u,v) \in (C^2(\overline{B}_a))^2$ is a radial solution of

$$\Delta u = |v|^{q-1}v \quad in [0,a],$$

$$\Delta v = |u|^p \quad in [0,a],$$

$$u(0) = \alpha, \qquad v(0) = -\beta, \qquad u'(0) = v'(0) = 0$$
(2.7)

such that uu' < 0 on (0, a). Then

$$|\nu(r)| \le d \max\left(\beta, \alpha^{(p+1)/(q+1)}\right), \quad 0 \le r \le a,$$
(2.8)

where

$$d = \left(1 + \frac{q+1}{p+1}\right)^{1/(q+1)}.$$
(2.9)

Proof. We have $0 < u \le \alpha$ on [0, a). As in Lemma 2.2 we deduce that v' > 0 on (0, a]. We have

$$\int_{0}^{r} (v' \Delta u + u' \Delta v) ds = \int_{0}^{r} (|v|^{q-1} v v' + u^{p} u') ds$$
(2.10)

for $r \in [0, a]$. Since

$$\int_{0}^{r} (v' \Delta u + u' \Delta v) ds = \int_{0}^{r} (u'v')' ds + 2(n-1) \int_{0}^{r} \frac{u'(s)v'(s)}{s} ds$$

= $u'(r)v'(r) + 2(n-1) \int_{0}^{r} \frac{u'(s)v'(s)}{s} ds$, (2.11)

$$\int_{0}^{r} \left(|v|^{q-1} vv' + u^{p} u' \right) ds = \frac{|v(r)|^{q+1}}{q+1} + \frac{u(r)^{p+1}}{p+1} - \frac{\beta^{q+1}}{q+1} - \frac{\alpha^{p+1}}{p+1}, \quad (2.12)$$

we obtain

$$\frac{|v(r)|^{q+1}}{q+1} + \frac{u(r)^{p+1}}{p+1} = \frac{\beta^{q+1}}{q+1} + \frac{\alpha^{p+1}}{p+1} + u'(r)v'(r) + 2(n-1)\int_0^r \frac{u'(s)v'(s)}{s}ds \qquad (2.13)$$

for $r \in [0, a]$, which implies that

$$|v(r)|^{q+1} \le \beta^{q+1} + \frac{q+1}{p+1} \alpha^{p+1}, \quad 0 \le r \le a,$$
 (2.14)

and the lemma follows.

3. Proof of Theorem 1.1

(i) Let (u, v) and (w, z) be two nontrivial radial solutions of (1.1). Let *s* and *t* be defined by

$$s = 2\frac{q+1}{pq-1}, \qquad t = 2\frac{p+1}{pq-1}.$$
 (3.1)

For $\lambda > 0$ we set

$$\widetilde{w}(r) = \lambda^{s} w(\lambda r), \quad \widetilde{z}(r) = \lambda^{t} z(\lambda r), \quad 0 \le r \le \frac{R}{\lambda}.$$
(3.2)

By Lemma 2.1, $\tilde{w} > 0$ on $[0, R/\lambda)$ and then we have

$$\Delta \widetilde{w}(r) = \left| \widetilde{z}(r) \right|^{q-1} z(r), \quad 0 \le r \le \frac{R}{\lambda},$$

$$\Delta \widetilde{z}(r) = \widetilde{w}(r)^{p}, \quad 0 \le r \le \frac{R}{\lambda},$$

$$\widetilde{w}\left(\frac{R}{\lambda}\right) = \widetilde{w}'\left(\frac{R}{\lambda}\right) = 0.$$
(3.3)

Choose λ such that $\lambda^s w(0) = u(0)$. Then we have

$$\widetilde{w}(0) = u(0). \tag{3.4}$$

We want to show that

$$\widetilde{z}(0) = v(0). \tag{3.5}$$

Suppose that $\tilde{z}(0) < v(0)$. If there exists $a \in (0, \min(R, R/\lambda)]$ such that $\tilde{z} - v < 0$ on [0, a) and $(\tilde{z} - v)(a) = 0$, then $\Delta(\tilde{w} - u) < 0$ on [0, a). Equation (3.4) and the maximum principle imply that $\tilde{w} - u < 0$ on (0, a]. Therefore $\Delta(\tilde{z} - v) < 0$ on (0, a] and the maximum principle implies that $\tilde{z} - v > (\tilde{z} - v)(a) = 0$ on [0, a), a contradiction. Thus $\tilde{z} - v < 0$ on $[0, \min(R, R/\lambda)]$. Then, as before, we show that $\tilde{w} - u < 0$ on $(0, \min(R, R/\lambda)]$. Since

$$(\widetilde{w} - u) \left(\min\left(R, \frac{R}{\lambda}\right) \right) = \begin{cases} -u \left(\frac{R}{\lambda}\right) & \text{if } \lambda > 1, \\ 0 & \text{if } \lambda = 1, \\ \widetilde{w}(R) & \text{if } \lambda < 1, \end{cases}$$
(3.6)

we deduce that $\lambda > 1$ with the help of Lemma 2.1. Now using the fact that $r^{n-1}(\widetilde{w} - u)'(r)$ is decreasing in $[0, R/\lambda]$, we get $(\widetilde{w} - u)'(R/\lambda) < 0$. Since $(\widetilde{w} - u)'(R/\lambda) = -u'(R/\lambda) > 0$ by Lemma 2.1, we again obtain a contradiction. The case $\widetilde{z}(0) > v(0)$ can be handled in the same way. Thus (3.5) is proved.

Now we define the functions U, W, F, and G_n by

$$U(r) = (u(r), v(r)), \quad 0 \le r \le R,$$

$$W(r) = (\widetilde{w}(r), \widetilde{z}(r)), \quad 0 \le r \le \frac{R}{\lambda},$$

$$F(x, y) = (|y|^{q-1}y, x^p), \quad x \ge 0, \ y \in \mathbb{R},$$

$$G_n(r, s) = \begin{cases} r - s & \text{if } n = 1, \\ s \ln\left(\frac{r}{s}\right) & \text{if } n = 2, \\ \frac{s}{n-2}\left(1 - \left(\frac{s}{r}\right)^{n-2}\right) & \text{if } n \ge 3 \end{cases}$$
(3.7)
$$(3.7)$$

for $0 \le s \le r$. Using (3.4), (3.5), and the fact that $u'(0) = \widetilde{w}'(0) = v'(0) = \widetilde{z}'(0) = 0$, we easily obtain

$$U(r) - W(r) = \int_0^r G_n(r,s) (F(U(s)) - F(W(s))) ds$$
(3.9)

for $r \in [0, \min(R, R/\lambda)]$. When $p \ge 1$, *F* is locally Lipschitz continuous, and using Gronwall's lemma we obtain U = W on $[0, \min(R, R/\lambda)]$. When $p \in (0, 1)$, let $a \in (0, \min(R, R/\lambda))$ be fixed. Then $u(0) \ge u(r) \ge u(a) > 0$, $\widetilde{w}(0) = u(0) \ge \widetilde{w}(r) \ge \widetilde{w}(a) > 0$ for $r \in [0, a]$. Since *F* is locally Lipschitz continuous on $(0, +\infty) \times \mathbb{R}$, as before we obtain U = W on [0, a]. By continuity we get U = W on $[0, \min(R, R/\lambda)]$. Now we deduce that $\lambda = 1$ and thus (u, v) = (w, z) on [0, R].

(ii) Let (u,v) be a nontrivial radial solution of problem (1.1). Then, for any $\theta > 0$, $(w,z) = (\theta^q u, \theta v)$ is a nontrivial radial solution of problem (1.1). Now let (w,z) be a non-trivial radial solution of (1.1). Choose $\theta > 0$ such that $\theta^q u(0) = w(0)$ and define $\tilde{w} = \theta^q u$, $\tilde{z} = \theta v$. Then (\tilde{w}, \tilde{z}) is a nontrivial radial solution of (1.1) such that $\tilde{w}(0) = w(0)$. Arguing as in part (i), we show that $\tilde{z}(0) = z(0)$ and that $(\tilde{w}, \tilde{z}) = (w, z)$.

Remark 3.1. Our technique also applies when there is a homogeneous dependence on the radius |x|. More precisely, for p > 0, $q \ge 1$, and $pq \ne 1$, the following system

$$\Delta u = |x|^{\mu} |v|^{q-1} v \quad \text{in } B_R,$$

$$\Delta v = |x|^{\nu} |u|^p \quad \text{in } B_R,$$

$$u = \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial B_R,$$

(3.10)

where $\mu, \nu \ge 0$, has at most one nontrivial radial solution (u, ν) . Indeed, the arguments are the same with *s* and *t* in (2.1) replaced by

$$s = \frac{2(q+1) + \nu + q\mu}{pq - 1}, \qquad t = \frac{2(p+1) + \mu + p\nu}{pq - 1}.$$
(3.11)

Now let p > 0, $q \ge 1$ with pq = 1. Assume that problem (3.10) has a nontrivial radial solution (u, v). Then all nontrivial radial solutions are given by $(\theta^q u, \theta v)$, where $\theta > 0$ is an arbitrary constant.

4. Proof of Theorem 1.2

(i) Let $(u,v) \in (C^2(\overline{B}_R))^2$ be a solution of problem (1.1) such that $u \ge 0$ in B_R . We have $x \cdot v(x) = R$ for all $x \in \partial B_R$. Multiplying the first equation in (1.1) by $x \cdot \nabla v$ and integrating over B_R , we get

$$\int_{B_R} (x \cdot \nabla v) \Delta u \, dx = \int_{B_R} (x \cdot \nabla v) |v|^{q-1} v \, dx.$$
(4.1)

Integrating by parts, we obtain

$$\int_{B_R} (x \cdot \nabla v) |v|^{q-1} v \, dx = -\frac{n}{q+1} \int_{B_R} |v|^{q+1} dx + \frac{R}{q+1} \int_{\partial B_R} |v|^{q+1} d\sigma. \tag{4.2}$$

Similarly we get

$$\int_{B_R} (x \cdot \nabla u) \Delta v \, dx = \int_{B_R} (x \cdot \nabla u) u^p \, dx = -\frac{n}{p+1} \int_{B_R} u^{p+1} \, dx. \tag{4.3}$$

Now we have

$$\int_{B_R} \left((x \cdot \nabla v) \Delta u + (x \cdot \nabla u) \Delta v \right) dx = (n-2) \int_{B_R} \nabla u \cdot \nabla v \, dx.$$
(4.4)

Then we deduce that

$$\frac{R}{q+1} \int_{\partial B_R} |v|^{q+1} d\sigma = \frac{n}{q+1} \int_{B_R} |v|^{q+1} dx + \frac{n}{p+1} \int_{B_R} u^{p+1} dx + (n-2) \int_{B_R} \nabla u \cdot \nabla v \, dx.$$
(4.5)

Since

$$\int_{B_R} \nabla u \cdot \nabla v \, dx = -\int_{B_R} v \Delta u \, dx = -\int_{B_R} |v|^{q+1} dx,$$

$$\int_{B_R} \nabla u \cdot \nabla v \, dx = -\int_{B_R} u \Delta v \, dx = -\int_{B_R} u^{p+1} dx,$$
(4.6)

we can write

$$\frac{R}{q+1} \int_{\partial B_R} |v|^{q+1} d\sigma = n \left(\frac{1}{p+1} + \frac{1}{q+1} - \frac{n-2}{n} \right) \int_{B_R} |v|^{q+1} dx.$$
(4.7)

Using (1.4) we deduce that v = 0 on ∂B_R . The maximum principle implies that $v \le 0$ in B_R . Therefore $\Delta u \le 0$ in B_R . The Hopf boundary point lemma implies that u = 0 in B_R and (i) is proved.

(ii) follows from (i) and Lemma 2.1.

Remark 4.1. Clearly Theorem 1.2(i) can be extended to more general domains and more general nonlinearities as in [2, 11, 12] and Theorem 1.2(ii) can be extended to more general nonlinearities.

5. Proof of Theorem 1.3

We will use a two-dimensional shooting argument for the ordinary differential equations associated to radial solutions of (1.1) [3, 5, 7, 15, 16]. We consider the one-dimensional (singular if $n \ge 2$) initial value problem (2.2) where $\alpha > 0$, $\beta > 0$.

We will need a series of lemmas. We begin with a standard local existence and uniqueness result.

LEMMA 5.1. For any $\alpha > 0$, $\beta > 0$ there exists $T = T(\alpha, \beta) > 0$ such that problem (2.2) on [0, T] has a unique solution $(u, v) \in (C^2[0, T])^2$.

Proof. Let $\alpha, \beta > 0$ be given. Choose $T = T(\alpha, \beta) > 0$ such that

$$T = \min\left(\left(\frac{n\alpha}{\beta^q}\right)^{1/2}, \left(\frac{n\beta}{\alpha^p}\right)^{1/2}\right),\tag{5.1}$$

and consider the set of functions

$$Z = \left\{ (u,v) \in \left(C[0,T] \right)^2; \frac{\alpha}{2} \le u(r) \le \alpha, -\beta \le v(r) \le -\frac{\beta}{2} \text{ for } 0 \le r \le T \right\}.$$
(5.2)

Clearly *Z* is a bounded closed convex subset of the Banach space $(C[0, T])^2$ endowed with the norm $||(u, v)|| = \max(||u||_{\infty}, ||v||_{\infty})$. Define

$$L(u,v)(r) = \left(\alpha + \int_{0}^{r} G_{n}(r,s) |v(s)|^{q-1} v(s) ds, -\beta + \int_{0}^{r} G_{n}(r,s) |u(s)|^{p} ds\right)$$
(5.3)

for $r \in [0, T]$ and $(u, v) \in (C[0, T])^2$, where G_n is defined in (3.8). It is easily verified that *L* is a compact operator mapping *Z* into itself, and so there exists $(u, v) \in Z$ such that (u, v) = L(u, v) by the Schauder fixed point theorem. Clearly $(u, v) \in (C^2[0, T])^2$ and (u, v) is a solution of (2.2) on [0, T]. Since the right-hand side in (2.2) is Lipschitz continuous in $(u, v) \in [\alpha/2, \alpha] \times [-\beta, -\beta/2]$, the uniqueness follows.

Remark 5.2. Notice that u(r) > 0 and v(r) < 0 for $r \in [0, T]$. Then direct integration of the system (2.2) implies that u' < 0 and v' > 0 in (0, T].

In view of Lemma 5.1, for any $\alpha, \beta > 0$ problem (2.2) has a unique local solution: let $[0, R_{\alpha,\beta})$ denote the maximum interval of existence of that solution ($R_{\alpha,\beta} = +\infty$ possibly). If 0 , the uniqueness of the solution could fail at any point*r*where <math>u(r) = 0. In this case, $R_{\alpha,\beta}$ could also depend on the particular solution itself. Define

$$P_{\alpha,\beta} = \{ s \in (0, R_{\alpha,\beta}); \ u(\alpha, \beta, r)u'(\alpha, \beta, r) < 0 \ \forall r \in (0,s] \},$$

$$(5.4)$$

where $(u(\alpha, \beta, \cdot), v(\alpha, \beta, \cdot))$ is a solution of (2.2) in $[0, R_{\alpha,\beta})$. $P_{\alpha,\beta} \neq \emptyset$ by Remark 5.2. Set

$$r_{\alpha,\beta} = \sup P_{\alpha,\beta}.\tag{5.5}$$

Notice that the solution is unique on $[0, r_{\alpha,\beta}]$, so $r_{\alpha,\beta}$ depends only on α, β .

LEMMA 5.3. $u'(\alpha,\beta,r) < 0$ for $r \in (0,r_{\alpha,\beta})$ and $v'(\alpha,\beta,r) > 0$ for $r \in (0,R_{\alpha,\beta})$.

Proof. The first assertion follows from the definition of $r_{\alpha,\beta}$. Since $u(\alpha,\beta,r) > 0$ for $r \in [0, r_{\alpha,\beta})$, integrating the second equation in (2.2) from 0 to $r \in (0, R_{\alpha,\beta})$ we obtain $v'(\alpha, \beta, r) > 0$ for $r \in (0, R_{\alpha,\beta})$.

LEMMA 5.4. For any $\alpha, \beta > 0, r_{\alpha,\beta} < \infty$.

Proof. Assume that $r_{\alpha,\beta} = \infty$. We easily get a contradiction when n = 1 or 2. Now if $n \ge 3$, we set $z = -\nu$. By Lemma 2.2, z > 0 on $[0, \infty)$ and we have

$$-\Delta u = z^q, \quad r > 0,$$

$$-\Delta z = u^p, \quad r > 0.$$
 (5.6)

Since p, q satisfy (1.5), we obtain a contradiction with the help of the nonexistence results established in [9, 10, 13, 14].

LEMMA 5.5. For any $a \in [T(\alpha, \beta), r_{\alpha,\beta})$, there exists $b = b(\alpha, \beta, a) > 0$ such that the maximal extension of (u, v) includes the interval [0, a + b]. Moreover,

$$b(\alpha,\beta,a) = \frac{m(\alpha,\beta)}{a + \sqrt{a^2 + m(\alpha,\beta)}},$$
(5.7)

where

$$m(\alpha,\beta) = \min\left(\frac{n\beta}{2^{p-1}\alpha^p}, \frac{n\alpha}{2^{q-1}d^q(\max\left(\beta, \alpha^{(p+1)/(q+1)}\right))^q}\right),\tag{5.8}$$

with d given in Lemma 2.3.

Proof. Lemma 5.5 is essentially a local existence result, with initial data u(a), v(a), u'(a), v'(a) at r = a. Let

$$W = \left\{ (u,v) \in \left(C[a,a+b] \right)^2; \ \left| u(r) - u(a) \right| \le \alpha, \ 0 \le v(r) - v(a) \le \beta \text{ for } a \le r \le a+b \right\},$$
(5.9)

where $b = b(\alpha, \beta, a)$ is given in the lemma. *W* is a bounded closed convex subset of the Banach space $(C[a, a + b])^2$ equipped with the norm $||(u, v)|| = \max(||u||_{\infty}, ||v||_{\infty})$. Consider the mapping $S(u, v) = (S_1(u, v), S_2(u, v))$ on $(C[a, a + b])^2$ given by

$$S_{1}(u,v)(r) = u(a) + \int_{a}^{r} \frac{dt}{t^{n-1}} \int_{0}^{t} s^{n-1} |v(s)|^{q-1} v(s) ds,$$

$$S_{2}(u,v)(r) = v(a) + \int_{a}^{r} \frac{dt}{t^{n-1}} \int_{0}^{t} s^{n-1} |u(s)|^{p} ds$$
(5.10)

for $a \le r \le a + b$, where we also denote by u, v the unique solution of (2.2) on [0, a]. Let $(u, v) \in W$. Using Lemma 5.3, we have

$$|u(s)| \le u(a) + \alpha \le 2\alpha, \quad s \in [a, a+b].$$
(5.11)

Therefore we get

$$0 \le S_2(u,v)(r) - v(a) \le 2^{p-1} \alpha^p \frac{r^2 - a^2}{n} \le \beta, \quad r \in [a, a+b].$$
(5.12)

By Lemma 2.3 we have

$$|v(s)| \le |v(a)| + \beta \le 2d \max\left(\beta, \alpha^{(p+1)/(q+1)}\right), \quad s \in [a, a+b].$$
 (5.13)

Therefore for $a \le r \le a + b$, we obtain

$$|S_1(u,v)(r) - u(a)| \le 2^{q-1} d^q \Big(\max\left(\beta, \alpha^{(p+1)/(q+1)}\right) \Big)^q \frac{r^2 - a^2}{n} \le \alpha.$$
(5.14)

We have thus proved that $S(W) \subset W$. Since *S* is a compact operator, there exists $(u,v) \in W$ such that (u,v) = S(u,v) by the Schauder fixed point theorem. Clearly $(u,v) \in (C^2[a,a+b])^2$ and (u,v) is a solution of (2.2) on [a,a+b] which extends the solution (u,v) on [0,a].

LEMMA 5.6. For any α , $\beta > 0$,

$$R_{\alpha,\beta} \ge r_{\alpha,\beta} + \frac{m(\alpha,\beta)}{r_{\alpha,\beta} + \sqrt{r_{\alpha,\beta}^2 + m(\alpha,\beta)}}.$$
(5.15)

Proof. By Lemma 5.5, for any $a \in (T(\alpha, \beta), r_{\alpha, \beta})$ we have

$$R_{\alpha,\beta} > a + \frac{m(\alpha,\beta)}{a + \sqrt{a^2 + m(\alpha,\beta)}}.$$
(5.16)

 \square

The lemma follows by letting $a \rightarrow r_{\alpha,\beta}$.

PROPOSITION 5.7. For any $\alpha > 0$, there exists a unique $\beta > 0$ such that $u(\alpha, \beta, r_{\alpha, \beta}) = u'(\alpha, \beta, r_{\alpha, \beta}) = 0$.

Proof. We first prove the uniqueness. Let $\alpha > 0$ be fixed. Suppose that there exist $\beta > \gamma > 0$ such that $u(\alpha, \beta, r_{\alpha,\beta}) = u'(\alpha, \beta, r_{\alpha,\beta}) = u(\alpha, \gamma, r_{\alpha,\gamma}) = u'(\alpha, \gamma, r_{\alpha,\gamma}) = 0$. Using the same arguments as in the proof of (3.5) we obtain a contradiction.

Now we prove the existence. Suppose that there exists $\alpha > 0$ such that for any $\beta > 0$ $u(\alpha, \beta, r_{\alpha,\beta}) > 0$ or $u'(\alpha, \beta, r_{\alpha,\beta}) < 0$. Define the sets

$$B = \{\beta > 0; \ u(\alpha, \beta, r_{\alpha, \beta}) = 0, \ u'(\alpha, \beta, r_{\alpha, \beta}) < 0\},\$$

$$C = \{\beta > 0; \ u(\alpha, \beta, r_{\alpha, \beta}) > 0, \ u'(\alpha, \beta, r_{\alpha, \beta}) = 0\}.$$

$$(5.17)$$

The proof of the proposition is completed by using the next two lemmas which contradict the fact that

$$(0, +\infty) = B \cup C. \tag{5.18}$$

LEMMA 5.8. (i) Suppose $B \neq \emptyset$. Then there exists m > 0 such that $m \le \inf B$. (ii) Suppose $C \ne \emptyset$. Then there exists M > 0 such that $M \ge \sup C$.

LEMMA 5.9. B and C are open.

Proof of Lemma 5.8. We have

$$u(\alpha,\beta,r) = \alpha + \int_0^r G_n(r,s) \left| v(\alpha,\beta,s) \right|^{q-1} v(\alpha,\beta,s) ds, \quad 0 \le r < R_{\alpha,\beta}, \tag{5.19}$$

$$\nu(\alpha,\beta,r) = -\beta + \int_0^r G_n(r,s) \left| u(\alpha,\beta,s) \right|^p ds, \quad 0 \le r < R_{\alpha,\beta}.$$
(5.20)

(i) Let $\beta \in B$. Assume first that $\nu(\alpha, \beta, \cdot) < 0$ on $[0, r_{\alpha, \beta})$. Then Lemma 5.3 and (5.19) imply

$$r_{\alpha,\beta} \ge \left(\frac{2n\alpha}{\beta^q}\right)^{1/2}.$$
 (5.21)

Now, if there exists $s_{\alpha,\beta} \in [0, r_{\alpha,\beta})$ such that $v(\alpha, \beta, s_{\alpha,\beta}) = 0$, Lemma 5.3 implies that $-\beta \le v(\alpha, \beta, \cdot) < 0$ in $[0, s_{\alpha,\beta})$ and $v(\alpha, \beta, \cdot) > 0$ in $(s_{\alpha,\beta}, r_{\alpha,\beta}]$. Then from (5.19) we get

$$\begin{aligned} \alpha &= -\int_{0}^{r_{\alpha,\beta}} G_n(r_{\alpha,\beta},s) \left| v(\alpha,\beta,s) \right|^{q-1} v(\alpha,\beta,s) ds \\ &\leq \int_{0}^{s_{\alpha,\beta}} G_n(r_{\alpha,\beta},s) \left| v(\alpha,\beta,s) \right|^q ds \leq \beta^q \int_{0}^{s_{\alpha,\beta}} G_n(r_{\alpha,\beta},s) ds \leq \beta^q \frac{r_{\alpha,\beta}^2}{2n}, \end{aligned}$$
(5.22)

and (5.21) still holds.

Suppose that $\inf B = 0$ and let (β_j) be a sequence in *B* decreasing to zero. Then $r_{\alpha,\beta_j} \rightarrow +\infty$ by (5.21). Let r > 0 be fixed. We can assume that $r_{\alpha,\beta_j} > r$ for all *j*. If $\nu(\alpha,\beta_j,s) < 0$ for $s \in [0,r]$, we have

$$u(\alpha,\beta_j,r) = \alpha - \int_0^r G_n(r,s) \left| v(\alpha,\beta_j,s) \right|^q ds \ge \alpha - \frac{r^2 \beta_j^q}{2n}.$$
 (5.23)

If $s_{\alpha,\beta_i} < r$, we have

$$u(\alpha,\beta_{j},r) = \alpha - \int_{0}^{s_{\alpha,\beta_{j}}} G_{n}(r,s) | v(\alpha,\beta_{j},s) |^{q} ds + \int_{s_{\alpha,\beta_{j}}}^{r} G_{n}(r,s) v(\alpha,\beta_{j},s)^{q} ds$$

$$\geq \alpha - \int_{0}^{s_{\alpha,\beta_{j}}} G_{n}(r,s) | v(\alpha,\beta_{j},s) |^{q} ds$$

$$\geq \alpha - \beta_{j}^{q} \int_{0}^{s_{\alpha,\beta_{j}}} G_{n}(r,s) ds \geq \alpha - \frac{r^{2}\beta_{j}^{q}}{2n}.$$
(5.24)

Therefore using Lemma 5.3 we obtain

$$u(\alpha,\beta_j,s) \ge \alpha - \frac{r^2 \beta_j^q}{2n} \quad \text{for } s \in [0,r],$$
(5.25)

from which we deduce that

$$u(\alpha,\beta_j,s) \ge \frac{\alpha}{2} \tag{5.26}$$

for $s \in [0, r]$ and *j* large. From (5.20) we get

$$\nu(\alpha,\beta_j,r) \ge -\beta_j + \frac{r^2 \alpha^p}{2^{p+1}n}$$
(5.27)

for *j* large. Thus if we choose *r* such that

$$-\beta_j + \frac{r^2 \alpha^p}{2^{p+1} n} \ge 1,$$
(5.28)

using Lemma 5.3 we get

$$\nu(\alpha, \beta_j, s) \ge 1 \tag{5.29}$$

for $r \le s \le r_{\alpha,\beta_i}$ and *j* large. We also have

$$-\beta_j \le \nu(\alpha, \beta_j, s) \le -\beta_j + \frac{r^2 \alpha^p}{2n}$$
(5.30)

for $s \in [0, r]$. Therefore there exists c > 0 such that

$$\nu(\alpha,\beta_j,s) \mid \le c \tag{5.31}$$

for $s \in [0, r]$ and all *j*. There exists k > 0 such that

$$\int_{r}^{r_{\alpha,\beta_j}} G_n(r_{\alpha,\beta_j},s) ds \ge k r_{\alpha,\beta_j}^2$$
(5.32)

for *j* large. Now we write

$$\begin{aligned} \alpha &= -\int_{0}^{r_{\alpha,\beta_{j}}} G_{n}(r_{\alpha,\beta_{j}},s) \left| v(\alpha,\beta_{j},s) \right|^{q-1} v(\alpha,\beta_{j},s) ds \\ &= -\int_{0}^{r} G_{n}(r_{\alpha,\beta_{j}},s) \left| v(\alpha,\beta_{j},s) \right|^{q-1} v(\alpha,\beta_{j},s) ds \\ &- \int_{r}^{r_{\alpha,\beta_{j}}} G_{n}(r_{\alpha,\beta_{j}},s) v(\alpha,\beta_{j},s)^{q} ds \\ &\leq c^{q} \int_{0}^{r} G_{n}(r_{\alpha,\beta_{j}},s) ds - \int_{r}^{r_{\alpha,\beta_{j}}} G_{n}(r_{\alpha,\beta_{j}},s) ds \\ &\leq c^{q} rr_{\alpha,\beta_{j}} - kr_{\alpha,\beta_{j}}^{2} \end{aligned}$$
(5.33)

for *j* large, where we have used the fact that $G_n(r_{\alpha,\beta_j},s) \le r_{\alpha,\beta_j} - s$ for $0 \le s \le r_{\alpha,\beta_j}$. Since the last term above tends to $-\infty$, we get a contradiction.

(ii) Let $\beta \in C$. We claim that $v(\alpha, \beta, r_{\alpha,\beta}) > 0$. If not, by Lemma 5.3 we have $\Delta u(\alpha, \beta, \cdot) < 0$ on $[0, r_{\alpha,\beta})$ for some $\beta \in C$. Since $u'(\alpha, \beta, 0) = 0$, we obtain $u'(\alpha, \beta, r_{\alpha,\beta}) < 0$, a contradiction. Therefore (5.20) implies

$$\beta < \int_0^{r_{\alpha,\beta}} G_n(r_{\alpha,\beta},s) u(\alpha,\beta,s)^p ds$$
(5.34)

for $\beta \in C$. Suppose that sup $C = +\infty$ and let (β_j) be a sequence in C increasing to $+\infty$. Since $0 < u(\alpha, \beta_j, r) \le \alpha$ for $r \in [0, r_{\alpha, \beta_j}]$, (5.34) implies that $r_{\alpha, \beta_j} \to +\infty$ as $j \to +\infty$. Then we can assume that $r_{\alpha, \beta_j} \ge 1$ and that $\alpha^p \le \beta_j$ for all j. From (5.20) we get

$$-\beta_j \le \nu(\alpha, \beta_j, r) \le -\frac{2n-1}{2n}\beta_j \le -\frac{\beta_j}{2} \quad \text{for } r \in [0, 1],$$
(5.35)

and using (5.19) we deduce that $u(\alpha, \beta_j, 1) \le \alpha - \beta_j^q / n2^{q+1}$. But then $u(\alpha, \beta_j, 1) < 0$ for *j* large and we reach a contradiction.

Remark 5.10. The proof above shows that, when $\beta \in C$, there exists $s_{\alpha,\beta} \in (0, r_{\alpha,\beta})$ such that $\nu(\alpha, \beta, \cdot) < 0$ on $[0, s_{\alpha,\beta})$ and $\nu(\alpha, \beta, \cdot) > 0$ on $(s_{\alpha,\beta}, r_{\alpha,\beta}]$. When $\beta \in B$, $s_{\alpha,\beta}$ may not exist.

Proof of Lemma 5.9

Case 1 ($p \ge 1$). Then the right-hand side of (2.2) is Lipschitz continuous. Let $\beta \in B$. We have $u(\alpha, \beta, r_{\alpha,\beta}) = 0$ and $u'(\alpha, \beta, r_{\alpha,\beta}) < 0$. Therefore we can find $\varepsilon > 0$ such that

$$u(\alpha,\beta,r_{\alpha,\beta}+\varepsilon) < 0, \qquad u'(\alpha,\beta,r_{\alpha,\beta}+\varepsilon) < 0.$$
 (5.36)

But then by continuous dependence on initial data, there exists $\eta > 0$ such that

$$u(\alpha, \gamma, r_{\alpha,\beta} + \varepsilon) < 0, \qquad u'(\alpha, \gamma, r_{\alpha,\beta} + \varepsilon) < 0$$
 (5.37)

for $|\gamma - \beta| < \eta$. The first inequality in (5.37) implies that there exists $x \in (0, r_{\alpha,\beta} + \varepsilon)$ such that $u(\alpha, \gamma, x) = 0$ and $u(\alpha, \gamma, r) > 0$ for $r \in [0, x)$. $\Delta v(\alpha, \gamma, r) > 0$ for $r \in [0, x)$ and $\Delta v(\alpha, \gamma, r) \ge 0$ for $r \in [x, r_{\alpha,\beta} + \varepsilon]$. Then $v'(\alpha, \gamma, r) > 0$ for $r \in (0, r_{\alpha,\beta} + \varepsilon]$ and $v(\alpha, \gamma, \cdot)$ is increasing on $[0, r_{\alpha,\beta} + \varepsilon]$. We deduce that $\Delta u(\alpha, \gamma, \cdot)$ is increasing on $[0, r_{\alpha,\beta} + \varepsilon]$. If $\Delta u(\alpha, \gamma, r_{\alpha,\beta} + \varepsilon) \le 0$, then $u'(\alpha, \gamma, r) < 0$ for $r \in (0, r_{\alpha,\beta} + \varepsilon]$. If $\Delta u(\alpha, \gamma, r_{\alpha,\beta} + \varepsilon) > 0$, then there exists $s_{\alpha,\gamma} \in (0, r_{\alpha,\beta} + \varepsilon)$ such that $\Delta u(\alpha, \gamma, \cdot) < 0$ in $[0, s_{\alpha,\gamma})$ and $\Delta u(\alpha, \gamma, \cdot) > 0$ in $(s_{\alpha,\gamma}, r_{\alpha,\beta} + \varepsilon]$. We deduce that $u'(\alpha, \gamma, \cdot)$ is decreasing (resp., increasing) in $[0, s_{\alpha,\gamma}]$ (resp., $[s_{\alpha,\gamma}, r_{\alpha,\beta} + \varepsilon]$). Since $u'(\alpha, \gamma, 0) = 0$, the second inequality in (5.37) implies that $u'(\alpha, \gamma, r) < 0$ for $r \in (0, r_{\alpha,\beta} + \varepsilon]$. Therefore $x = r_{\alpha,\gamma}$ for $|\gamma - \beta| < \eta$ and $(\beta - \eta, \beta + \eta) \subset$ *B*. Thus *B* is open. Now let $\beta \in C$. We have $u(\alpha, \beta, r_{\alpha,\beta}) > 0$ and $u'(\alpha, \beta, r_{\alpha,\beta}) = 0$. By Remark 5.10, we have $v(\alpha, \beta, r_{\alpha,\beta}) > 0$, hence $\Delta u(\alpha, \beta, r_{\alpha,\beta}) = u''(\alpha, \beta, r_{\alpha,\beta}) > 0$. Therefore we can find $\varepsilon > 0$ such that

$$u(\alpha,\beta,r) > 0, \quad r \in [0, r_{\alpha,\beta} + \varepsilon], \qquad u'(\alpha,\beta,r_{\alpha,\beta} + \varepsilon) > 0.$$
 (5.38)

Then by continuous dependence on initial data, there exists $\eta > 0$ such that

$$u(\alpha, \gamma, r) > 0, \quad r \in [0, r_{\alpha, \beta} + \varepsilon], \qquad u'(\alpha, \gamma, r_{\alpha, \beta} + \varepsilon) > 0$$

$$(5.39)$$

for $|\gamma - \beta| < \eta$. The second inequality in (5.39) implies that there exists $x \in (0, r_{\alpha,\beta} + \varepsilon)$ such that $u'(\alpha, \gamma, x) = 0$ and $u'(\alpha, \gamma, r) < 0$ for $r \in (0, x)$. Therefore $x = r_{\alpha,\gamma}$ for $|\gamma - \beta| < \eta$ and $(\beta - \eta, \beta + \eta) \subset C$. Thus *C* is open.

Case 2 (0). We first show that*C* $is open. Indeed let <math>\beta \in C$. Since $u(\alpha, \beta, r) > 0$ for $r \in [0, r_{\alpha,\beta}]$, the system (2.2) is Lipschitz continuous in *u* and *v* when *u* is in a neighborhood of the interval $[u(\alpha, \beta, r_{\alpha,\beta}), \alpha]$ in $(0, \infty)$, and the solution $u(\alpha, \beta, \cdot), v(\alpha, \beta, \cdot)$ can be uniquely extended to $[0, r_{\alpha,\beta} + t]$ for some t > 0, with $u(\alpha, \beta, r) > 0$ for $r \in [0, r_{\alpha,\beta} + t]$. Then we can argue as in Case 1. Now we show that *B* is open. As in [15], this case is much more difficult. We begin with the following two steps. Let $\beta \in B$.

Step 1. There exists c > 0 and $\eta > 0$ such that when $|\beta - \gamma| < \eta$, the solutions $u(\alpha, \gamma, \cdot)$, $v(\alpha, \gamma, \cdot)$, and $u(\alpha, \beta, \cdot)$, $v(\alpha, \beta, \cdot)$ are defined on $[0, r_{\alpha, \beta} + c]$.

By Lemma 5.6, $u(\alpha, \beta, \cdot)$, $v(\alpha, \beta, \cdot)$ can be extended to the interval $[0, r_{\alpha,\beta} + b(\alpha, \beta, r_{\alpha,\beta}))$ where

$$b(\alpha,\beta,r_{\alpha,\beta}) = \frac{m(\alpha,\beta)}{r_{\alpha,\beta} + \sqrt{r_{\alpha,\beta}^2 + m(\alpha,\beta)}}.$$
(5.40)

Fix $\omega \in (0, r_{\alpha,\beta} - T(\alpha, \beta))$ and $\mu = r_{\alpha,\beta} - \omega$. Then $T(\alpha, \beta) < \mu < r_{\alpha,\beta}$ and by Lemma 5.3

$$0 < u(\alpha, \beta, \mu) \le u(\alpha, \beta, r) \le \alpha, \quad 0 \le r \le \mu.$$
(5.41)

Since the system (2.2) is Lipschitz continuous in *u* and *v* when *u* is in a neighborhood of the interval $[u(\alpha, \beta, \mu), \alpha]$ in $(0, \infty)$, the continuous dependence on initial data implies that there exists $\eta > 0$ such that when $|\gamma - \beta| < \eta$ the solution $u(\alpha, \gamma, \cdot), v(\alpha, \gamma, \cdot)$ is defined on $[0,\mu]$ and $u(\alpha,\gamma,r) > 0$ for $r \in [0,\mu], u'(\alpha,\gamma,r) < 0$ for $r \in (0,\mu]$, hence $r_{\alpha,\gamma} > \mu$. By taking η smaller if necessary, we can assume that $T(\alpha,\gamma) < \mu$, hence $T(\alpha,\gamma) < \mu < r_{\alpha,\gamma}$. By Lemma 5.5 we can extend $u(\alpha,\gamma,\cdot), v(\alpha,\gamma,\cdot)$ to $[0,\mu + b(\alpha,\gamma,\mu)]$. By taking η smaller if necessary, we can assume that

$$b(\alpha, \gamma, \mu) > \frac{b(\alpha, \beta, \mu)}{2} > \frac{b(\alpha, \beta, r_{\alpha, \beta})}{2} = 2c.$$
(5.42)

Thus if we choose ω to satisfy also $\omega \leq c$, we get

$$\mu + b(\alpha, \gamma, \mu) = r_{\alpha, \beta} - \omega + b(\alpha, \gamma, \mu) \ge r_{\alpha, \beta} + c.$$
(5.43)

Thus $u(\alpha, \gamma, \cdot)$, $v(\alpha, \gamma, \cdot)$ extend to the interval $[0, r_{\alpha,\beta} + c]$ and $c < b(\alpha, \beta, r_{\alpha,\beta})$ so that $u(\alpha, \beta, \cdot)$, $v(\alpha, \beta, \cdot)$ also exist on $[0, r_{\alpha,\beta} + c]$.

Step 2. We claim that there exist $\varepsilon \in (0, c)$ and $\delta \in (0, \eta)$ such that

$$\left| u'(\alpha, \gamma, r) - u'(\alpha, \beta, r_{\alpha, \beta}) \right| \leq \frac{1}{2} \left| u'(\alpha, \beta, r_{\alpha, \beta}) \right|$$
(5.44)

(recall that $u'(\alpha, \beta, r_{\alpha,\beta}) < 0$) when $|\gamma - \beta| < \delta$ and $|r - r_{\alpha,\beta}| \le \varepsilon$. Let $\varepsilon \in (0, c)$, $|\gamma - \beta| < \eta$, and $r \in [r_{\alpha,\beta} - \varepsilon, r_{\alpha,\beta} + \varepsilon]$. By Step 1 and integration of (2.2) we have

$$u'(\alpha, \gamma, r) - u'(\alpha, \beta, r_{\alpha, \beta})$$

$$= u'(\alpha, \gamma, r) - u'(\alpha, \beta, r) + u'(\alpha, \beta, r) - u'(\alpha, \beta, r_{\alpha, \beta})$$

$$= (u'(\alpha, \gamma, r_{\alpha, \beta} - \varepsilon) - u'(\alpha, \beta, r_{\alpha, \beta} - \varepsilon)) \frac{(r_{\alpha, \beta} - \varepsilon)^{n-1}}{r^{n-1}}$$

$$+ \int_{r_{\alpha, \beta} - \varepsilon}^{r} \frac{s^{n-1}}{r^{n-1}} \left(|v(\alpha, \gamma, s)|^{q-1} v(\alpha, \gamma, s) - |v(\alpha, \beta, s)|^{q-1} v(\alpha, \beta, s) \right) ds$$

$$+ u'(\alpha, \beta, r_{\alpha, \beta}) \left(\frac{r_{\alpha, \beta}^{n-1}}{r^{n-1}} - 1 \right) + \int_{r_{\alpha, \beta}}^{r} \frac{s^{n-1}}{r^{n-1}} |v(\alpha, \beta, s)|^{q-1} v(\alpha, \beta, s) ds.$$
(5.45)

We deduce that

$$\left| u'(\alpha,\gamma,r) - u'(\alpha,\beta,r_{\alpha,\beta}) \right|$$

$$\leq \left| u'(\alpha,\gamma,r_{\alpha,\beta} - \varepsilon) - u'(\alpha,\beta,r_{\alpha,\beta} - \varepsilon) \right| + \left| u'(\alpha,\beta,r_{\alpha,\beta}) \right| \left| \frac{r_{\alpha,\beta}^{n-1}}{r^{n-1}} - 1 \right|$$

$$+ \int_{r_{\alpha,\beta}-\varepsilon}^{r} \frac{s^{n-1}}{r^{n-1}} \left| v(\alpha,\gamma,s) \right|^{q} ds + \int_{r_{\alpha,\beta}-\varepsilon}^{r_{\alpha,\beta}} \frac{s^{n-1}}{r^{n-1}} \left| v(\alpha,\beta,s) \right|^{q} ds.$$

$$(5.46)$$

The proof of Lemma 5.5 gives the following estimate for $|\gamma - \beta| < \eta$:

$$|v(\alpha,\gamma,r)| \le 2d \max\left(\gamma, \alpha^{(p+1)/(q+1)}\right), \quad r_{\alpha,\beta} - \varepsilon \le r \le r_{\alpha,\beta} + \varepsilon.$$
 (5.47)

By making ε smaller if necessary we have

$$\int_{r_{\alpha,\beta}-\varepsilon}^{r} \frac{s^{n-1}}{r^{n-1}} \left| v(\alpha,\gamma,s) \right|^{q} ds + \int_{r_{\alpha,\beta}-\varepsilon}^{r_{\alpha,\beta}} \frac{s^{n-1}}{r^{n-1}} \left| v(\alpha,\beta,s) \right|^{q} ds \leq \frac{1}{4} \left| u'(\alpha,\beta,r_{\alpha,\beta}) \right|, \\
\left| \frac{r_{\alpha,\beta}^{n-1}}{r^{n-1}} - 1 \right| \leq \frac{1}{8}$$
(5.48)

for $r_{\alpha,\beta} - \varepsilon \le r \le r_{\alpha,\beta} + \varepsilon$. Then from (5.46) we obtain

$$\left| u'(\alpha,\gamma,r) - u'(\alpha,\beta,r_{\alpha,\beta}) \right| \le \left| u'(\alpha,\gamma,r_{\alpha,\beta}-\varepsilon) - u'(\alpha,\beta,r_{\alpha,\beta}-\varepsilon) \right| + \frac{3}{8} \left| u'(\alpha,\beta,r_{\alpha,\beta}) \right|$$
(5.49)

for $|\gamma - \beta| < \eta$ and $|r - r_{\alpha,\beta}| \le \varepsilon$. Now let ε be fixed. By continuous dependence on initial data and the fact that $u(\alpha, \beta, r) > u(\alpha, \beta, r_{\alpha,\beta} - \varepsilon)$ for $r \in [0, r_{\alpha,\beta} - \varepsilon)$, we can choose $\delta \in (0, \eta)$ such that

$$\left| u'(\alpha,\gamma,r_{\alpha,\beta}-\varepsilon) - u'(\alpha,\beta,r_{\alpha,\beta}-\varepsilon) \right| \leq \frac{1}{8} \left| u'(\alpha,\beta,r_{\alpha,\beta}) \right|$$
(5.50)

for $|\gamma - \beta| < \delta$ and our claim follows.

Now assume that *B* is not open. Equation (5.18) implies that there exist $\beta \in B$ and a sequence (β_j) in *C* such that $\beta_j \to \beta$ and $r_{\alpha,\beta_j} \to T \in [0,\infty]$. Assume first that $T > r_{\alpha,\beta}$. Then we can assume that there exists $c' \in (0,c)$ such that $r_{\alpha,\beta_j} \ge r_{\alpha,\beta} + c'$ for all *j*. We can also assume that ε in Step 2 is such that $0 < \varepsilon < c'$. Since $u(\alpha,\beta,r_{\alpha,\beta}) = 0$ and $u'(\alpha,\beta,r_{\alpha,\beta}) < 0$, there exists $0 < \varepsilon' \le \varepsilon$ such that

$$0 < u(\alpha, \beta, r_{\alpha, \beta} - \varepsilon') < \frac{1}{4} | u'(\alpha, \beta, r_{\alpha, \beta}) | \varepsilon.$$
(5.51)

By continuous dependence on initial data, there exists $\delta' \in (0, \delta)$ such that

$$u(\alpha, \gamma, r_{\alpha,\beta} - \varepsilon') < 2u(\alpha, \beta, r_{\alpha,\beta} - \varepsilon')$$
(5.52)

when $|\gamma - \beta| < \delta'$. Now let j_0 be such that $|\beta_j - \beta| < \delta'$ for $j \ge j_0$. By Step 2, for $|r - r_{\alpha,\beta}| \le \varepsilon$ and $j \ge j_0$ we have

$$|u'(\alpha,\beta_j,r)| = |u'(\alpha,\beta,r_{\alpha,\beta})| + u'(\alpha,\beta,r_{\alpha,\beta}) - u'(\alpha,\beta_j,r) \ge \frac{1}{2} |u'(\alpha,\beta,r_{\alpha,\beta})|. \quad (5.53)$$

Therefore for $j \ge j_0$,

$$u(\alpha,\beta_{j},r_{\alpha,\beta}+\varepsilon) \leq u(\alpha,\beta_{j},r_{\alpha,\beta}-\varepsilon') - \min_{|r-r_{\alpha,\beta}|\leq\varepsilon} |u'(\alpha,\beta_{j},r)|(\varepsilon+\varepsilon')$$

$$< 2u(\alpha,\beta,r_{\alpha,\beta}-\varepsilon') - \frac{1}{2} |u'(\alpha,\beta,r_{\alpha,\beta})|\varepsilon<0.$$
(5.54)

Then we obtain a contradiction since $\beta_i \in C$. Now assume that $T \leq r_{\alpha,\beta}$. By Step 2 we have

$$\left| u'(\alpha,\beta_{j},r_{\alpha,\beta_{j}}) - u'(\alpha,\beta,r_{\alpha,\beta}) \right| = \left| u'(\alpha,\beta,r_{\alpha,\beta}) \right| \le \frac{1}{2} \left| u'(\alpha,\beta,r_{\alpha,\beta}) \right|$$
(5.55)

for $j \ge j_0$ and we get a contradiction.

Now we can complete the proof of Theorem 1.3.

(i) Let $\alpha > 0$ be fixed. By Proposition 5.7, there exists a unique $\beta > 0$ such that $u(\alpha, \beta, r_{\alpha,\beta}) = u'(\alpha, \beta, r_{\alpha,\beta}) = 0$. With *s* and *t* defined in (2.1), we set

$$w(r) = \left(\frac{r_{\alpha,\beta}}{R}\right)^{s} u\left(\alpha,\beta,\frac{r_{\alpha,\beta}}{R}r\right), \quad z(r) = \left(\frac{r_{\alpha,\beta}}{R}\right)^{t} v\left(\alpha,\beta,\frac{r_{\alpha,\beta}}{R}r\right), \quad 0 \le r \le R.$$
(5.56)

Then (w, z) is a nontrivial radial solution of problem (1.1).

(ii) follows from Proposition 5.7.

Acknowledgment

The author would like to thank the referees for the useful comments and suggestions.

References

- T. Boggio, Sulle funzioni di Green di ordine m, Rend. Circ. Mat. Palermo 20 (1905), 97–135 (Italian).
- [2] R. Dalmasso, Problème de Dirichlet homogène pour une équation biharmonique semi-linéaire dans une boule [A homogeneous Dirichlet problem for a semilinear biharmonic equation in a ball], Bull. Sci. Math. 114 (1990), no. 2, 123–137 (French).
- [3] _____, Uniqueness of positive solutions of nonlinear second order systems, Rev. Mat. Iberoamericana 11 (1995), no. 2, 247–267.
- [4] _____, Uniqueness theorems for some fourth-order elliptic equations, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1177–1183.
- [5] _____, Uniqueness of positive solutions for some nonlinear fourth-order equations, J. Math. Anal. Appl. 201 (1996), no. 1, 152–168.
- [6] _____, Existence and uniqueness results for polyharmonic equations, Nonlinear Anal. Ser. A: Theory Methods 36 (1999), no. 1, 131–137.
- [7] _____, Existence and uniqueness of positive radial solutions for the Lane-Emden system, Nonlinear Anal. 57 (2004), no. 3, 341–348.

- [8] H.-C. Grunau, The Dirichlet problem for some semilinear elliptic differential equations of arbitrary order, Analysis 11 (1991), no. 1, 83–90.
- [9] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), no. 1-2, 125–151.
- [10] _____, Non-existence of positive solutions of semilinear elliptic systems in \mathbb{R}^n , Differential Integral Equations 9 (1996), 456–479.
- [11] P. Oswald, On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball, Comment. Math. Univ. Carolin. 26 (1985), no. 3, 565–577.
- [12] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3, 681–703.
- [13] J. Serrin and H. Zou, Non-existence of positive solutions of semilinear elliptic systems, A Tribute to Ilya Bakelman (College Station, Tex, 1993), Discourses Math. Appl., vol. 3, Texas A & M University, Texas, 1994, pp. 55–68.
- [14] _____, *Non-existence of positive solutions of the Lane-Emden systems*, Differential Integral Equations **9** (1996), no. 4, 635–653.
- [15] _____, Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. Partial Differential Equations 23 (1998), no. 3-4, 577–599.
- [16] _____, *Existence of positive solutions of the Lane-Emden system*, Atti Sem. Mat. Fis. Univ. Modena **46** (1998), no. suppl., 369–380.

Robert Dalmasso: Equipe EDP, Laboratoire LMC-IMAG, Tour IRMA, BP 53, 38041 Grenoble Cedex 9, France

E-mail address: robert.dalmasso@imag.fr