EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
A SEMILINEAR ELLIPTIC SYSTEM

ROBERT DALMASSO

Received 23 February 2005 and in revised form 4 May 2005

We consider the existence, the nonexistence, and the uniqueness of solutions of some
special systems of nonlinear elliptic equations with boundary conditions. In a particu-
lar case, the system reduces to the homogeneous Dirichlet problem for the biharmonic
equation A%y = |u|? in a ball with p > 0.

1. Introduction

In this paper, we are interested in the existence, the nonexistence, and the uniqueness
question for the following problem:

Au=|v|T'v in By,
Av = |u|? in Bg,
0
u= ou =0 ondBy,

0v

(1.1)

where Br denotes the open ball of radius R centered at the origin in R” (n > 1), 9/0v is
the outward normal derivative, and p,q > 0.
Concerning uniqueness, we have the following theorem.

Tueorem 1.1. (i) Let p >0, g = 1 with pq # 1. Then (1.1) has at most one nontrivial radial
solution (u,v) € (C%(Bg))2.

(ii) Let p >0, g = 1 with pq = 1. Assume that (1.1) has a nontrivial radial solution
(u,v) € (C*(BR))?. Then all nontrivial radial solutions are given by (89u,0v), where 6 >0
is an arbitrary constant.

When g =1and p € (0,1) U (1,00), Theorem 1.1 was established in [4] (see also the
references therein). When n = 1, g = 1, and p > 1, the uniqueness of a nontrivial solution
follows from a general result given in [5].

Wheng =1, p>1,and

p<£i ifn>5, (1.2)
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the existence of a nontrivial solution was proved in [2, 5, 11]. Thecaseq = land 0 < p < 1
is well known: see, for instance, [4, 6]. Moreover, when g = 1, any nontrivial solution of
(1.1) is positive in Bg because the Green function of A with Dirichlet boundary condi-
tions is positive in Bg [1, 8]. Then it was proved in [2, 11, 12] that problem (1.1) has no
nontrivial solutions, whether radial or not, if

p="0 (n=5) (13)

We will prove a nonexistence result and an existence result.

THEOREM 1.2. Suppose n = 3. Let p,q > 0 satisfy

1 1 n—2
< .

+ < (1.4)
p+1 g+1 n

(i) Let (u,v) € (C*(Bgr))? be a solution of problem (1.1) such that u > 0 in Bg. Then
u=v=0.
(i) If (u,v) € (C*(BRr))? is a radial solution of problem (1.1), then u=v = 0.

Tueorem 1.3. (i) Let p >0, g > 1 with pq # 1 satisfy

1 1 n—2
+ >
p+1l g+1 n

ifn=3. (1.5)

Then (1.1) has a nontrivial radial solution (u,v) € (C*(Bg))>.

(ii) Let p >0, g = 1 with pq = 1. Then there exists R > 0 such that (1.1) has a nontrivial
radial solution (u,v) € (C%(Bg))2.
Remark 1.4. Notice that when pg < 1, (1.5) holds.

In the sequel, A denotes equally the Cartesian and the polar form of the Laplacian.

In Section 2, we give some preliminary results. Theorem 1.1 is proved in Section 3
using the same approach as in [4, 7]. In Section 4, we prove Theorem 1.2. We prove
Theorem 1.3 in Section 5: the proof is based on a two-dimensional shooting argument for

the ordinary differential equations associated to radial solutions of (1.1) [3, 5, 7, 15, 16].
The fact that g > 1 is crucial in the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we first examine the structure of nontrivial radial solutions of (1.1).

LemMma 2.1. Let (u,v) € (C*(BRr))? be a nontrivial radial solution of (1.1). Then u’ < 0 on
(0,R), Au(R) = v/’ (R) >0 and v' >0 on (0,R], v(0) <0 < v(R).

Proof. Clearly u = 0 if and only if v = 0. We have
r”flv’(r)z)[ s"Hu(s)|Pds=0, 0<r<R (2.1)
0
Assume that v(0) = 0. Then (2.1) implies that v > 0 on [0,R], hence Au > 0 on [0,R].
Therefore r"~'u(r) is nondecreasing in [0, R]. Since ¢/ (0) = v/ (R) = u(R) = 0, we deduce
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that u = 0 and we reach a contradiction. The case where v(R) < 0 can be handled in the
same way. Therefore we have v(0) < 0 < v(R). We claim that #(0) # 0. Indeed assume that
u(0) = 0. Using (2.1) and the first equation in (1.1), we deduce that there exists R’ €
(0,R) such that r"~1u/(r) is nonincreasing in [0,R’] and nondecreasing in [R’,R]. Since
u'(0) = u'(R) = 0, we obtain that 4" < 0 in [0,R]. Using the fact that 4(0) = u(R) = 0, we
deduce that u = 0 in [0,R] and we get a contradiction. Now (2.1) implies that v' > 0 in
(0,R]. Let R" € (0,R) be such that v(R") = 0. Using the first equation in (1.1), we deduce
that r"~'u/(r) is decreasing in [0,R’] and increasing in [R’,R]. Since v’ (0) = u’(R) =0,
we obtain ©’ < 0in (0,R). O
LEMMA 2.2. Assume that n > 1 and p,q > 0. Let o, > 0 be fixed. If (u,v) € (C*(R"))? isa
radial solution of

Au=|v|T W, r>0,
Av=ul?, r>0, (2.2)
u(0) = a, v(0) = -p, u'(0)=v(0)=0

such that uu’ <0 on (0,00), then v <0 on (0,00).

Proof. We have 0 < u < a on [0, c0). Therefore
r
" (r) = J s lu(s)Pds >0 forr >0. (2.3)
0

Assume that the conclusion of the lemma is false. Then (2.3) implies that there exist
a,b > 0 such that

v(r)=a forr=b. (2.4)
We deduce that
(r" ' (r)) = a?r"' forr=b, (2.5)
hence
()20 b)) forrz b, (2.6)
which implies that #'(r) > 0 for r large and we reach a contradiction. O

Now we give a lemma which is needed in the proof of Theorem 1.3.

LEMMA 2.3. Assume that n = 1 and p,q > 0. Let o, 3 >0 be fixed. Assume that for some
a>0, (u,v) € (C*(B,))? is a radial solution of

Au=v|T in[0,a],
Av=1ul? in[0,a], (2.7)
u(0) = a, v(0) = —p, u'(0)=v(0)=0
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such that uu’ <0 on (0,a). Then

|v(r)| < dmax (ﬁ,oc("“)/‘q“)), 0<r<a, (2.8)
where
+1 1/(q+1)
d= (1 + %) (2.9)

Proof. We have 0 < u < & on [0,a). As in Lemma 2.2 we deduce that v' >0 on (0,a]. We
have

r

J (v'Au+u'Av)ds=J (Iv|T ' + uPu')ds (2.10)
0 0

for r € [0,a]. Since

r

J (V' Au+u' Av)ds = J

0 0

(V') ds+2(n - 1)Ir Mds
RN (2.11)
=u' (r)v'(r) +2(n— 1)L Mds’

. q+l1 +1 q+1 p+1
q_l 7 y — |V(T) | M(T)P _ /)) _ @
L(Ivl v +ulu')ds P + bl 471 pil (2.12)
we obtain
q+1 p+l q+1 p+1 T 4
[T P B A e () + 2 1)J WV ho (213)
q+1 p+1 q+1l p+1 0

for r € [0,a], which implies that
[v(r) ] o B+ %cxl’”, 0<r<a, (2.14)
and the lemma follows. O

3. Proof of Theorem 1.1

(i) Let (u,v) and (w, z) be two nontrivial radial solutions of (1.1). Let s and ¢ be defined
by

sopat! oo Pt1 (3.1)

pg-1 pg-1

For A > 0 we set

w(r) = Awr), Z(r)=AMz(Ar), 0<r< (3.2)
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By Lemma 2.1, w > 0 on [0,R/A) and then we have

AW(r) = |21 '2(r), 0=<r< %,
M) =R(P, 0sr=3, (33)
(3)-%(3) -0
Choose A such that A*w(0) = u(0). Then we have
w(0) = u(0). (3.4)
We want to show that
Z(0) = v(0). (3.5)

Suppose that z(0) < v(0). If there exists a € (0,min(R,R/A)] such that Z—v < 0 on [0,a)
and (Z—v)(a) = 0, then A(W — u) < 0 on [0,a). Equation (3.4) and the maximum prin-
ciple imply that w — u < 0 on (0,a]. Therefore A(Z—v) <0 on (0,a] and the maximum
principle implies that Z— v > (Z— v)(a) = 0 on [0,a), a contradiction. Thus Z—v < 0 on
[0,min(R,R/A)]. Then, as before, we show that w — u < 0 on (0, min(R,R/A)]. Since

R)) —u<x> A1,

-w)(min (R 7)) =10 AL, (3.6)
w(R) ifl<1,

we deduce that A > 1 with the help of Lemma 2.1. Now using the fact that r"~!(w — u)’(r)
is decreasing in [0, R/A], we get (w — u)’ (R/A) < 0. Since (w — u)" (R/A) = —u'(R/A) > 0 by
Lemma 2.1, we again obtain a contradiction. The case Z(0) > v(0) can be handled in the
same way. Thus (3.5) is proved.

Now we define the functions U, W, F, and G, by

U(r) = (u(r),v(r)), 0<r<R,

W(r) = (w(r),Z(r)), 0=<r< %’ (3.7)
F(x,y)=(Iyl"7'y,x"), x20, yER,
r—s iftn=1,
Galrs) = 1" <£> ifn=2 (3.8)
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for 0 < s < r. Using (3.4), (3.5), and the fact that u'(0) = w'(0) = v'(0) = Z(0) = 0, we
easily obtain

U(r) - W(r) = jo Gu(r,5) (F(U(s)) — F(W(s)))ds (3.9)

for r € [0,min(R,R/A)]. When p = 1, F is locally Lipschitz continuous, and using Gron-
wall’s lemma we obtain U = W on [0,min(R,R/A)]. When p € (0,1), let a € (0, min(R,
R/M)) be fixed. Then u(0) = u(r) = u(a) >0, w(0) = u(0) = w(r) = w(a) >0 forr € [0,a].
Since F is locally Lipschitz continuous on (0,+o) X R, as before we obtain U = W on
[0,a]. By continuity we get U = W on [0,min(R,R/A)]. Now we deduce that A = 1 and
thus (u,v) = (w,z) on [0,R].

(ii) Let (u,v) be a nontrivial radial solution of problem (1.1). Then, for any 8 >0,
(w,z) = (09u,0v) is a nontrivial radial solution of problem (1.1). Now let (w,z) be a non-
trivial radial solution of (1.1). Choose 0 > 0 such that 87u(0) = w(0) and define w = 69u,
Z = Ov. Then (w,Z) is a nontrivial radial solution of (1.1) such that w(0) = w(0). Arguing
as in part (i), we show that Z(0) = z(0) and that (w,2) = (w,2).

Remark 3.1. Our technique also applies when there is a homogeneous dependence on the
radius |x|. More precisely, for p >0, g > 1, and pq # 1, the following system

Au = |x|#|v|7 v in Bg,

Av = |x|"|ul? in Bg, (3.10)
u= % =0 ondBy,
0v

where y,v = 0, has at most one nontrivial radial solution (u,v). Indeed, the arguments
are the same with s and ¢ in (2.1) replaced by

5_2(q+1)+v+qy t_2(p+1)+y+pv
pg-1 pg-1
Now let p >0, g = 1 with pq = 1. Assume that problem (3.10) has a nontrivial radial

solution (u,v). Then all nontrivial radial solutions are given by (67u,0v), where 68 > 0 is
an arbitrary constant.

(3.11)

4. Proof of Theorem 1.2

(i) Let (u,v) € (C*(Br))?* be a solution of problem (1.1) such that u > 0 in Bg. We
have x - v(x) = R for all x € dBg. Multiplying the first equation in (1.1) by x - Vv and
integrating over Bg, we get

J (x- Vv)Audx = J (x- V) |v|T vdx. (4.1)
Br Br
Integrating by parts, we obtain

J (x- V) lv|Tlydx = — " |v|q+1dx+iJ Iv|7 do. (4.2)
By q+1Js q+1 Josg
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Similarly we get

J (x-Vu)Avdx=J (x-Vu)ude:—LJ uPtldx. (4.3)
Bg Bg p+1JB
Now we have
J ((x-VV)Au+(x-Vu)Av)dx=(n—-2) | Vu-Vvdx. (4.4)
BR BR
Then we deduce that
R Ivlq“dozij Ivlq“dx+L wtldx+(n—-2)| Vu-Vvdx.
q+1 Jop, q+1Jp, p+1Jg Br
(4.5)
Since
Vu-Vvdxz—I vAudxz—J [v|9tdx,
Br Br Br (4‘6)
Vu-Vvdx:—J uAvdxz—J uPtldy,
Br Br Br
we can write
R Ivlq“da:n( L —”_2” ]9+ dx. (4.7)
q+1 Josyg ptl g+1 n B

Using (1.4) we deduce that v = 0 on dBg. The maximum principle implies that v < 0 in
Br. Therefore Au < 0 in Bg. The Hopf boundary point lemma implies that u = 0 in Bg
and (i) is proved.

(i1) follows from (i) and Lemma 2.1.

Remark 4.1. Clearly Theorem 1.2(i) can be extended to more general domains and more
general nonlinearities as in [2, 11, 12] and Theorem 1.2(ii) can be extended to more gen-
eral nonlinearities.

5. Proof of Theorem 1.3

We will use a two-dimensional shooting argument for the ordinary differential equations
associated to radial solutions of (1.1) [3, 5, 7, 15, 16]. We consider the one-dimensional
(singular if # > 2) initial value problem (2.2) where & >0, 8 > 0.

We will need a series of lemmas. We begin with a standard local existence and unique-
ness result.

LemMA 5.1. For any a >0, 8 >0 there exists T = T(a,3) > 0 such that problem (2.2) on
[0, T] has a unique solution (u,v) € (C*[0,T])>.
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Proof. Let a,f3 >0 be given. Choose T = T'(«,3) > 0 such that

()" (2)°).

and consider the set of functions
_ 2« _ B
Z =1 (u,v) e (C[0,T]); 5 <u(r)<a, —-f=<v(r) < 5 forO<r<T}¢. (5.2)

Clearly Z is a bounded closed convex subset of the Banach space (C[0, T])? endowed with
the norm |[(4,v)|l = max(||ull«, [|v]le). Define

L(u,v)(r) = (oc+ Lr Gn(r,s) [ v(s) | q_lv(s)ds, -B+ Lr Gu(r,s) | u(s) | pds) (5.3)

for r € [0,T] and (u,v) € (C[0,T])?, where G, is defined in (3.8). It is easily verified
that L is a compact operator mapping Z into itself, and so there exists (u,v) € Z such
that (u,v) = L(u,v) by the Schauder fixed point theorem. Clearly (u,v) € (C*[0,T])? and
(u,v) is a solution of (2.2) on [0, T]. Since the right-hand side in (2.2) is Lipschitz con-
tinuous in (u,v) € [a/2,a] X [—f3,—f/2], the uniqueness follows. O

Remark 5.2. Notice that u(r) >0 and v(r) <0 for r € [0, T]. Then direct integration of
the system (2.2) implies that 4’ < 0 and v' > 0 in (0, T].

In view of Lemma 5.1, for any «,f > 0 problem (2.2) has a unique local solution: let
[0,Rq) denote the maximum interval of existence of that solution (R, g = +00 possibly).
If 0 < p < 1, the uniqueness of the solution could fail at any point r where u(r) = 0. In this
case, Ry could also depend on the particular solution itself. Define

Pop = {s € (0,Rap); u(a,f,r)u'(a,B,r) <0 Vr e (0,s]}, (5.4)
where (u(a,f3,-),v(a,8,+)) is a solution of (2.2) in [0,Rap). Pag # & by Remark 5.2. Set
Top = SUp Py . (5.5)
Notice that the solution is unique on [0,7,3], so 7, depends only on «, B.

LEmMma 5.3. u/(a,B,7) <0 forr € (0,74p) and v' (&, 3,7) >0 for r € (0,Rap).

Proof. The first assertion follows from the definition of r,g. Since u(a,B,7) >0 for r €
[0,74,), integrating the second equation in (2.2) from 0 to r € (0,R,g) we obtain v'(«, 3,
r) >0 for r € (0,Rqp). O

LemMa 5.4. Forany a,3 >0, 145 < 00,

Proof. Assume that r, g = c0. We easily get a contradiction when n = 1 or 2. Now if n > 3,
we set z = —v. By Lemma 2.2, z > 0 on [0, o) and we have

—-Au=z1, r>0,

-Az=uf, r>0. (5.6)
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Since p, g satisty (1.5), we obtain a contradiction with the help of the nonexistence results
established in [9, 10, 13, 14]. O

LEmMA 5.5. Forany a € [T(a,[),7ap), there exists b = b(a, 8,a) > 0 such that the maximal
extension of (u,v) includes the interval [0,a + b]. Moreover,

b((x,/)))a) = M, (57)
a+,/a®+m(a,f3)

where

m(a,f3) = min( ilﬁ , na ), (5.8)

2p=1gp ZQ*Id‘i(maX ([gya(p+l)/(q+1)))q

with d given in Lemma 2.3.

Proof. Lemma 5.5 is essentially a local existence result, with initial data u(a), v(a), u’(a),
v'(a) atr = a. Let

W= {(u,v) € (Cla,a+b))% |u(r) —u(a)| <a, 0<v(r)—v(a) <Bfora<r< a+b},
(5.9)

where b = b(a, 3, a) is given in the lemma. W is a bounded closed convex subset of the Ba-
nach space (Cla,a+ b])? equipped with the norm ||(u,v) || = max(||#||«, |Vl ). Consider
the mapping S(u,v) = (S1(4,v),S2(4,v)) on (Cla,a+ b])? given by

Si(u,v) — | v [T 'y(s)ds,
J v (5.10)

Sy(u,v)(r) = v(a)+L tf—fljow u(s) |Pds

for a < r < a+ b, where we also denote by u, v the unique solution of (2.2) on [0,a]. Let
(u,v) € W. Using Lemma 5.3, we have

|u(s)| <u(a)+a<2a, s€la,a+b)]. (5.11)
Therefore we get
2_ g
0<S(u,v)(r)—v(a) <20 laf =< B, r€la,a+b]. (5.12)
By Lemma 2.3 we have
|v(s)| < |v(a)| +p < 2dmax (ﬁ,a(f’“)/(q“)), s€[a,a+b]. (5.13)

Therefore for a < r < a+ b, we obtain

2 _ 42
|$1(,v)(r) — u(a) | <297'd" ( max (ﬁ,a@“W“)))q% <a. (5.14)
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We have thus proved that S(W) C W. Since S is a compact operator, there exists
(u,v) € W such that (u,v) = S(u,v) by the Schauder fixed point theorem. Clearly (u,v) €
(C2[a,a+b])? and (u,v) is a solution of (2.2) on [a,a + b] which extends the solution
(u,v) on [0,a]. O

LEmMA 5.6. For any o, 3 >0,

Rop = rap+ m@p) (5.15)
Tap+Tap+m(ap)
Proof. By Lemma 5.5, for any a € (T(«, 3),74,) we have
m(a, )
Rep>at ——2P (5.16)
o a+,/a®+m(a,f)
The lemma follows by letting a — rqp. g

PROPOSITION 5.7. For any « > 0, there exists a unique 3 > 0 such that u(a, 3,r4p) = t/'(a, 3,
rmﬁ) =0.

Proof. We first prove the uniqueness. Let « > 0 be fixed. Suppose that there exist § >
y >0 such that u(a, B, 7a5) = u' (&, 70 p) = U, P, 7ay) = t' (&, p,7ay) = 0. Using the same
arguments as in the proof of (3.5) we obtain a contradiction.

Now we prove the existence. Suppose that there exists & > 0 such that for any >0
u(a,Bsrap) >0 or u'(a, B, 7ap) < 0. Define the sets

B={B>0; u(a,p,rap) =0, u' (a,f,7ap) <0},

(5.17)
C=1{B>0; u(ar,,rap) >0, u'(a,B,rap) = 0}.

O

The proof of the proposition is completed by using the next two lemmas which con-
tradict the fact that

(0,+c0) =BUC. (5.18)

LemMA 5.8. (i) Suppose B # &. Then there exists m > 0 such that m < inf B.
(ii) Suppose C # &. Then there exists M > 0 such that M > sup C.

LemMA 5.9. Band C are open.
Proof of Lemma 5.8. We have
r
u(a,B,r) = a+J Gu(r,9) |v(a, B,s) |q71v((x,[3,s)ds, 0 <7 <Rup, (5.19)
0

v(a,Bor) = —f+ Lr Gu(r,s) |u(a,B,s) | Pds, 0 <7< Rup. (5.20)
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(i) Let B € B. Assume first that v(a,f3,+) <0 on [0,7,8). Then Lemma 5.3 and (5.19)
imply

2na\ V2
Tap = (F) . (521)
Now, if there exists s, 3 € [0,74,) such that v(a,8,s45) = 0, Lemma 5.3 implies that —8 <
v(a,f,-) <01in [0,544) and v(a,B,+) >0 in (s p,7as]. Then from (5.19) we get

- Jw G (rap»s) [v(a,fB,s) | q_lv((x,[)’,s)ds
0 , (5.22)

Sap q Soup ra’ﬁ
< J G (rap»s) [ v(a,B,s) | ds < [)’qJ G (rap,s)ds < [3‘1%,
0 0

and (5.21) still holds.

Suppose that inf B = 0 and let (3;) be a sequence in B decreasing to zero. Then r, g, —
+00 by (5.21). Let r > 0 be fixed. We can assume that r,p, > r for all j. If v(a, B;,5) < 0 for
s € [0,r], we have

)
) = [ Gulr) (a9 | - 2EL (5.29)
If Sap; < T, We have
Sap; r
u(a,fj,r) =a— Gu(r,9) |v(a, B> 5) ) | 1ds+ Gu(r,9)v(a, B s)1ds
0 Saﬁ]
Sa,p
>a-— J " Gulrys) |v(a,Bj>s) | *ds (5.24)
0
Safsj rlﬁ‘?
q j
> oc—ﬁj Jo Gu(r,s)ds > o — P
Therefore using Lemma 5.3 we obtain
r’p]
u(a,Bj,s) = a— —J fors € [0,r], (5.25)
from which we deduce that
u(a,fj,s) = % (5.26)
for s € [0,r] and j large. From (5.20) we get
rrab
V((X,ﬁj,?‘) > —ﬁj‘f'm (527)

for j large. Thus if we choose r such that

rlaP
—B;i+ iy = 1, (5.28)
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using Lemma 5.3 we get
v(a,Bj»s) =1 (5.29)

for r <s <r,p, and j large. We also have

r’af
—Bj < v(aBj»s) < =P + o (5.30)
for s € [0,r]. Therefore there exists ¢ > 0 such that
|v(a.Bjps) | <¢ (5.31)
for s € [0,r] and all j. There exists k > 0 such that
Tafp;
G (Tap;>s)ds = kré)ﬁj (5.32)

r
for j large. Now we write

Taf;

o= - Grl(r(x,ﬁj>s) |V(0£,[)’j,$) |qilv(“)ﬁj)s)ds
0

B ‘J Gu(rap,»s) [v(efns) | v (@ Bjos)ds

Vnt,ﬁ j

- Gn(ra,[}j>5)v(06,ﬁj,s)qu (5.33)

Tafs;

< ch Gn(r(x,ﬁj,s)ds - G,,(r,x,[;j,s)ds
0 7

<clrrgg — kriﬁ]

for j large, where we have used the fact that Gy (a,,,5) < rap, —s for 0 < s < r,p,. Since
the last term above tends to — oo, we get a contradiction.

(i) Let B € C. We claim that v(«, 3,748) > 0. If not, by Lemma 5.3 we have Au(a, 3, -) <
0 on [0,r,p) for some B € C. Since u'(a, ,0) = 0, we obtain ' (a,3,744) < 0, a contradic-
tion. Therefore (5.20) implies

B < Lw G (rapss)ula,B,s)Pds (5.34)

for B € C. Suppose that supC = +o0 and let () be a sequence in C increasing to +co.
Since 0 < u(a, Bj,r) < a for r € [0,74p,], (5.34) implies that r, 3, — +00 as j — +oco. Then
we can assume that 7,5, > 1 and that af < f; for all j. From (5.20) we get

—Bi <v(a, ~,r)§—2n_1 -s—& forr € [0,1], (5.35)
) ] n ] 2

and using (5.19) we deduce that u(a,f3j,1) < a — ﬁj./nzqﬂ. But then u(a,;,1) <0 for j
large and we reach a contradiction. O
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Remark 5.10. The proof above shows that, when € C, there exists s, 3 € (0,74) such
that v(a,3,-) <0 on [0,55) and v(e,,+) >0 on (sep,7ap]. When B € B, s, may not
exist.

Proof of Lemma 5.9

Case 1 (p = 1). Then the right-hand side of (2.2) is Lipschitz continuous. Let § € B. We
have u(a,8,74p) = 0 and u'(a, B,74p) < 0. Therefore we can find £ > 0 such that

u(a,Brap+e) <0, u' (a,f,rap+e) <0. (5.36)
But then by continuous dependence on initial data, there exists # > 0 such that
u(a,y,rap+e) <0, u' (a,y,rap+e) <0 (5.37)

for |y — Bl < 5. The first inequality in (5.37) implies that there exists x € (0,745 + &)
such that u(a,y,x) = 0 and u(a, y,r) >0 for r € [0,x). Av(a,y,7) >0 for r € [0,x) and
Av(a,y,r) = 0 for r € [x,74p +¢€]. Then v'(a,y,r) >0 for r € (0,745 + €] and v(a,y,-)
is increasing on [0,74p + €]. We deduce that Au(a,y,-) is increasing on [0,74p +€]. If
Au(a,y,rqp+€) <0, then u'(a,y,7) <0 for r € (0,745 +€]. If Au(a,y,rqp5+€) >0, then
there exists sq, € (0,744 + &) such that Au(a,y,-) <0 in [0,s,,) and Au(a,y,-) >0 in
(Sa,y>Tap + €]. We deduce that u'(a,y,-) is decreasing (resp., increasing) in [0,s4y]
(resp., [Sqy>tap +€]). Since u'(a,y,0) = 0, the second inequality in (5.37) implies that
u'(a,y,r) <0 for r € (0,744 + €. Therefore x = r,, for |y — | <y and (B —n,f+17) C
B. Thus B is open. Now let f € C. We have u(a,f,74p) >0 and u'(a,f,74p) = 0. By
Remark 5.10, we have v(a,,744) > 0, hence Au(a,B,74p5) = tu” (,3,74p) > 0. Therefore
we can find ¢ > 0 such that

u(a,for) >0, re[0,rqp+¢], u' (o, B, rap +€) > 0. (5.38)
Then by continuous dependence on initial data, there exists # > 0 such that
u(e,y,r) >0, 1€ [0,r0p+el, u (&, p,rap+e) >0 (5.39)

for |y — Bl < 5. The second inequality in (5.39) implies that there exists x € (0,745 + €)
such that #' (&, y,x) = 0 and ' (a, y,7) < 0 for r € (0,x). Therefore x = ry, for [y — Bl <y
and (8 —#,B+#) C C. Thus C is open.

Case 2 (0 < p <1). We first show that C is open. Indeed let § € C. Since u(a,f,r) >0
for r € [0,74p], the system (2.2) is Lipschitz continuous in « and v when u is in a neigh-
borhood of the interval [u(a, 3,74,4),a] in (0, o), and the solution u(a, B, -), v(a,f3, -) can
be uniquely extended to (0,744 +t] for some ¢ > 0, with u(a, 3,7) >0 for r € [0,r45 +1].
Then we can argue as in Case 1. Now we show that B is open. As in [15], this case is much
more difficult. We begin with the following two steps. Let § € B.

Step 1. There exists ¢ >0 and # > 0 such that when |f — y| < #, the solutions u(a,y,-),
v(a,y,-), and u(a, B, +), v(a,f, ) are defined on [0,745 +c].
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By Lemma 5.6, u(a, 3, ), v(a, 3, -) can be extended to the interval [0,74p + b(a, B,745))
where

m(a, 3)

Tap+ lriﬁ + m(oc,,B).

Fix w € (0,745 — T(a,)) and y = 1o 3 — w. Then T(a, B) < < r4p and by Lemma 5.3

b(a,B,rap) = (5.40)

0<u(e,fou) <u(a,fr)<a, 0<r=<p. (5.41)

Since the system (2.2) is Lipschitz continuous in u and v when u is in a neighborhood
of the interval [u(a, 8,1),«] in (0, c0), the continuous dependence on initial data implies
that there exists # > 0 such that when |y — 8| < # the solution u(a,y, - ), v(a, y, - ) is defined
on [0,u] and u(a,y,r) >0 for r € [0,u], u'(a,y,r) < 0 for r € (0,u], hence r,, > u. By
taking 7 smaller if necessary, we can assume that T'(«,y) < u, hence T(«,y) <y < Tay- By
Lemma 5.5 we can extend u(a,y, ), v(a,y,*) to [0,u + b(a,y,u)]. By taking 5 smaller if
necessary, we can assume that

b(a, By 1) g b(a,Bs7ap)

b(a,y,u) > 5 D =2c. (5.42)
Thus if we choose w to satisfy also w < ¢, we get
ptbla,y,u) =rep—w+bla,y,u) = rep+c. (5.43)

Thus u(a,y,-), v(a,y,-) extend to the interval (0,745 + c] and ¢ < b(a,f,74p) so that
u(a, 3, ), v(a, B, -) also exist on [0, 745 +c].

Step 2. We claim that there exist ¢ € (0,¢) and & € (0,#) such that

|/ (0, y,1) —u' (. By 1ap) | < % [t (a,B,rap) | (5.44)

(recall that u' (e, B,74p) <0) when |y — Bl < § and |r —rop| < e. Lete € (0,¢), |y — Bl <7,
and r € [ryp — & 7qp +¢]. By Step 1 and integration of (2.2) we have

U’((X, )2 7’) - u, (“)ﬂ) roc,ﬁ)
=u'(a,y,r) —u' (o, 1) + 1 (o, B, 1) — 1t (o, B, 70 8)
(roc,ﬁ - S)nil

rn—1

= (u,(o‘a)’) Tap — €) — ”,(“1/3) Tap — €))
(5.45)

r n—1
+J in—l ( [9(0,7,5) | T V(@ y,5) — [ V(@ Bys) | q_lv((x,/},s))ds

Taf—&
n—1

, ?’a,ﬁ r Snfl g-1
+u' (B, rap) o -1 +L = [v(e,Bos) | v(a,B,s)ds.
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We deduce that

| u,((xr)hr) - u, ((xaﬁ)ra,ﬁ) |

7 ’ 7 r;"ﬁl
= |Ll (a)y’ra,ﬂ - 6) —u (“:B)ra,ﬂ - 6) | + |u (a:ﬁ)ra,ﬁ) | pn—1 -1 ' (546)
[ Sttt [ S5 wplt
+ bl b + bl > .
e P v(a,p,s) | ds e P v(e,B,s) | ds
The proof of Lemma 5.5 gives the following estimate for |y — 3| < #:
[v(a,y,1)| < 2dmax (y, oc(f’“)/(q“)), T — €T <rapte. (5.47)

By making e smaller if necessary we have

r Sn—l q Tap n—1 q 1 ,
J - [v(e,y,s)] ds+J - [v(a,B,s) | Mds < — v (a, B, rap) |5
rap—e 1" rag—e " 4
(5.48)
rn—l
fap 1L
rn-1 8

for rop — & < r < rqp+e. Then from (5.46) we obtain

! ! 4 ! 3 4
|/ (o,y,1r) — ' (B, rap) | < |t/ (ay,1ap—€) =t (., 1ap—€) | + s |t (B, rap) |
(5.49)

for |y — Bl <nand |r —ryp| < e. Now let € be fixed. By continuous dependence on initial

data and the fact that u(a,,7) > u(a,B,rap — €) for r € (0,745 — €), we can choose § €
(0,7) such that

|t/ (B, 7ap) | (5.50)

® | —

|/ (0, ysrap —€) — 1 (o, Bsrap —€) | <

for |y — Bl < & and our claim follows.

Now assume that B is not open. Equation (5.18) implies that there exist § € B and
a sequence (f;) in C such that ; — B and ryp, — T € [0,00]. Assume first that T > r,p.
Then we can assume that there exists ¢’ € (0,c) such that Tap; = Taptc for all j. We can
also assume that € in Step 2 is such that 0 < e < ¢". Since u(a, 8, 745) = 0 and u'(a, B, 70 g) <
0, there exists 0 < ¢’ < & such that

1
0<u(apf,rap—¢€)< Z|u'((x,[3,ra,ﬁ) |e. (5.51)
By continuous dependence on initial data, there exists 6" € (0,9) such that

M(OC, V> 7}1,‘3 - S,) < 2”(“)[;’ roc,ﬂ - 8,) (552)
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when |y — 8| < 6’. Now let jo be such that |3; — | <" for j = jo. By Step 2, for |r —
ropl <eand j > jo we have

|/ (aBjsr) | = [/ (@ Brap) | + 1 (a0 forap) — ' (. Bjor) = 1| u'(aB,rap) |- (5.53)

Therefore for j = jo,

u(a,Bjsrap+e) <ul(a,fjrap—¢) — ‘ mu|1<s|u oBjr)|(e+€)
r—r, ap

(5.54)
<2u(a,forap—¢') — 5 |u'(oc,/3,r,x,l;) le<o.

Then we obtain a contradiction since 3; € C. Now assume that T < r, . By Step 2 we have

|/ (@B rap;) =t (aBsrap) | = |U/ (aBrap) | < 5 |/ (a,B1ap) | (5.55)

Do | =

for j = j, and we get a contradiction.

Now we can complete the proof of Theorem 1.3.
(i) Let & > 0 be fixed. By Proposition 5.7, there exists a unique § > 0 such that u(a,f3,
rap) = t'(a,B,708) = 0. With s and ¢ defined in (2.1), we set

w(r)=(%’ﬁ)su(a,/s,%ﬁr), z(r)=<r;‘f) ( /3“) 0<r<R  (556)

Then (w,z) is a nontrivial radial solution of problem (1.1).
(ii) follows from Proposition 5.7. O
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