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We show some new Sobolev’s trace embedding that we apply to prove that the fourth-
order nonlinear boundary conditions ∆2

pu+ |u|p−2u= 0 in Ω and−(∂/∂n)(|∆u|p−2∆u)=
λρ|u|p−2u on ∂Ω possess at least one nondecreasing sequence of positive eigenvalues.

1. Introduction and notations

Let Ω be a bounded domain of class C2 in R, N ≥ 2,1 < p < +∞, and ρ∈ Lr(∂Ω) a weight
function which can change its sign, with r = r(N , p) satisfying

r >
N − 1
2p− 1

for
N

p
≥ 2,

r = 1 for
N

p
< 2.

(1.1)

We assume that |(∂Ω)+| �= 0, where (∂Ω)+ = {x ∈ ∂Ω, ρ(x) > 0} and λ∈R. We consider
the following problem:

∆2
pu+ |u|p−2u= 0 in Ω,

− ∂

∂n

(|∆u|p−2∆u
)= λρ(x)|u|p−2u on ∂Ω,

u∈W
2,p
0 (Ω).

(1.2)

∆2
p := ∆(|∆u|p−2∆u) is the operator of fourth order, so-called the p-biharmonic (or

p-bilaplacian) operator. For p = 2, the linear operator ∆2
2 = ∆2 = ∆ · ∆ is the iterated

Laplacian that to a multiplicative positive constant appears often in the equations of
Navier-Stokes as being a viscosity coefficient, and its reciprocal operator noted (∆2)−1

is the celebrated Green’s operator (see [8]).
Existence results for nonlinear boundary problem have only been considered in recent

years. For the second-order p-Laplacian with nonlinear boundary conditions of different
type, see [5], see also [3]. For a fourth-order elliptic equation with the ordinary boundary
conditions, we cite [2] and with nonlinear boundary conditions, see [4].
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In this paper, we study in Theorem 2.5 the Sobolev’s trace embedding Wm,p(Ω)↩
Lq(∂Ω), where Ω ⊂ RN is a bounded domain of class Cm, N ≥ 2, q ∈ [1, p�m[ such that
p�m = (N − 1)p/(N −mp) if mp < N and p�m = +∞ if mp ≥ N . This embedding leads
to a nonlinear eigenvalue problem (1.2), where the eigenvalue appears at the nonlinear
boundary condition. Other main objective of this work, formulated by Theorem 3.3, is to
show that problem (1.2) has at least one nondecreasing sequence of positive eigenvalues
(λk)k≥1, by using some technical lemmas and the Ljusternick-Schnirelmann theory on
C1-manifolds, see [9]. So we give a direct characterization of λk involving a minimax
argument over sets of genus greater than k.

We set

λ1 = inf
{
‖u‖p2,p, u∈W2,p(Ω);

∫
∂Ω

ρ(x)|u|pdx = 1
}

, (1.3)

where ‖u‖2,p = (‖u‖pp +‖∆u‖pp)1/p is the norm of W2,p(Ω).
This paper is organized as follows. In Section 2, we establish the Sobolev’s trace em-

bedding in the general case, that is, for any m ∈ N. In Section 3, we use a variational
technique to prove the existence of a sequence of the positive eigenvalues of problem
(1.2).

2. The Sobolev’s trace embedding

We begin with the following definition and lemmas that will be helpful to prove the
Sobolev’s trace embedding.

Definition 2.1. A domain Ω is of class Ck if ∂Ω can be covered by bounded open sets Θ j

such that there is a mapping f j : Θ j → B, where B is the unit ball centered at the origin
and

f j
(
Θ j ∩Ω

)= B∩RN
+ ,

f j
(
Θ j ∩ ∂Ω

)= B∩ ∂RN
+ ,

f j ∈ Ck
(
Ω
)
, f −1

j ∈ Ck
(
B
)
.

(2.1)

Lemma 2.2. Let u∈W1,1(RN ), N > 1. For all y ∈R, v(x) := u(x, y)∈ L1(RN−1) and

‖v‖L1(RN−1) ≤ ‖u‖L1(RN ) +
∥∥∥∥ ∂u

∂xN

∥∥∥∥
L1(RN )

. (2.2)

Proof. W1,1(RN )= C∞c (RN ). So, it suffices to prove the lemma for u∈ C∞c (RN ). Thus,

∫
RN−1

u(x, y)dx ≤
∫
RN−1

∫ +∞

y

∣∣∣∣ ∂u

∂xN
(x, t)

∣∣∣∣dtdx

≤
∫
RN−1

∫
R

∣∣∣∣ ∂u

∂xN
(x, t)

∣∣∣∣dtdx,

(2.3)
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that is,

‖v‖L1(RN−1) ≤
∥∥∥∥ ∂u

∂xN

∥∥∥∥
L1(RN )

≤
∥∥∥∥ ∂u

∂xN

∥∥∥∥
L1(RN )

+‖u‖L1(RN ). (2.4)

�

Lemma 2.3. Let u∈W1,p(RN ), p < N . For all y ∈R, v(x) := u(x, y)∈ Lt(RN−1), where

t = (N − 1)p
N − p

= 1 +
(p− 1)N
N − p

, (2.5)

and there exists a positive constant depending only on p and N such that

‖v‖Lt(RN−1) ≤ c‖u‖1,p,RN . (2.6)

Proof. W1,p(RN )= C∞c (RN ). So it suffices to prove the lemma for u∈ C∞c (RN ). If we set
w = |u|t, then w ∈W1,1(RN ) and

‖w‖L1(RN ) ≤ c‖∇u‖(t−1)
Lp(RN )‖u‖Lp(RN ),∥∥∥∥ ∂w∂xj

∥∥∥∥
L1(RN )

≤ c‖∇u‖tLp(RN ).
(2.7)

Indeed, let q = p/(p− 1), (t− 1)q = Np/(N − p) and by using the Sobolev inequalities,
see [6],

∥∥u|t−1
∥∥
Lq(RN ) ≤ c‖∇u‖Np/(N−p)

Lp(RN ) . (2.8)

By Hölder and (2.8),

‖w‖1 =
∫
RN
|u|(t−1)|u|dx ≤ ‖u‖p

∥∥|u|(t−1)
∥∥
q ≤ c‖u‖p‖∇u‖(t−1)

Lp(RN ). (2.9)

On the other hand, ∂w/∂xj =±t|u(t−1)|(∂u/∂xj). By Hölder and (2.8),

∥∥∥∥ ∂w∂xj
∥∥∥∥
L1(RN )

≤ t‖u‖(t−1)‖Lq(RN )

∥∥∥∥ ∂u∂xj
∥∥∥∥
Lp(RN )

≤ c‖∇u‖tLp(RN ), (2.10)

where c is a positive constant.
Now, applying (2.9), (2.10), and Lemma 2.3, we find

‖u‖Lt(RN−1) ≤ c
(‖u‖Lp(RN ) +‖∇u‖Lp(RN )

)≤ c‖u‖1,p,RN . (2.11)

�
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Lemma 2.4. Let u∈Wm,p(RN ), N>1, m∈R, and mp < N . For all y ∈R, v(x) := u(x, y)
∈ Lp�m (RN−1), with p�m = (N − 1)p/(N −mp) and there exists a positive constant c depend-
ing only on p and N such that

‖v‖Lp�m (RN−1) ≤ c‖u‖m,p,RN . (2.12)

Proof. By applying Sobolev inequality [6] to ∂u/∂xj , 1 ≤ j ≤ N , we obtain that u ∈
W1,Np/(N−(m−1)p)(RN ). By Lemma 2.3, we deduce that v ∈ Lp�m (RN−1) with p�m = (N −
1)p/(N −mp). �

Theorem 2.5. Let Ω⊂RN , N ≥ 2, be a bounded domain of class Cm. For all u∈Wm,p(Ω),
mp < N . The restriction of u to ∂Ω denoted also by u belongs to Lq(∂Ω), for all q ∈ [1, p�m],

p�m =
(N − 1)p
N −mp

(2.13)

and there exists a positive constant c depending only on p, m, and Ω such that

‖u‖p�m(∂Ω) ≤ c‖u‖m,p,Ω. (2.14)

Proof. There exists a continuous linear operator P that operates from Wm,p(Ω) to
Wm,p(RN ), (cf. [1, 6]), such that to every u element of Wm,p(Ω) is associated an ele-
ment P(u)∈W2,p(RN ). By density, it is sufficient to study the properties of the trace on
∂Ω of the function C∞c (RN ).

Let θj and f j be as in the definition (2.2). ∂Ω is compact, therefore we can suppose
that there exists a finite θj , 1 ≤ j ≤ k, which covers ∂Ω. Let (Pj , 1 ≤ j ≤ k) be a parti-
tion of unity of ∂Ω subordinate to this covering, see, for example, [1]. If u ∈ C∞c (RN ),
then Pjuo f

−1
j ∈ Cm

0 (B). We extend Pjuo f
−1
j to Cm

0 (RN ). By Lemma 2.4, the trace wj of
Pjuo f

−1
j on the hyperplane {(x1,x2, . . . ,xN−1,0), xi ∈R} satisfies the inequality

∥∥wj

∥∥
Lp�m (RN−1) ≤ c

∥∥Pjuo f
−1
j

∥∥
m,p,B ≤ cj‖u‖m,p,RN , (2.15)

where cj is a positive constant. We estimate the trace vj := wjo f j of the function Pju on
Γ j := θj ∩ ∂Ω. Then

∥∥vj∥∥p�mΓ j
≤ cj

∫
RN−1∩B

∣∣wj

∣∣p�mdx, (2.16)

where cj is a positive constant. We combine (2.15) and (2.16) as follows:

∥∥vj∥∥Lp�m (Γ j )
≤Mj‖u‖m,p,RN . (2.17)
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On the other hand, u = ∑ j=k
j=1Pju =

∑ j=k
j=1 vj , where vj = Pju, and suppvj ⊂ Γ j , ∂Ω ⊂⋃ j=k

j=1 Γ j . So

‖u‖Lp�m (∂Ω) ≤
j=k∑
j=1

∥∥vj∥∥Lp�m (∂Ω) =
j=k∑
j=1

∥∥vj∥∥Lp�m (Γ j )
. (2.18)

From (2.18),

‖u‖Lp�m (∂Ω) ≤



j=k∑
j=1

Mj


‖u‖m,p,RN . (2.19)

On the other hand, ∂Ω is bounded, so u∈ Lq(∂Ω), for all q ∈ [1, p�m]. �

By using Theorem 2.5, the next corollary follows exactly as in the classical compact
Sobolev embedding established in [1, 6].

Corollary 2.6. Under the same hypotheses at the last theorem, Wm,p(Ω) is compactly
embedding in Lq(∂Ω) for all q ∈ [1, p�m[.

Theorem 2.7. Let Ω⊂RN , N ≥ 2, be a bounded domain of class Cm. For all u∈Wm,p(Ω),
mp ≥N . The restriction of u to ∂Ω denoted also by u belongs to Lq(∂Ω), for all q ∈ [1,+∞[.

Proof. Let an arbitrary q ∈ [1,∞[. We can find q such that
(a) mq < N ;
(b) q =Nq/(N − 1 +mq).
From (b), q = q�m = (N − 1)q/(N −mq). Since mq < N , then q < p (because mp ≥N).

So
(1) Wm,p(Ω) is continuously embedding in Wm,q(Ω).

Since q = q�m and mq < N , thus from Theorem 2.5,
(2) Wm,q(Ω) is continuously embedding in Lt(∂Ω) for all t ∈ [1,q],

and from Corollary 2.6,
(3) Wm,q(Ω) is compactly embedding in Lt(∂Ω) for all t ∈ [1,q[.

By combining (1), (2), and (3), we conclude that
(i) Wm,p(Ω) is continuously embedding in Lt(∂Ω) for all t ∈ [1,q],

(ii) Wm,p(Ω) is compactly embedding in Lt(∂Ω) for all t ∈ [1,q[.
q being arbitrary, then we have the desired result. �

Theorem 2.8. Let Ω⊂RN , N ≥ 2, be a bounded domain of class Cm, mp > N . Wm,p(Ω) is
compactly embedding L∞(∂Ω)∩C(∂Ω).

Proof. By using the Sobolev embedding, Wm,p(Ω) is compactly embedding in L∞(Ω)∩
C(Ω). So the functions of Wm,p(Ω) are continuous on Ω and bounded, therefore their
traces are well defined, continuous, and bounded. So we have

(∗) Wm,p(Ω) is compactly embedding in L∞(Ω)∩C(Ω),
(∗∗) L∞(Ω)∩C(Ω) is continuously embedding in L∞(∂Ω)∩C(∂Ω).

By (∗) and (∗∗), we have the desired result. �



1530 Problem involving the p-Laplacian

3. Main results

Through this paper, all solutions are weak, that is, u ∈W2,p(Ω) is a solution of (1.2), if
for all v ∈W2,p(Ω), we have

(S1) 〈∆2
pu,v〉+

∫
Ω |u|p−2uv = 0;

(S2) −∫∂Ω(∂/∂n)(|∆u|p−2∆u)v = λ
∫
∂Ω ρ(x)|u|p−2uv.

If we replace S2 in (S1), then we deduce that

∫
Ω
|∆u|p−2∆u∆v+

∫
Ω
|u|p−2uv = λ

∫
∂Ω

ρ|u|p−2uvdσ. (3.1)

If u∈W2,p(Ω)−{0}, then u is called the eigenfunction of (1.2) associated to the eigen-
value λ.

We will use the Ljusternick-Schnirelmann theory on C1-manifolds [9].
Consider the following two functionals defined on W2,p(Ω):

A(u)= 1
p
‖u‖W2,p(Ω), B(u)= 1

p

∫
∂Ω

ρ(x)|u|pdσ , (3.2)

where ‖u‖W2,p(Ω) = (‖u‖p +‖∆u‖p)1/p. We set

� = {u∈W2,p(Ω); pB(u)= 1
}
. (3.3)

Lemma 3.1. (i) A and B are even and of class C1 on W2,p(Ω).
(ii) � is a closed C1-manifold.

Proof. (i) It is clear that A and B are even and of class C1 on W2,p(Ω), A′(u) = ∆2
pu+

|u|p−2u, and B′(u)= ρ|u|p−2u.
(ii) � = B−1{1/p}, so B is closed. Its derivative operator B′ satisfies B′(u) �= 0, for all

u∈� (i.e., B′(u) is onto for all u∈�), so B is a submersion, then � is a C1-manifolds.
�

The following lemma is the key to show the existence.

Lemma 3.2. (i) B′ : W2,p(Ω)→ (W2,p(Ω))′ is completely continuous.
(ii) The functional A satisfies the Palais-Smale condition on �, that is, for {un} ⊂�, if

A(un) is bounded and

εn := A′
(
un
)− gnB

′(un)−→ 0 as n−→ +∞, (3.4)

where gn = 〈A′(un),un〉/〈B′(un),un〉. Then {un}n≥1 has a convergent subsequence in
W2,p(Ω).

Proof. (i) Step 1 (definition of B′).
First case. If N/p > 2, r > (N − 1)/(2p− 1). Let u,v ∈W2,p(Ω). By Hölder’s inequality,

we have
∣∣∣∣
∫
∂Ω

ρ(x)
∣∣u(x)

∣∣p−2
u(x)v(x)dσ

∣∣∣∣≤ ‖ρ‖r‖u‖p−1
s ‖v‖p�2 , (3.5)
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where p�2 = (N − 1)p/(N − 2p), and s is given by

p− 1
s

+
1
p�2

+
1
r
= 1. (3.6)

Therefore,

p− 1
s

= 1− 1
r
− 1

p�2
> 1− 2p− 1

N − 1
− N − 2p

(N − 1)p
= p− 1

p�2
. (3.7)

Then it suffices that

max(1, p− 1) < s < p2 (3.8)

and B′ is well defined.
Second case. If N/p = 2, r > (N − 1)/(2p− 1). In this case, from Theorem 2.7,

W2,p(Ω)↩Lq(∂Ω) (3.9)

for any q ∈ [1,+∞[. There is q ≥ 1 such that

1
q

+
1
r

+
p− 1
p

= 1
q

+
1
r

+
1
p′
= 1. (3.10)

We obtain that

1
q
= 1−

(
1
r

+
1
p′

)
≤ 1. (3.11)

By Hölder’s inequality, we arrive at

∣∣∣∣
∫
∂Ω

ρ(x)
∣∣u(x)

∣∣p−2
u(x)v(x)dx

∣∣∣∣≤ ‖ρ‖r‖u‖p−1
p ‖v‖q (3.12)

for any u,v ∈W2,p(Ω). Then in this case, B′ is well defined.
Third case. If N/p < 2, r = 1. In this case, from Theorem 2.8,

W2,p(Ω)↩C(∂Ω)∩L∞(∂Ω). (3.13)
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Therefore for any u,v ∈W2,p(Ω), we have

∣∣∣∣
∫
∂Ω

ρ(x)
∣∣u(x)

∣∣p−2
u(x)v(x)dx

∣∣∣∣ <∞, (3.14)

with ρ∈ L1(Ω), and B′ is well defined also in this case.
Step 2. B′ is completely continuous. Let (un)⊂W2,p(Ω) be a sequence such that un→ u

weakly in W2,p(Ω). We must show that B′(un)→ B′(u) strongly in (W2,p(Ω))′, that is,

sup
v∈W2,p (Ω)
‖v‖2,p≤1

∣∣∣∣
∫
∂Ω

ρ
[∣∣un∣∣p−2

un−|u|p−2u
]
vdx

∣∣∣∣−→ 0 as n−→ +∞. (3.15)

For this end, we distinguish three cases as in Step 1 above for N/p > 2, and r > (N −
1)/(2p− 1). Let s be as in (3.8). Then,

sup
v∈W2,p (Ω)
‖v‖2,p≤1

∣∣∣∣
∫
∂Ω

ρ
[∣∣un∣∣p−2

un−|u|p−2u
]
vdx

∣∣∣∣

≤ sup
v∈W2,p (Ω)
‖v‖2,p≤1

[
‖ρ‖r

∥∥∥∣∣un∣∣p−2
un−|u|p−2u

∥∥∥
s/(p−1)

‖v‖p�2
]

≤ c‖ρ‖r
∥∥un∥∥p−2

un−|u|p−2u
∥∥
s/(p−1),

(3.16)

where c is the constant of Sobolev’s embedding [1].
On other hand, the Nemytskii’s operator u �→ |u|p−2u is continuous from Ls(∂Ω) into

Ls/(p−1)(∂Ω), and un→ u weakly in W2,p(Ω). So, we deduce that un→ u strongly in Ls(∂Ω)
because s < p�2 . Hence,

∥∥∥∣∣un∣∣p−2
un−|u|p−2u

∥∥∥
s/(p−1)

−→ 0, as n−→ +∞. (3.17)

This completes the proof of the claim in this case.
If N/p = 2,

∣∣∣∣
∫
∂Ω

ρ
[∣∣un∣∣p−2

un−|u|p−2u
]
vdx

∣∣∣∣≤ ‖ρ‖r
∥∥∥∣∣un∣∣p−2

un−|u|p−2u
∥∥∥p−1

p
‖v‖q, (3.18)

where q is given by (3.11). By Sobolev’s trace embedding, there exists c > 0 such that

‖v‖q ≤ c‖v‖2,p, ∀v ∈W2,p(Ω). (3.19)

Thus,

sup
v∈W2,p (Ω)
‖v‖2,p≤1

∣∣∣∣
∫
∂Ω

ρ
[∣∣un∣∣p−2

un−|u|p−2u
]
vdx

∣∣∣∣≤ c‖ρ‖r
∥∥∥∣∣un∣∣p−2

un−|u|p−2u
∥∥∥p−1

p
.

(3.20)
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From the continuity of u �→ |u|p−1u from Lp(∂Ω) into Lp′(∂Ω), and from the compact
embedding of W2,p(Ω) in Lp(∂Ω), we have the desired result.

If N/p < 2, r = 1. W2,p(Ω)↩C(∂Ω), we obtain

sup
v∈W2,p (Ω)
‖v‖2,p≤1

∣∣∣∣
∫
∂Ω

ρ
[∣∣un∣∣p−2

un−|u|p−2u
]
vdx

∣∣∣∣≤ c‖ρ‖1 sup
∂Ω

∣∣∣∣∣un∣∣p−2
un−|u|p−2u

∣∣∣,

(3.21)

where c is the constant given by embedding of W2,p(Ω) in C(∂Ω)∩L∞(∂Ω).
It is clear that

sup
∂Ω

∣∣∣∣∣un∣∣p−2
un−|u|p−2u

∣∣∣−→ 0, as n−→ +∞. (3.22)

Hence B′ is completely continuous also in this case.
(ii) {un} is bounded in W2,p(Ω). Hence without loss of generality, we can assume that

un converges weakly in W2,p(Ω) to some function u∈W2,p(Ω) and ‖un‖2,p → c. For the
rest, we distinguish two cases. If c = 0, then un converges strongly to 0 in W2,p(Ω).

If c �= 0, the claim is to prove that un is of Cauchy in W2,p(Ω).
Set

G
(
un,um

)= 〈A′(un)−A′
(
um
)
,un−um

〉
,

G1
(
un,um

)= 〈∆2
pun−∆2

pum,un−um
〉

,

G2
(
un,um

)= 〈∣∣un∣∣p−2
un−

∣∣um∣∣p−2
um,un−um

〉
.

(3.23)

We remark that

G
(
un,um

)=G1
(
un,um

)
+G2

(
un,um

)
. (3.24)

On the other hand,

G
(
un,um

)= 〈A′(un)−A′
(
um
)
,un−um

〉
= 〈εn− εm,un−um

〉
+
〈
hn−hm,un−um

〉
,

(3.25)

with εn defined as in (3.4), and hn = ‖u‖p2,pB
′(un).

G
(
un,um

)≤ ∥∥εn− εm∥∥∗
∥∥un−um

∥∥
2,p +

∥∥hn−hm
∥∥∗
∥∥un−um

∥∥
2,p, (3.26)

where ‖ · ‖∗ is the dual norm associated to ‖ · ‖2,p.
This implies that hn converges, for a subsequence if necessary, in W2,p(Ω). Indeed,

from (i) of Lemma 3.2 B′ : W2,p(Ω) → (W2,p(Ω))′ is completely continuous. On the
other hand, for a subsequence if necessary, ‖un‖2,p → c ≥ 0. It follows that (hn)n≥0 is con-
vergent in (W2,p(Ω))′. Then,

G
(
un,um

)−→ 0, as n−→ +∞. (3.27)
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From [7], we have the inequality

∣∣t1− t2
∣∣p ≤ c

{(∣∣t1∣∣p−2
t1−

∣∣t2∣∣p−2
t2
)
· (t1− t2

)}γ/2(∣∣t1∣∣p +
∣∣t2∣∣p

)1−γ/2
, (3.28)

for any t1, t2 ∈R, with γ = p if 1 < p < 2 and γ = 2 if p ≥ 2. By applying Hölder’s inequal-
ity, we deduce that

∥∥∆un−∆um
∥∥p
p ≤ c

{
G1
(
un,um

)}γ/2(∥∥∆un∥∥pp +
∥∥∆um∥∥pp)1−γ/2, (3.29)

∥∥un−um
∥∥p
p ≤ c

{
G2
(
un,um

)}γ/2(∥∥un∥∥pp +
∥∥um∥∥pp

)1−γ/2
, (3.30)

where c is a positive constant independent of n and m, γ = p if 1 < p < 2, and γ = 2 if
p ≥ 2.

From [7], we have

(∣∣un∣∣p−2
un−

∣∣um∣∣p−2
um
)(
un−um

)≥ c

∣∣un−um
∣∣(−γ+p+2)

(|un∣∣+
∣∣um∣∣)(2−γ) ,

(∣∣∆un∣∣p−2
∆un−

∣∣∆um∣∣p−2
∆um

)(
∆un−∆um

)≥ c

∣∣∆un−∆um
∣∣(−γ+p+2)

(∣∣∆un∣∣+
∣∣∆um∣∣)(2−γ) ,

(3.31)

where γ = p if 1 < p < 2 and γ = 2 if p ≥ 2. By integrating these two relations over Ω, we
find

G1
(
un,um

)≥ 0, G2
(
un,um

)≥ 0. (3.32)

On the other hand, G1 ≤G and G2 ≤G. Then from (3.27) and (3.32),

G1
(
un,um)−→ 0 as n−→∞, G2

(
un,um

)−→ 0 as n−→∞. (3.33)

Then from (3.29) and (3.30),

∥∥∆un−∆um
∥∥
p −→ 0 as n−→∞,

∥∥un−um
∥∥
p −→ 0 as n−→∞. (3.34)

So

∥∥un−um
∥∥p

2,p −→ 0 as n−→∞. (3.35)

Therefore (un)n is a Cauchy’s sequence in W2,p(Ω). This achieves the proof of the lemma.
�

Set

Γk =
{
K ⊂� : K is symmetric, compact and γ(K)≥ k

}
, (3.36)

where γ(K)= k is the genus of K , that is, the smallest integer k such that there exists an
odd continuous map from K to Rk −{0}.

Now, by the Ljusternick-Schnirelmann theory, see, for example, [9], we have our main
result.
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Theorem 3.3. For any integer k ∈N∗,

λk := inf
K∈Γk

max
u∈K

pA(u) (3.37)

is a critical value of A restricted on �. More precisely, there exists uk ∈ Kk ∈ γK such that

λk = pA
(
uk
)= sup

u∈Kk

pA(u) (3.38)

and (λk,uk) is a solution of (1.2) associated to the positive eigenvalue λk. Moreover,

λk −→ +∞, as k −→ +∞. (3.39)

Proof. We need only to prove that for any k ∈ N∗, Γk �= ∅ and the least assertion. In-
deed, since W2,p(Ω) is separable, there exists (ei)i≥1 linearly dense in W2,p(Ω) such that
suppei∩ suppej =∅ if i �=j. We can assume that ei ∈�. Let k ∈N∗, denote Fk = span{e1,
e2, . . . ,ek}. Fk is a vectorial subspace and dimFk = k.

If v ∈ Fk, then there exist α1, . . . ,αk in R such that v = ∑k
i=1αiei. Thus B(v) =∑k

i=1 |αi|pB(ei) = (1/p)
∑k

i=1 |αi|p. It follows that the map v �→ (pB(v))1/p := ‖v‖ defines
a norm on Fk. Consequently, there is a constant c > 0 such that

c‖u‖2,p ≤ ‖v‖ ≤ 1
c
‖u‖2,p. (3.40)

This implies that the set

V = Fk ∩
{
v ∈W2,p(Ω) : B(v)≤ 1

p

}
(3.41)

is bounded. Thus V is a symmetric bounded neighborhood of 0∈ Fk. By [9, Proposition
2.3(f)], γ (Fk ∩�)= k because Fk ∩� is compact, and Γk �= ∅.

Now we claim that λk → +∞, as k→ +∞. Let (en,e∗j )n, j be a biorthogonal system such
that en ∈W2,p(Ω), e∗j ∈ (W2,p(Ω))′, the en are linearly dense in W2,p(Ω); and the e∗j are
total for (W2,p(Ω))′, see, for example, [9]. Set now, for k ∈N∗,

Fk = span
{
e1, . . . ,ek

}
, F⊥k = span

{
ek+1,ek+2,...

}
. (3.42)

By [9, Proposition 2.3(g)], we have for any A∈ Γk, A∩F⊥k−1 �= ∅. Thus,

tk := inf
A∈Γk

sup
u∈A∩F⊥k−1

pA(u)−→ +∞. (3.43)

Indeed, if not, for k is large, there exists uk ∈ F⊥k−1 with ‖uk‖p = 1 such that

tk ≤ pA
(
uk
)≤M (3.44)

for some M > 0 independent of k. Therefore,

∥∥uk∥∥2,p ≤M. (3.45)
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This implies that (uk)k is bounded in W2,p(Ω). For a subsequence of {uk} if necessary, we
can assume that {uk} converges weakly in W2,p(Ω) and strongly in Lp(Ω). By our choice
of F⊥k−1, we have uk↩ 0 weakly in W2,p(Ω) because 〈e∗n ,ek〉 = 0, for all k ≥ n.

This contradicts the fact that ‖uk‖p = 1 for all k. Since λk ≥ tk, the claim is proved,
which completes the proof. �

Corollary 3.4. (i) λ1 = inf{‖v‖p2,p, v ∈W2,p(Ω);
∫
∂Ω ρ(x)|v|pdx = 1}.

(ii) 0 < λ1 ≤ λ2 ≤ ··· ≤ λn→ +∞.

Proof. (i) For u∈�, we put K1 = {u,−u}, γ(K1)= 1. A is even, so

pA(u)=max
K1

pA≥ inf
K∈Γ1

max
K

pA. (3.46)

Hence,

inf
u∈�

pA(u)≥ inf
K∈Γ1

max
K

pA= λ1. (3.47)

On the other hand, for all K ∈ Γ1, for all u∈ K ,

sup
K

pA≥ pA(u)≥ inf
u∈�

pA(u). (3.48)

So,

inf
K∈Γ1

max
K

pA= λ1 ≥ inf
u∈�

pA(u). (3.49)

Then,

λ1 = inf
u∈�

pA(u)= inf
{
‖v‖p2,p, v ∈W2,p(Ω);

∫
∂Ω

ρ(x)|v|pdx = 1
}
. (3.50)

(ii) For all i, j ∈N∗, Γi ⊂ Γ j . From the definition of λi, i ∈N∗, we have λi ≥ λj . λn →
+∞ is already proved in Theorem 3.3. The proof is achieved. �

Corollary 3.5. If it is supposed that |(∂Ω)−ρ | �= 0 with ∂Ω−
ρ = {x ∈ ∂Ω; ρ(x) < 0}, then

(1.2) has a decreasing sequence of the negative eigenvalues (λ−n)(ρ)n≥0 such that
limn→+∞ λ−n =−∞.

Proof. First of all, we remark that (∂Ω)−ρ = (∂Ω)+
(−ρ). So |(∂Ω)+

(−ρ)| = |(∂Ω)−ρ | �= 0. From
Theorem 3.3, (1.2) has a nondecreasing sequence of the positive eigenvalues λn(−ρ) such
that limn→+∞ λn(−ρ)= +∞.

λn(−ρ) satisfies −(∂/∂n)(|∆u|p−2∆u) = λn(−ρ)(−ρ)|u|p−2u = −λn(−ρ)ρ|u|p−2u, u ∈
W2,p(Ω). We put

λ−n(ρ) :=−λn(−ρ). (3.51)

λn(−ρ)n≥0 is a nondecreasing positive sequence, so (λ−n)(ρ)n≥0 is a negative decreasing
sequence.
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On the other hand, limn→+∞ λn(−ρ)= +∞. So,

lim
n→+∞λ−n(ρ)=−∞. (3.52)

�
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