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A novel, brain-like, hierarchical (affine-neuro-fuzzy-topological) control for biomechan-
ically realistic humanoid-robot biodynamics (HB), formulated previously in [15, 16], is
proposed in the form of a tensor-invariant, “meta-cybernetic” functor machine. It rep-
resents a physiologically inspired, three-level, nonlinear feedback controller of muscular-
like joint actuators. On the spinal level, nominal joint-trajectory tracking is formulated as
an affine Hamiltonian control system, resembling the spinal (autogenetic-reflex) “motor
servo.” On the cerebellar level, a feedback-control map is proposed in the form of self-
organized, oscillatory, neurodynamical system, resembling the associative interaction of
excitatory granule cells and inhibitory Purkinje cells. On the cortical level, a topological
“hyper-joystick” command space is formulated with a fuzzy-logic feedback-control map
defined on it, resembling the regulation of locomotor conditioned reflexes. Finally, both
the cerebellar and the cortical control systems are extended to provide translational force
control for moving 6-degree-of-freedom chains of inverse kinematics.

1. Introduction

Traditional hierarchical robot control (see, e.g., [31]) consists of three control levels: the
executive (bottom) level performs tracking of nominal trajectories in internal joint coor-
dinates, the strategic (top) level performs “planning” of the trajectories of an end-effector
in external Cartesian coordinates, and the tactical (middle) level connects other two levels
by means of inverse kinematics.

The modern version of the hierarchical robot control (see, e.g., [20]) includes deci-
sion making performed by the neuro-fuzzy(-genetic) classifier to adapt the (manipulator)
control to dynamically changing environment.

The so-called “intelligent” approach to robot control typically represents a form of
function approximation, which is itself based on a combination of neuro-fuzzy-genetic
computations (see, e.g., [7]).

In addition, many special issues and workshops focusing on physiological models for
robot control reflect the increased attention for the development of cerebellar models
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[30, 2, 3, 4, 25, 26] for learning robot control with functional decomposition. Here, the
main result could be formulated as the cerebellum is more than just the function approx-
imator.

In this paper, we introduce an alternative approach for humanoid control, emphasiz-
ing the role of muscle-like actuators. We propose a new, physiologically based, tensor-
invariant, hierarchical force control (FC) for the HB, formulated previously in [14, 15,
16, 17, 18, 19]. We consider the muscle-like covariant driving torques, that is, one-forms
Fi = Fi(t,q, p), which are dependent on time t, joint angles q = q(t), and canonical an-
gular momenta p = p(t), as the most important component of humanoid motion (this
is based on the fact of extremely high degree of the natural muscular redundancy: the
human body, which is an everlasting inspiration for humanoid robots, for its motion
uses a synergetic action of approximately 640 skeletal muscles); therefore we propose
the sophisticated hierarchical system for the subtle Fi-control corresponding to the spinal,
the cerebellar, and the cortical levels of human motor control. Fi are first set up as test-
ing input signals to HB, and then covariantly updated as feedback one-forms ui on each
FC level. On the spinal FC level, the nominal joint-trajectory tracking is proposed
in the form of affine Hamiltonian control; here the driving torques are given correc-
tions by spinal-reflex controls. On the cerebellar FC level, the relation is established be-
tween canonical joint coordinates qi, pi and gradient neural-image coordinates xi, yi,
representing bidirectional, self-organizing, associative memory machine; here the driv-
ing torques are given the cerebellar corrections. On the cortical FC level, the topological
“hyper-joystick” is proposed as the central FC command-space selector, with the fuzzy-
logic feedback-control map defined on it, giving the cortical corrections to the driving
torques.

The model of the spinal FC level, formulated here, resembles an autogenetic motor
servo [9] acting on the spinal-reflex level of the human locomotor control. (Voluntary
contraction force Φ of human skeletal muscle is reflexly excited (positive feedback +Φ−1)
by responses of its spindle receptors to stretch and is reflexly inhibited (negative feed-
back −Φ−1) by responses of its Golgi tendon organs to contract. Stretch and unloading
reflexes are mediated by combined actions of several autogenetic neural pathways, form-
ing the so-called “motor servo.” The term “autogenetic” means that the stimulus excites
receptors located in the same muscle that is the target of the reflex response. The most im-
portant of these muscle receptors are the primary and secondary endings in muscle spin-
dles, sensitive to length change-positive length feedback +Φ−1, and the Golgi tendon or-
gans, sensitive to contractile force-negative force feedback−Φ−1. The gainG of the length
feedback +Φ−1 can be expressed as the positional stiffness (the ratio G ≈ S = dΦ/dx of
the force-Φ change to the length-x change) of the muscle system. The greater the stiff-
ness S, the less the muscle will be disturbed by a change in load and the more reliable the
performance of the muscle system in executing controlled changes in length +Φ−1. The
autogenetic circuits +Φ−1 and −Φ−1 appear to function as servoregulatory loops that
convey continuously graded amounts of excitation and inhibition to the large (alpha)
skeletomotor neurons. Small (gamma) fusimotor neurons innervate the contractile poles
of muscle spindles and function to modulate spindle-receptor discharge.) The model of
the cerebellar FC level, formulated here, mimics the self-organizing, associative function
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of the excitatory granule cells and the inhibitory Purkinje cells of the cerebellum [10].
The model of the cortical FC level, presented in this paper, mimics the integral synergis-
tic regulation of (loco)motor conditioned reflexes [10].

Finally, both cerebellar control systems can be easily extended to provide translational
force control for moving 6-degree-of-freedom inverse kinematics chains.

It is our view that the extremely high order of the driving force redundancy in the
biomechanically realistic HB justifies the formulation of the three-level force control
functor system.

Computer-algebra implementation of all three FC levels of HB is provided in the ap-
pendix.

2. Functor control machine

In this section, we define the functor control machine (see [14, 15, 18, 19]), for the learn-
ing control with functional decomposition, by a two-step generalization of Kalman’s the-
ory of linear MIMO feedback systems. The first generalization puts Kalman’s theory into
the pair of mutually dual linear categories Vect and Vect∗ of vector spaces and linear op-
erators, with a “loop functor” representing the closed-loop control, thus formulating the
unique, categorical formalism valid both for the discrete, and for the continual MIMO
systems.

We start with the unique, feedforward continual-sequential state equation

ẋ(t+ 1)= Ax(t) +Bu(t), y(t)= Cx(t), (2.1)

where (as usual) the overdot denotes the time derivative, and the finite-dimensional vec-
tor spaces of states X � x, inputs U � u, and outputs Y � y have the corresponding lin-
ear operators, respectively, A : X → X , B : U → X , and C : X → Y . The modular system
theory comprises the system dynamics, given by a pair (X ,A), together with a reach-
ability map e : U → X of the pair (B,A), and an observability map m : X → Y of the pair
(A,C). If the reachability map e is a surjection, the system dynamics (X ,A) is called reach-
able; if the observability map m is an injection, the system dynamics (X ,A) is called ob-
servable. If the system dynamics (X ,A) is both reachable and observable, a composition
r =m ◦ e : U → Y defines the total system’s response, which is given by solution of (2.1).
If the unique solution to the continual-sequential state equation exists, it gives the answer
to the (minimal) realization problem: find the system S that realizes the given response
r =m◦ e :U → Y (in the smallest number of discrete states and in the shortest time).

The inverse map r−1 = e−1 ◦m−1 : Y →U of the total system’s response r : U → Y de-
fines the linear feedback operator K : Y →U , given by standard feedback equation

u(t)= Ky(t). (2.2)

In categorical language, see [15, 17, 18, 19], the feedforward system dynamics in the
category Vect is a pair (X ,A), where X ∈ Ob(Vect) is an object in Vect and A : X →
X ∈ Mor(Vect) is a Vect-morphism. A feedforward decomposable system in Vect is
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such a sextuple S ≡ (X ,A,U ,B,Y ,C) that (X ,A) is the system dynamics in Vect, a Vect-
morphism B :U → X is an input map, and a Vect-morphism C : X → Y is an output map.
Any object in Vect is characterized by mutually dual (recall that in categorical language,
duality means reversing the (arrows of) morphisms; the knowledge of one of the two mu-
tually dual terms automatically implies the knowledge of the other) notions of its degree
(a number of its input morphisms) and its codegree (a number of its output morphisms).
Similarly, any decomposable system S in Vect has a reachability map given by an epi-
morphism e = A ◦B : U → X and its dual observability map given by a monomorphism
m = C ◦A : X → Y ; their composition r =m ◦ e : U → Y in Mor(Vect) defines the total
system’s response in Vect given by the unique solution of the continual-sequential state
equation (2.1).

The dual of the total system’s response, defined by the feedback equation (2.2), is the
feedback morphism K = e−1 ◦m−1 : Y →U belonging to the dual category Vect∗.

In this way, the linear, closed-loop, continual-sequential MIMO system (2.1) and (2.2)
represents the linear iterative loop functor � : Vect⇒Vect∗.

Our second generalization represents a natural system process Ξ[�] that transforms
the linear loop functor � : Vect⇒ Vect∗ into the nonlinear loop functor �� : ���⇒
���∗ between two mutually dual nonlinear categories ��� and ���∗. We apply the
natural process Ξ separately

(1) on the feedforward decomposable system S≡ (X ,A,U ,B,Y ,C) in Vect,
(2) on the feedback morphism K = e−1 ◦m−1 : Y →U in Vect∗.

Under the action of the natural process Ξ, the linear feedforward system dynam-
ics (X ,A) in Vect transforms into a nonlinear feedforward Ξ-dynamics (Ξ[X],Ξ[A]) in
���, represented by a nonlinear feedforward decomposable system Ξ[S]≡ (Ξ[X],Ξ[A],
Ξ[U],Ξ[B],Ξ[Y],Ξ[C]).

The reachability map transforms into the input process Ξ[e]= Ξ[A] ◦Ξ[B] : Ξ[U]→
Ξ[X], while its dual observability map transforms into the output process Ξ[m]= Ξ[C]◦
Ξ[A] : Ξ[X]→ Ξ[Y]. In this way, the total response of the linear system r =m◦ e :U → Y
in Mor(Vect) transforms into the nonlinear system behaviorΞ[r]= Ξ[m]◦Ξ[e] : Ξ[U]→
Ξ[Y] in Mor(���). Obviously, Ξ[r], if exists, is given by a nonlinear Ξ-transform of the
linear state equation (2.1).

Analogously, the linear feedback morphism K = e−1 ◦m−1 : Y → U in Mor(Vect∗)
transforms into the nonlinear feedback morphism Ξ[K] = Ξ[e−1] ◦ Ξ[m−1] : Ξ[Y] →
Ξ[U] in Mor(���∗).

In this way, the natural system process Ξ : � � �� is established. This means that the
nonlinear loop functor L = Ξ[�] : ���⇒ ���∗ is defined out of the linear, closed-
loop, continual-sequential MIMO system (2.1) and (2.2).

The purpose of this paper is to formulate the nonlinear loop functor L = Ξ[�] :
���⇒���∗ for various hierarchical levels of muscular-like FC.

3. Generalized Hamiltonian HB plant

Generalized HB plant has been previously developed in [14, 15, 17, 18, 19]. For the
sake of continuity of the present paper, in this section we briefly recapitulate the main
points.
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Figure 3.1. HB configuration manifold defined as an anthropomorphic product tree of the con-
strained rotational Lie groups.

Kinematics of an n-segment humanoid chain is usually defined as a map between
external (usually, end-effector) coordinates xr (r = 1, . . . ,n) and internal (joint) coor-
dinates qi (i = 1, . . . ,N). The forward kinematics is defined as a nonlinear map xr =
xr(qi) with corresponding linear vector functions dxr = ∂xr/∂qi ·dqi of differentials, and
ẋr = ∂xr/∂qi · q̇i of velocities. (Here and subsequently the summation convention over
repeated indices is understood.) When the rank of the configuration-dependent Jaco-
bian matrix J ≡ ∂xr/∂qi is less than n, the kinematic singularities occur; the onset of
this condition could be detected by the manipulability measure [34]. Inverse kinemat-
ics (IK) is defined conversely by a nonlinear map qi = qi(xr) with corresponding
linear vector functions dqi = ∂qi/∂xr · dxr of differentials and q̇i = ∂qi/∂xr · ẋr of veloc-
ities. Again, in the case of redundancy (n < N), the inverse kinematic problem admits
infinite solutions; often the pseudoinverse configuration control is used instead [28]:
q̇i = J∗ · ẋr , where J∗ = JT(JJT)−1 denotes the Moore-Penrose pseudoinverse of the Ja-
cobian matrix J .

The joint angles qi (i = 1, . . . ,N ≡ DOF) in HB constitute a smooth (C∞) configura-
tion manifold MN , defined as a direct product of joint rotational Lie groups SO(3)×
SO(2)× SO(3)× . . . for all joints (Figure 3.1). Uniaxial, “hinge” joints represent con-
strained, classical, rotational Lie groups SO(2)icnstr, parameterized by constrained angles
qicnstr ≡ qi ∈ [qimin,qimax]. (In the following text, the subscript “cnstr” will be omitted,
for the sake of simplicity.) Three-axial, “ball-and-socket” joints represent constrained
rotational groups SO(3)i, usually parameterized by constrained Euler angles qi1,2,3 =
{φ,ψ,θ}i.

If we apply the functor Lie on the category •[SO(n)i] (for n= 2,3 and i= 1, . . . ,N) of
rotational Lie groups SO(n)i, we obtain the category •[so(n)i] of corresponding tangent
Lie algebras so(n)i (see [14, 15, 18, 19]). If we further apply the functor DualG to the
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category •[so(n)i], we obtain the category ∗• [so(n)∗i ] of cotangent, or, canonical Lie alge-
bras so(n)∗i (and their homomorphisms). To go directly from •[SO(n)i] to ∗• [so(n)∗i ], we
use the canonical functor Can.

Both the tangent algebras so(n)i and the cotangent algebras so(n)∗i contain infinites-
imal group generators: angular velocities q̇i = q̇φi in the first case, and canonical angular
momenta pi = pφi in the second case. As Lie group generators, both the angular veloc-

ities and the angular momenta satisfy the commutation relations [q̇φi , q̇ψi] = εφψθ q̇θi and

[pφi , pψi]= εθφψ pθi , respectively, where the structure constants εφψθ and εθφψ constitute the
totally antisymmetric third-order tensors.

Note that the parameterization of rotation is the subject of continuous research and
development in many theoretical and applied fields of mechanics, such as rigid body,
structural, and multibody dynamics, robotics, spacecraft attitude dynamics, navigation,
image processing, and so forth. Besides Euler angles used in this paper, also Euler pa-
rameters, Cayley-Rodrigues parameters, exponential map of rotation, as well as quater-
nions have been classically used for more efficient parameterizations of the rotation group
SO(3) (for a complete discussion on the classical attitude representations, see [5, 22, 27,
29]). In addition, a modern vectorial parameterization of finite rotations encompasses
the mentioned earlier developments as well as Gibbs, Wiener, and Milenkovic parame-
terizations [1, 23].

Now, dissipative, driven δ-Hamiltonian HB system on the configuration manifoldMN

is, in local canonical-symplectic coordinates qi, pi ∈ Up on the momentum phase-space
manifold T∗MN , given by autonomous equations

q̇i = ∂H0

∂pi
+
∂R

∂pi
, (3.1)

ṗi = Fi− ∂H0

∂qi
+
∂R

∂qi
, (3.2)

qi(0)= qi0, pi(0)= p0
i (i= 1, . . . ,N) (3.3)

including contravariant equation (3.1), the velocity vector field, and covariant equation
(3.2), the force one-form, together with initial joint angles qi0 and momenta p0

i . Here the
physical Hamiltonian function H0 : T∗MN → R represents the humanoid total energy
function, in local canonical coordinates qi, pi ∈Up on T∗MN given by

H0(q, p)= 1
2
gi j pi p j +V(q), (3.4)

where gi j = gi j(q,m) denotes the contravariant material metric tensor (associated with
Riemannian metrics g : TMN →R on MN ) relating internal and external HB coordinates
(i.e., joint angles qi and Cartesian coordinates xr , respectively), and including n segmental
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masses mµ

gi j(q,m)=
n∑
µ=1

mµδrs
∂qi

∂xr
∂q j

∂xs
. (3.5)

R = R(q, p) denotes the Rayleigh nonlinear (usually biquadratic) dissipation function,
and the one-forms Fi = Fi(t,q, p,u) are generalized driving torques, depending on joint
angles and momenta, as well as on ui = ui(t,q, p), corrections from all control levels.
Biomechanically speaking, the torques Fi resemble neuro-muscular excitation and con-
traction dynamics of equivalent antagonistic muscular pairs in the ith joint (see [15, 17,
18, 19]).

Neuro-muscular dynamics, giving the driving torques Fi = Fi(t,q, p) for HB, should
describe the internal excitation and contraction dynamics [14, 15, 17, 18, 19] of equiva-
lent muscular actuators, anatomically represented by the resulting action of antagonistic
muscle pairs for each uniaxial (i.e., SO(2)) humanoid joint. We attempt herein to de-
scribe the equivalent muscular dynamics in the simplest possible way (e.g., Hatze used
51 nonlinear differential equations of the first order to derive his, arguably most elabo-
rate, myocybernetic model [6]), and yet to include the main excitation and contraction
relations.

(a) Excitation dynamics can be in the simplest way described by Gaussian bell-shaped
torque-time relation FGauss

i = F0
i e
−(t−µi)2/(2σ2

i ), where F0
i denote the maximal isometric

muscular torques applied at the ith joint (i= 1, . . . ,N), while µi and σi denote, respectively,
the time means and standard deviations of individual muscular contractions. This is a
rotational joint-form approximation for the impulse plus transient response of Wilkie’s
muscular active-state element, defined by an RC circuit-like equation [33] ẋ+βx = βSA,
x(0) = 0, 0 < S < 1, where x = x(t) represents the active state of the muscle, β denotes
the element gain, A corresponds to the maximum tension the element can develop, and
S= S(r) is the “desired” active state as a function of motor unit stimulus rate r.

(b) Contraction dynamics has classically been described by Hill’s hyperbolic force-
velocity relation [8], which we propose here in the rotational (q, p) form FHill

i = (F0
i bi−

ai pi)/(pi− bi), i= 1, . . . ,N , where ai (having dimension of torque) and bi (having dimen-
sion of momentum) denote the rotational Hill parameters (see [14]) corresponding to
the energy dissipated during the contraction and the phosphagenic energy conversion
rate, respectively.

Therefore, we can describe the excitation/contraction dynamics for the ith equivalent
muscle-joint actuator, that is, antagonistic muscle pair (e.g., flexion/extension in the ith
joint) by the simple impulse-hyperbolic product relation Fi(t,q, p) = FGauss

i × FHill
i , i =

1, . . . ,N .
As an illustrative example of the HB application, we have developed a standalone

full-spine dynamics and crash simulator, including 25 constrained ball-end-socket joints
with the total of 75 rotational degrees of freedom, implementing the spinal control level
(see Figure 3.2 and Section 4) (developed in Mathematica (see the appendix) and subse-
quently implemented in Delphi environment for MS Windows). The general HB config-
uration manifold MN is now reduced to the 75-dimensional torus T75 (see (6.2) below)
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Figure 3.2. The full-spine dynamics and crash HB simulator, implementing the spinal control level:
interface and a sample output of muscular torques. Simulating the exponentially stabilizing move-
ment (returning to the normal vertical posture from the user-specified head displacement defined by
the three initial angles around X , Y , and Z axes), followed by a moderate impact (car crash) at 1.5
seconds after the simulation start.

and the momentum phase-space manifold corresponds to its 150-dimensional cotangent
bundle T∗T75. In this case, the canonical velocity and force (3.1) and (3.2) obtain rela-
tively simple expanded forms

q̇i = pi

[Ji]−1 +

mi

( i∑
j=1

Lj cosq j
)2

−1
+

∂R

∂pi
, (3.6)

ṗi = Fi
(
t,qi, pi

)− g 76−i∑
j=i

L jmj sinq j

−
76−i∑
j=i

L j sinq j pi p j

mi

( i∑
k=1

Lk cosqk
)3

−1

+
∂R

∂qi
,

(3.7)

qi(0)= qi0, pi(0)= p0
i (i= 1, . . . ,75). (3.8)

Here Ls, ms, and Js denote the segment lengths, masses, and inertia moments, respec-
tively, and g is the common gravity constant. In the contravariant velocity (3.6), the
terms denote rotational velocities, translational velocities, and velocity dampings for the
ith joint, respectively, whereas the covariant force (3.7) contains terms of muscular exci-
tation/contraction actuator torques Fi = Fi(t,qi, pi), and passive-external torques (gravi-
tational, Coriolis, centrifugal, and joint dampings, respectively).

Fuzzification of the crisp δ-Hamiltonian HB system (3.1), (3.2), and (3.3) gives the
fuzzified µ-Hamiltonian HB system [15, 19], namely, δ-Hamiltonian HB system with
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fuzzy system numbers (SN)

q̇i = ∂H0
(
q, p,σµ

)
∂pi

+
∂R

∂pi
,

ṗi = F̄i−
∂H0

(
q, p,σµ

)
∂qi

+
∂R

∂qi
,

qi(0)= q̄i0, pi(0)= p̄0
i (i= 1, . . . ,N),

(3.9)

where {σ}µ (with µ ≥ 1) denote fuzzy sets of conservative parameters (segment lengths,
masses, and moments of inertia), dissipative joint dampings, and actuator parameters
(amplitudes and frequencies), while the bar ¯(·) over a variable (·) denotes the corre-
sponding fuzzified variable.

Particularly, in the spinal HB simulator, the fuzzified µ-Hamiltonian HB system (3.9)
becomes

q̇i = pi

[J̄i]−1 +

m̄i

( i∑
j=1

L̄ j cosq j
)2

−1
+

∂R

∂pi
,

ṗi = F̄i
(
t,qi, pi,{σ}µ

)− g 76−i∑
j=i

L̄ j m̄ j sinq j

−
76−i∑
j=i

L̄ j sinq j pi p j

m̄i

( i∑
k=1

L̄k cosqk
)3

−1

+
∂R

∂qi
,

qi(0)= q̄i0, pi(0)= p̄0
i (i= 1, . . . ,75).

(3.10)

Applying stochastic forces, including diffusion fluctuations Bij[qi(t), t] and discontin-
uous jumps in the form of N-dimensional Wiener process W j(t), to µ-Hamiltonian HB
system (3.9), we obtain fuzzy-stochastic [µσ]-Hamiltonian HB system [15, 19]

dqi =
(
∂H0

(
q, p,σµ

)
∂pi

+
∂R

∂pi

)
dt, (3.11)

dpi = Bij
[
qi(t), t

]
dW j(t)

+

(
F̄i−

∂H0
(
q, p,σµ

)
∂qi

+
∂R

∂qi

)
dt,

(3.12)

qi(0)= q̄i0, pi(0)= p̄0
i . (3.13)
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Particularly, in the spinal HB simulator, the velocity and force [µσ]-Hamiltonian HB
equations (3.11), (3.12), and (3.13) become

dqi =
pi

[J̄i]−1 +

m̄i

( i∑
j=1

L̄ j cosq j
)2

−1
+

∂R

∂pi

dt,
dpi = Bij

[
qi(t), t

]
dW j(t) +

F̄i(t,qi, pi,{σ}µ)− g 76−i∑
j=i

L̄ j m̄ j sinq j

−
76−i∑
j=i

L̄ j sinq j pi p j

m̄i

( i∑
k=1

L̄k cosqk
)3

−1

+
∂R

∂qi

dt,
qi(0)= q̄i0, pi(0)= p̄0

i (i= 1, . . . ,75).
(3.14)

4. Spinal control level

Our first task is to establish the nonlinear loop functor L = Ξ[�] : �� ⇒ ��∗ on the
category �� of the spinal FC level.

Control Hamiltonian function Hc : T∗MN →R of FC is in local canonical coordinates
on T∗MN defined by [24]

Hc(q, p,u)=H0(q, p)− qiui (i= 1, . . . ,N), (4.1)

where ui = ui(t,q, p) are feedback-control one-forms representing the spinal FC level u-
corrections to the covariant torques Fi = Fi(t,q, p).

Using δ-Hamiltonian HB system (3.1), (3.2), and (3.3) and the control Hamiltonian
function (4.1), the cδ-Hamiltonian FC system can be defined as

q̇i = ∂Hc(q, p,u)
∂pi

+
∂R(q, p)
∂pi

,

ṗi = Fi− ∂Hc(q, p,u)
∂qi

+
∂R(q, p)
∂qi

,

oi =−∂Hc(q, p,u)
∂ui

,

qi(0)= qi0, pi(0)= p0
i (i= 1, . . . ,N),

(4.2)

where oi = oi(t) represent FC natural outputs which can be different from commonly
used joint angles.

If nominal reference outputs oiR = oiR(t) are known, the simple PD stiffness servo [32]

could be formulated, via error function e(t)= oj − ojR, in covariant form

ui = Koδi j
(
oj − ojR

)
+Kȯδi j

(
ȯ j − ȯ jR

)
, (4.3)

where Ks are the control gains and δi j is the Kronecker tensor.
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If natural outputs oi actually are the joint angles and nominal canonical trajectories
(qiR = qiR(t), pRi = pRi (t)) are known, then the stiffness servo (4.3) could be formulated in
canonical form as

ui = Kqδi j
(
qi− qiR

)
+Kp

(
pi− pRi

)
. (4.4)

Using the fuzzified µ-Hamiltonian HB system (3.9) and the control Hamiltonian func-
tion (4.1), the fuzzified cµ-Hamiltonian FC system can be defined as

q̇i = ∂Hc
(
q, p,u,σµ

)
∂pi

+
∂R(q, p)
∂pi

,

ṗi = F̄i−
∂Hc

(
q, p,u,σµ

)
∂qi

+
∂R(q, p)
∂qi

,

ōi =−∂Hc
(
q, p,u,σµ

)
∂ui

,

qi(0)= q̄i0, pi(0)= p̄0
i (i= 1, . . . ,N),

(4.5)

where ōi = ōi(t) represent the fuzzified natural outputs.
Using the fuzzy-stochastic [µσ]-Hamiltonian HB system (3.9) and (3.13) and the con-

trol Hamiltonian function (4.1), the fuzzy-stochastic cµσ-Hamiltonian FC system can be
defined as

dqi =
(
∂Hc

(
q, p,u,σµ

)
∂pi

+
∂R(q, p)
∂pi

)
dt,

dpi = Bij
[
qi(t), t

]
dW j(t)

+

(
F̄i−

∂Hc
(
q, p,u,σµ

)
∂qi

+
∂R(q, p)
∂qi

)
dt,

dōi =−∂Hc
(
q, p,u,σµ

)
∂ui

dt,

qi(0)= q̄i0, pi(0)= p̄0
i (i= 1, . . . ,N).

(4.6)

If we have the case that not all of the configuration joints on the configuration mani-
fold MN are active in the specified robot task, we can introduce the coupling Hamiltoni-
ans H j =H j(q, p), j = 1, . . . , M ≤N , corresponding to the system’s active joints, and we
come to the affine Hamiltonian function Ha : T∗MN →R, in local canonical coordinates
on T∗MN given as [24]

Ha(q, p,u)=H0(q, p)−H j(q, p)uj . (4.7)
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Again, using δ-Hamiltonian HB system (3.1), (3.2), and (3.3) and the affine Hamil-
tonian function (4.7), affine aδ-Hamiltonian FC system can be defined as

q̇i = ∂H0(q, p)
∂pi

− ∂H j(q, p)
∂pi

uj +
∂R

∂pi
,

ṗi = Fi− ∂H0(q, p)
∂qi

+
∂H j(q, p)

∂qi
uj +

∂R

∂qi
,

oi =−∂Ha(q, p,u)
∂ui

=H j(q, p),

qi(0)= qi0, pi(0)= p0
i (i= 1, . . . ,N ; j = 1, . . . , M ≤N).

(4.8)

Let F(M) denote the set of all smooth (i.e., C∞) real-valued functions f :M→R on a
smooth manifold M, V(M), the set of all smooth vector fields on M, and V∗(M), the set
of all differential one-forms on M. Also, let the vector field ζ ∈ V(M) be given with its
local flow φt : M →M such that at a point x ∈M, d/dt|t=0φtx = ζ(x), and φ∗t represents
the pullback by φt. Recall that the Lie derivative differential operator Lζ is defined

(i) on a function f ∈ F(M) as Lζ : F(M)→ F(M), Lζ f = (d/dt)(φ∗t f )|t=0,
(ii) on a vector field η∈V(M) as Lζ : V(M)→V(M), Lζη= (d/dt)(φ∗t η)|t=0≡ [ζ ,η]

—the Lie bracket,
(iii) on a one-form α∈V∗(M) as Lζ :V∗(M)→V∗(M), Lζα= (d/dt)(φ∗t α)|t=0.

In general, for any smooth tensor field T on M, the Lie derivative LζT geometrically rep-
resents a directional derivative of T along the flow φt. Using the Lie derivative formal-
ism, and applying the constant relative degree r (see [11, 24]) to all N joints of the affine
aδ-Hamiltonian FC system (4.8), the control law for asymptotic tracking the reference

outputs o
j
R could be formulated as (generalized from [11])

uj =
ȯ

(r) j
R −L(r)

f H
j +

∑r
s=1 cs−1

(
o

(s−1) j
R −L(s−1)

f H j
)

LgL
(r−1)
f H j

, (4.9)

where standard MIMO vector fields f and g are given by

f =
(
∂H0

∂pi
,−∂H0

∂qi

)
, g =

(
− ∂H j

∂pi
,
∂H j

∂qi

)
(4.10)

and cs−1 are the coefficients of linear differential equation of order r for the error function

e(t)= oj − ojR,

e(r) + cr−1e
(r−1) + ···+ c1e

(1) + c0e = 0. (4.11)
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Using the fuzzified µ-Hamiltonian HB system (3.9) and the affine Hamiltonian func-
tion (4.7), the fuzzy affine aµ-Hamiltonian FC system can be defined as

q̇i = ∂H0
(
q, p,σµ

)
∂pi

− ∂H j
(
q, p,σµ

)
∂pi

uj +
∂R(q, p)
∂pi

,

ṗi = F̄i−
∂H0

(
q, p,σµ

)
∂qi

+
∂H j

(
q, p,σµ

)
∂qi

uj +
∂R(q, p)
∂qi

,

ōi =−∂Ha
(
q, p,u,σµ

)
∂ui

=H j
(
q, p,σµ

)
,

qi(0)= q̄i0, pi(0)= p̄0
i (i= 1, . . . ,N ; j = 1, . . . , M ≤N).

(4.12)

Finally, using the fuzzy-stochastic [µσ]-Hamiltonian HB system (3.11), (3.12), and
(3.13) and the affine Hamiltonian function (4.7), we obtain the fuzzy-stochastic affine
aµσ-Hamiltonian FC system defined as

dqi =
(
∂H0

(
q, p,σµ

)
∂pi

− ∂H j
(
q, p,σµ

)
∂pi

uj +
∂R(q, p)
∂pi

)
dt,

dpi = Bij
[
qi(t), t

]
dW j(t)

+

(
F̄i−

∂H0
(
q, p,σµ

)
∂qi

+
∂H j

(
q, p,σµ

)
∂qi

uj +
∂R(q, p)
∂qi

)
dt,

dōi =−∂Ha
(
q, p,u,σµ

)
∂ui

dt =H j
(
q, p,σµ

)
dt,

qi(0)= q̄i0, pi(0)= p̄0
i (i= 1, . . . ,N ; j = 1, . . . , M ≤N).

(4.13)

Being of high degree and highly nonlinear, all of these affine control systems are ex-
tremely sensitive upon the variation of parameters, inputs, and initial conditions. The
sensitivity function S of the affine Hamiltonian Ha(q, p,u) to the parameters βi (includ-
ing the segment lengths Li, masses mi, moments of inertia Ji, and joint dampings bi, see
[15, 17, 18, 19]) is in the case of aδ-Hamiltonian FC system defined as

S(H ,β)= βi
Ha(q, p,u)

∂Ha(q, p,u)
∂βi

, (4.14)

and similarly in other two aµ and aµσ cases.
The three affine FC level systems aδ , aµ, and aµσ resemble (in a fuzzy-stochastic-

Hamiltonian form) Houk’s autogenetic motor servo of muscle spindle and Golgi ten-
don [9], correcting the covariant driving torques Fi = Fi(t,q, p) by local “reflex con-
trols” ui(t,q, p). They form the nonlinear loop functor L = Ξ[�] : �� ⇒ ��∗. For its
computer-algebra implementation, see the appendix.
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5. Cerebellar control level

Our second task is to establish the nonlinear loop functor L= Ξ[�] : ��⇒��∗ on the
category �� of the cerebellar FC level. Here we propose an oscillatory neurodynamical
(x, y,ω)-system (adapted from [13]), a bidirectional, self-organized, associative-memory
machine, resembling the function of a set of excitatory granule cells and inhibitory Purk-
inje cells in the middle layer of the cerebellum [10]. The neurodynamical (x, y,ω)-system
acts on neural-image manifoldMN

im of the configuration manifoldMN as a pair of smooth,
“1− 1” and “onto” maps (Ψ,Ψ−1), where Ψ :MN →MN

im represents the feedforward map,
and Ψ−1 : MN

im →MN represents the feedback map. Locally, it is defined in Riemannian
neural coordinates xi, yi ∈ Vy on MN

im, which are in bijective correspondence with sym-
plectic joint coordinates qi, pi ∈Up on T∗MN .

The (x, y,ω)-system is formed out of two distinct, yet nonlinearly coupled neural sub-
systems, with Ai(q) (5.1) and Bi(p) (5.2) as system inputs, and the feedback-control one-
forms ui (5.9) as system outputs:

(i) granule cells excitatory (contravariant) and Purkinje cells inhibitory (covariant)
activation (x, y)-dynamics (5.1), (5.2), (5.3), and (5.4), defined, respectively, by
a vector field xi = xi(t) :MN

im→ TMN
im representing a cross-section of the tangent

bundle TMN
im, and a one-form yi = yi(t) : MN

im → T∗MN
im representing a cross-

section of the cotangent bundle T∗MN
im;

(ii) excitatory and inhibitory unsupervised learning (ω)-dynamics (5.5) and (5.6)
generated by random differential Hebbian learning process (5.7) and (5.8), de-
fined, respectively, by contravariant synaptic tensor field ωij = ωij(t) : MN

im →
TTMN

im and covariant synaptic tensor field ωij = ωij(t) : MN
im → T∗T∗MN

im rep-
resenting cross-sections of contravariant and covariant tensor bundles, respec-
tively.

The system of N equations (N being the same as the number of mechanical degrees of
freedom) is

ẋi =Ai(q) +ωij f j(y)− xi, (5.1)

ẏi = Bi(p) +ωij f j(x)− yi, (5.2)

Ai(q)= Kq
(
qi− qiR

)
, (5.3)

Bi(p)= Kp
(
pRi − pi

)
, (5.4)

ω̇i j =−ωij + Ii j(x, y), (5.5)

ω̇i j =−ωij + Ii j(x, y), (5.6)

Ii j = f i(x) f j(y) + ḟ i(x) ḟ j(y) + σi j , (5.7)

Ii j = fi(x) f j(y) + ḟi(x) ḟ j(y) + σi j , (5.8)

ui = 1
2

(
δi j x

i + yi
)

(i, j = 1, . . . ,N). (5.9)

Here ω is a symmetric second-order synaptic tensor field; Ii j = Ii j(x, y,σ) and Ii j =
Ii j(x, y,σ), respectively, denote contravariant-excitatory and covariant-inhibitory random
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differential Hebbian innovation functions with tensorial Gaussian noise σ (in both vari-
ances); f s and ḟ s denote sigmoid activation functions ( f = tanh(·)) and corresponding
signal velocities ( ḟ = 1− f 2), respectively, in both variances.
Ai(q) and Bi(p) are contravariant-excitatory and covariant-inhibitory neural inputs

to granule and Purkinje cells, respectively; ui are the corrections to the feedback-control
one-forms on the cerebellar FC level.

Nonlinear activation (x, y)-dynamics (5.1), (5.2), (5.3), and (5.4), describes a two-
phase biological neural oscillator field, in which the excitatory neural field excites the in-
hibitory neural field, which itself reciprocally inhibits the excitatory one. (x, y)-dynamics
represents a nonlinear extension of a linear, Lyapunov stable, conservative, gradient sys-
tem defined in local neural coordinates xi, yi ∈Vy on T∗MN

im as

ẋi =−∂Φ
∂yi

= ωij y j − xi, ẏi =−∂Φ
∂xi

= ωijx j − yi. (5.10)

The gradient system (5.10) is derived from scalar, neuro-synaptic action potential Φ :
T∗MN →R, given by a negative, smooth bilinear form in xi, yi ∈Vy on T∗MN

im as

−2Φ= ωijxix j +ωij yi y j − 2xi yi (i, j = 1, . . . ,N), (5.11)

which itself represents a Ψ-image of the Riemannian metrics g : TMN →R on the config-
uration manifold MN .

The nonlinear oscillatory activation (x, y)-dynamics (5.1), (5.2), (5.3), and (5.4) is ob-
tained from the linear conservative dynamics (5.10) by adding configuration-dependent
inputs Ai and Bi, as well as sigmoid activation functions f j and f j , respectively. It repre-
sents an interconnected pair of excitatory and inhibitory neural fields.

Both variant forms of learning (ω)-dynamics (5.5) and (5.6) are given by a gener-
alized unsupervised (self-organizing) Hebbian learning scheme (see [21]), in which ω̇i j
(resp., ω̇i j) denotes the new update value, −ωij (resp., ωij) corresponds to the old value
and Ii j(xi, yj) (resp., Ii j(xi, yj)) is the innovation function of the symmetric second-order
synaptic tensor field ω. The nonlinear innovation functions Ii j and Ii j are defined by
random differential Hebbian learning process (5.7) and (5.8). As ω is a symmetric and
zero-trace coupling synaptic tensor, the conservative linear activation dynamics (5.10) is
equivalent to the rule that “the state of each neuron (in both neural fields) is changed in
time if and only if the scalar action potential Φ (5.11), is lowered.” Therefore, the scalar
action potential Φ represents the monotonically decreasing Lyapunov function (such that
Φ̇≤ 0) for the conservative linear dynamics (5.10), which converges to a local minimum
or ground state of Φ. That is to say, the system (5.10) moves in the direction of decreas-
ing the scalar action potential Φ, and when both ẋi = 0 and ẏi = 0 for all i= 1, . . . ,N , the
steady state is reached.

In this way, the neurodynamical (x, y,ω)-system acts as tensor-invariant self-
organizing (excitatory/inhibitory) associative memory machine, resembling the set of
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granule and Purkinje cells of cerebellum [10], and generalizing Kosko’s BAM (as well
as ABAM and RABAM) model

v̇ j =−aj(vj)
[
bj
(
vj
)− N∑

k=1

fk
(
vk
)
mjk

]
,

u̇k =−ak
(
uk
)[
bk(uk)−

N∑
j=1

f j
(
uj
)
mjk

]
,

(5.12)

(for j,k = 1, . . . ,N), which is globally stable for the cases of signal and random-signal
Hebbian learning (see [21]).

The feedforward map Ψ : MN →MN
im is realized by the inputs Ai(q) and Bi(p) to the

(x, y,ω)-system, while the feedback map Ψ−1 : MN
im →MN is realized by the system out-

put, that is, the feedback-control one-forms ui(x, y). These represent the cerebellar FC
level corrections to the covariant torques Fi = Fi(t,q, p).

The tensor-invariant form of the oscillatory neurodynamical (x, y,ω)-system (5.5) and
(5.6) resembles the associative action of the granule and Purkinje cells in the tunning of
the limb cortico-rubro-cerebellar recurrent network [10], giving the cerebellar correction
ui(x, y) to the covariant driving torques Fi = Fi(t,q, p). In this way, the (x, y,ω)-system
forms the nonlinear loop functor L= Ξ[�] : ��⇒��∗. For its computer-algebra im-
plementation, see the appendix.

6. Cortical control level

Our third task is to establish the nonlinear loop functor L = Ξ[�] : ��⇒ ��∗ on the
category �� of the cortical FC level.

For the purpose of our cortical control, the humanoid configuration manifold MN ,
depicted in Figure 3.1, could be first reduced to N-torus, and second transformed to N-
cube (“hyper-joystick”), using the following topological techniques (see [14, 15, 18, 19]).

Let S1 denote the constrained unit circle in the complex plane, which is an Abelian Lie
group. Firstly, we propose two reduction homeomorphisms, using the semidirect product
� of the constrained SO(2)-groups:

SO(3)≈ SO(2) � SO(2) � SO(2), SO(2)≈ S1. (6.1)

Next, let IN be the unit cube [0,1]N in RN and “∼” an equivalence relation on RN ob-
tained by “gluing” together the opposite sides of IN , preserving their orientation. There-
fore,MN can be represented as the quotient space ofRN by the space of the integral lattice
points in RN , that is, an oriented and constrained N-dimensional torus TN :

RN/ZN = IN / ∼≈
N∏
i=1

S1
i ≡

{(
qi, i= 1, . . . ,N

)
: mod2π

}= TN. (6.2)



V. Ivancevic and N. Beagley 1775

Its Euler-Poincaré characteristic is (by the de Rham theorem), both for TN and its momen-
tum phase space T∗TN , given by (see [15])

χ
(
TN ,T∗TN

)= N∑
p=1

(−1)pbp, (6.3)

where bp are the Betti numbers defined as

b0 = 1,

b1 =N , . . . ,bp =
(
N

p

)
, . . . ,bN−1 =N ,

bN = 1 (0≤ p ≤N).

(6.4)

In our example case of the spinal HB simulator (depicted in Figure 3.2), the configu-
ration torus TN , defined by (6.2), becomes T75. In the same way, the momentum phase-
space manifold T∗M can be represented by T∗TN , which in case of the spinal HB simu-
lator becomes T∗T75.

Conversely, by “ungluing” the configuration space, we obtain the primary unit cube.
Let “∼∗” denote an equivalent decomposition or “ungluing” relation. By the Tychonoff

product-topology theorem, for every such quotient space, there exists a “selector” such
that its quotient models are homeomorphic, that is, TN/ ∼∗≈AN/ ∼∗. Therefore, INq rep-
resents a “selector” for the configuration torus TN and can be used as an N-directional
“q̂-command-space” for FC. Any subset of degrees of freedom on the configuration torus
TN representing the joints included in HB has its simple, rectangular image in the recti-
fied q̂-command space selector INq , and any joint angle qi has its rectified image q̂i.

In the case of an end-effector, q̂i reduces to the position vector in external Cartesian
coordinates zr (r = 1, . . . ,3). If orientation of the end-effector can be neglected, this gives
a topological solution to the standard inverse kinematics problem.

Analogously, all momenta p̂i have their images as rectified momenta p̂i in the p̂-
command space selector INp . Therefore, the total momentum phase-space manifold

T∗TN obtains its “cortical image” as the (̂q, p)-command space, a trivial 2N-dimensional
bundle INq × INp .

Now, the simplest way to perform the feedback FC on the cortical (̂q, p)-command
space INq × INp , and also to mimic the cortical-like behavior (see [2, 4, 25, 26]) is to use the
2N-dimensional fuzzy-logic controller, in pretty much the same way as in the popular
“inverted pendulum” examples (see [21]).

We propose the fuzzy feedback-control map Ξ that maps all the rectified joint angles
and momenta into the feedback-control one-forms

Ξ :
(
q̂i(t), p̂i(t)

) −→ ui(t,q, p), (6.5)
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so that their corresponding universes of discourse, Q̂i = (q̂imax− q̂imin), P̂i = ( p̂max
i − p̂min

i )
and i = (umax

i −umin
i ), respectively, are mapped as

Ξ :
N∏
i=1

Q̂i×
N∏
i=1

P̂i −→
N∏
i=1

i. (6.6)

The 2N-dimensional map Ξ (6.5) and (6.6) represents a fuzzy inference system, defined
by (adapted from [12]) the following.

(1) Fuzzification of the crisp rectified and discretized angles, momenta and controls
using Gaussian-bell membership functions

µk(χ)= exp

[
−

(
χ−mk

)2

2σk

]
(k = 1,2, . . . ,9), (6.7)

where χ ∈D is the common symbol for q̂i, p̂i, and ui(q, p) and D is the common
symbol for Q̂i, P̂i and i; the mean values mk of the nine partitions of each uni-
verse of discourse D are defined as mk = λkD + χmin, with partition coefficients
λk uniformly spanning the range of D, corresponding to the set of nine linguis-
tic variables L= {NL,NB,NM,NS,ZE,PS,PM,PB,PL}; standard deviations are
kept constant σk = D/9. Using the linguistic vector L, the 9× 9 FAM (fuzzy as-
sociative memory) matrix (a “linguistic phase plane”) is heuristically defined for
each humanoid joint in a symmetrical weighted form

µkl = �kl exp
{
− 50

[
λk +u(q, p)

]2
}

, (k, l = 1, . . . ,9) (6.8)

with weights �kl ∈ {0.6,0.6,0.7,0.7,0.8,0.8,0.9,0.9,1.0}.
(2) Mamdani inference is used on each FAM matrix µkl for all humanoid joints.

(i) µ(q̂i) and µ( p̂i) are combined inside the fuzzy IF-THEN rules using AND
(intersection or minimum) operator,

µk
[
ūi(q, p)

]=min
l

{
µkl

(
q̂i
)
,µkl

(
p̂i
)}
. (6.9)

(ii) The output sets from different IF-THEN rules are then combined using OR
(union or maximum) operator to get the final output, fuzzy-covariant
torques,

µ
[
ui(q, p)

]=max
k

{
µk
[
ūi(q, p)

]}
. (6.10)

(3) Defuzzification of the fuzzy controls µ[ui(q, p)] with the “center-of-gravity”
method

ui(q, p)=

∫
µ
[
ui(q, p)

]
dui∫

dui
, (6.11)

to update the crisp feedback-control one-forms ui = ui(t,q, p). These represent
the cortical FC level corrections to the covariant torques Fi = Fi(t,q, p).
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Operationally, the construction of the cortical (̂q, p)-command space INq × INp and the
2N-dimensional feedback map Ξ (6.5) and (6.6) mimic the regulation of locomotor con-
ditioned reflexes by the motor cortex [10], giving the cortical correction to the covari-
ant driving torques Fi. Together, they form the nonlinear loop functor L= Ξ[�] : ��⇒
��∗. For its computer-algebra implementation, see the appendix.

7. Translational control of IK chains

Besides providing the subtle rotational ui = ui(t,q, p)-corrections for the covariant joint
torques Fi = Fi(t,q, p), both the cerebellar and the cortical control systems can be ex-
tended to provide translational control for moving the whole 6-DOF IK chains (like a
humanoid arm or leg) (see [4]).

For the sake of translational control of IK chains, both input functions Ai(q) and Bi(p)
in the cerebellar FC system defined by 5.3 and (5.4) have to be extended to Ai[

∑6
k=1 qk]

and Bi[
∑6

k=1 p
k]. The output feedback-control one-forms uIK

i will then represent correc-
tions for the resulting translational forces FIK

i moving the whole IK chains.
Similarly, for the sake of the cortical translational control of IK chains, (6.5) and (6.6)

have to be extended to

Ξ :

( 6∑
k=1

q̂i(t),
6∑

k=1

p̂i(t)

)
−→ ui

(
t,

6∑
k=1

q,
6∑

k=1

p

)
, (7.1)

so that their corresponding universes of discourse are mapped as

Ξ :
N∏
i=1

6∑
k=1

Q̂i×
N∏
i=1

6∑
k=1

P̂i −→
N∏
i=1

IK
i . (7.2)

8. Conclusion

This paper proposes the new, brain-like, hierarchical (affine-neuro-fuzzy-topological)
control for the previously developed biomechanically realistic humanoid robot dynamics.
The categorical form of a tensor-invariant, “meta-cybernetic” functor machine has been
used to develop the brain-like controller. It comprises the three-level, nonlinear feedback
control of muscle-like actuators, as implemented in the full-spine simulator, developed
by the authors (see [35]). On the spinal level, nominal joint-trajectory tracking is formu-
lated as an affine Hamiltonian control system, resembling the spinal (autogenetic-reflex)
“motor servo.” On the cerebellar level, a feedback-control map is proposed in the form of
self-organized, oscillatory, neurodynamical system, resembling the associative interaction
of excitatory granule cells and inhibitory Purkinje cells. On the cortical level, a topolog-
ical “hyper-joystick” command space, is formulated with a fuzzy-logic feedback-control
map defined on it, resembling the regulation of locomotor conditioned reflexes. Finally,
both the cerebellar and the cortical control systems are extended to provide the transla-
tional force control for moving 6-degree-of-freedom chains of inverse kinematics. The
computer-algebra implementation is given on reader’s request.
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