ON f-DERIVATIONS OF BCI-ALGEBRAS

JIANMING ZHAN AND YONG LIN LIU

Received 14 December 2004 and in revised form 16 May 2005

The notion of left-right (resp., right-left) f-derivation of a BCI -algebra is introduced, and some related properties are investigated. Using the idea of regular f-derivation, we give characterizations of a p-semisimple BCI-algerba.

1. Introduction and preliminaries

In the theory of rings and near-rings, the properties of derivations are an important topic to study, see $[2,3,7,10]$. In [6], Jun and Xin applied the notions in rings and nearrings theory to BCI -algebras, and obtained some related properties. In this paper, the notion of left-right (resp., right-left) f-derivation of a BCI-algebra is introduced, and some related properties are investigated. Using the idea of regular f-derivation, we give characterizations of a p-semisimple BCI-algebra.

By a BCI-algebra we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$;
(II) $(x *(x * y)) * y=0$;
(III) $x * x=0$;
(IV) $x * y=0$ and $y * x=0$ imply that $x=y$;
for all $x, y, z \in X$.
In any BCI-algebra X, one can define a partial order " \leq " by putting $x \leq y$ if and only if $x * y=0$.

A subset S of a BCI-algebra X is called subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a BCI-algebra X is called an ideal of X if it satisfies (i) $0 \in I$; (ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

A mapping f of a BCI-algebra X into itself is called an endomorphism of X if $f(x *$ $y)=f(x) * f(y)$ for all $x, y \in X$. Note that $f(0)=0$. Especially, f is monic if for any $x, y \in X, f(x)=f(y)$ implies that $x=y$.

A BCI-algebra X has the following properties:
(1) $x * 0=x$;
(2) $(x * y) * z=(x * z) * y$;
(3) $x \leq y$ implies that $x * z \leq y * z$ and $z * y \leq z * x$;
(4) $x *(x *(x * y))=x * y$;
(5) $(x * z) *(y * z) \leq x * y$;
(6) $0 *(x * y)=(0 * x) *(0 * y)$;
(7) $x * 0=0$ implies that $x=0$.

For a BCI-algebra X, denote by X_{+}(resp., $G(X)$) the BCK-part (resp., the BCI-G part) of X, that is, $X_{+}=\{x \in X \mid 0 \leq x\}$ (resp., $G(X)=\{x \in X \mid 0 * x=x\}$). Note that $G(X) \cap$ $X_{+}=\{0\}$. If $X_{+}=\{0\}$, then X is called a p-semisimple BCI-algebra.

In a p-semisimple BCI-algebra X, the following hold:
(8) $(x * z) *(y * z)=x * y$;
(9) $0 *(0 * x)=x$;
(10) $x *(0 * y)=y *(0 * x)$;
(11) $x * y=0$ implies that $x=y$;
(12) $x * a=x * b$ implies that $a=b$;
(13) $a * x=b * x$ implies that $a=b$;
(14) $a *(a * x)=x$.

Let X be a p-semisimple BCI-algebra. We define addition " + " as $x+y=x *(0 * y)$ for all $x, y \in X$. Then $(X,+)$ is an abelian group with identity 0 and $x-y=x * y$. Conversely, let $(X,+)$ be an abelian group with identity 0 and let $x * y=x-y$. Then X is a p-semisimple BCI-algebra and $x+y=x *(0 * y)$ for all $x, y \in X$ (see [5]).

For a BCI-algebra X, we denote $x \wedge y=y *(y * x)$, in particular, $0 *(0 * x)=a_{x}$, and $L_{p}(X)=\{a \in X \mid x * a=0 \Rightarrow x=a$ for any $x \in X\}$. We call the elements of $L_{p}(X)$ the $p-$ atoms of X. For any $a \in X$, let $V(a)=\{x \in X \mid a * x=0\}$, which is called the branch of X with respect to a. It follows that $x * y \in V(a * b)$ whenever $x \in V(a)$ and $y \in V(b)$ for all $x, y \in X$ and $a, b \in L_{p}(X)$. Note that $L_{p}(X)=\left\{x \in X \mid a_{x}=x\right\}$, which is the p-semisimple part of X, and X is a p-semisimple BCI-algebra if and only if $L_{p}(X)=X$ (see [6]). Note also that $a_{x} \in L_{p}(X)$, that is, $0 *\left(0 * a_{x}\right)=a_{x}$, which implies that $a_{x} * y \in L_{p}(X)$ for all $y \in X$. It is clear that $G(X) \subseteq L_{p}(X), x *(x * a)=a$, and $a * x \in L_{p}(X)$ for all $a \in L_{p}(X)$ and $x \in X$. For more details, refer to $[1,8,11]$.

Definition 1.1 [9]. A BCI-algebra X is said to be commutative if $x=x \wedge y$ whenever $x \leq y$ for all $x, y \in X$.

Definition 1.2 [4]. A BCI-algebra X is said to be branchwise commutative if $x \wedge y=y \wedge x$ for all $x, y \in V(a)$ and all $a \in L_{p}(X)$.

Lemma 1.3 [6]. A BCI-algebra X is commutative if and only if it is branchwise commutative.
Definition 1.4 [6]. Let X be a BCI-algebra. By a left-right derivation (briefly, (l,r)derivation) of X, a self-map d of X satisfying the identity $d(x * y)=(d(x) * y) \wedge(x *$ $d(y))$ for all $x, y \in X$ is meant. If d satisfies the identity $d(x * y)=(x * d(y)) \wedge(d(x) * y)$ for all $x, y \in X$, then it is said that d is a right-left derivation (briefly, (r, l)-derivation) of X. Moreover, if d is both an (r, l) - and an (l, r)-derivation, it is said that d is a derivation.

2. f-derivations

In what follows, let f be an endomorphism of X unless otherwise specified.

Definition 2.1. Let X be a BCI-algebra. By a left-right f-derivation (briefly, $(l, r)-f$ derivation) of X, a self-map d_{f} of X satisfying the identity $d_{f}(x * y)=\left(d_{f}(x) * f(y)\right) \wedge$ $\left(f(x) * d_{f}(y)\right)$ for all $x, y \in X$ is meant, where f is an endomorphism of X. If d_{f} satisfies the identity $d_{f}(x * y)=\left(f(x) * d_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right)$ for all $x, y \in X$, then it is said that d_{f} is a right-left f-derivation (briefly, (r, l) - f-derivation) of X. Moreover, if d_{f} is both an (r, l) - and an $(l, r)-f$-derivation, it is said that d_{f} is an f-derivation.

Example 2.2. Let $X=\{0,1,2,3,4,5\}$ be a BCI-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	2	2	2	2
1	1	0	2	2	2	2
2	2	2	0	0	0	0
3	3	2	1	0	0	0
4	4	2	1	1	0	1
5	5	2	1	1	1	0

Define a map $d_{f}: X \rightarrow X$ by

$$
d_{f}(x)= \begin{cases}2 & \text { if } x=0,1 \tag{2.1}\\ 0 & \text { otherwise }\end{cases}
$$

and define an endomorphism f of X by

$$
f(x)= \begin{cases}0 & \text { if } x=0,1 \tag{2.2}\\ 2 & \text { otherwise }\end{cases}
$$

Then it is easily checked that d_{f} is both derivation and f-derivation of X.
Example 2.3. Let X be a BCI-algebra as in Example 2.2. Define a map $d_{f}: X \rightarrow X$ by

$$
d_{f}(x)= \begin{cases}2 & \text { if } x=0,1 \tag{2.3}\\ 0 & \text { otherwise }\end{cases}
$$

Then it is easily checked that d_{f} is a derivation of X.
Define an endomorphism f of X by

$$
\begin{equation*}
f(x)=0, \quad \forall x \in X \tag{2.4}
\end{equation*}
$$

Then d_{f} is not an f-derivation of X since

$$
\begin{equation*}
d_{f}(2 * 3)=d_{f}(0)=2 \tag{2.5}
\end{equation*}
$$

but

$$
\begin{equation*}
\left(d_{f}(2) * f(3)\right) \wedge\left(f(2) * d_{f}(3)\right)=(0 * 0) \wedge(0 * 0)=0 \wedge 0=0, \tag{2.6}
\end{equation*}
$$

and thus $d_{f}(2 * 3) \neq\left(d_{f}(2) * f(3)\right) \wedge\left(f(2) * d_{f}(3)\right)$.

Remark 2.4. From Example 2.3, we know that there is a derivation of X which is not an f-derivation of X.

Example 2.5. Let $X=\{0,1,2,3,4,5\}$ be a BCI-algebra with the following Cayley table:

$*$	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	0	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Define a map $d_{f}: X \rightarrow X$ by

$$
d_{f}(x)= \begin{cases}0 & \text { if } x=0,1 \tag{2.7}\\ 2 & \text { if } x=2,4 \\ 3 & \text { if } x=3,5\end{cases}
$$

and define an endomorphism f of X by

$$
f(x)= \begin{cases}0 & \text { if } x=0,1 \tag{2.8}\\ 2 & \text { if } x=2,4 \\ 3 & \text { if } x=3,5\end{cases}
$$

Then it is easily checked that d_{f} is both derivation and f-derivation of X.
Example 2.6. Let X be a BCI-algebra as in Example 2.5. Define a map $d_{f}: X \rightarrow X$ by

$$
d_{f}(x)= \begin{cases}0 & \text { if } x=0,1 \tag{2.9}\\ 2 & \text { if } x=2,4 \\ 3 & \text { if } x=3,5\end{cases}
$$

Then it is easily checked that d_{f} is a derivation of X.
Define an endomorphism f of X by

$$
\begin{equation*}
f(0)=0, \quad f(1)=1, \quad f(2)=3, \quad f(3)=2, \quad f(4)=5, \quad f(5)=4 . \tag{2.10}
\end{equation*}
$$

Then d_{f} is not an f-derivation of X since

$$
\begin{equation*}
d_{f}(2 * 3)=d_{f}(3)=3 \tag{2.11}
\end{equation*}
$$

but

$$
\begin{equation*}
\left(d_{f}(2) * f(3)\right) \wedge\left(f(2) * d_{f}(3)\right)=(2 * 2) \wedge(3 * 3)=0 \wedge 0=0 \tag{2.12}
\end{equation*}
$$

and thus $d_{f}(2 * 3) \neq\left(d_{f}(2) * f(3)\right) \wedge\left(f(2) * d_{f}(3)\right)$.

Example 2.7. Let X be a BCI-algebra as in Example 2.5. Define a map $d_{f}: X \rightarrow X$ by

$$
\begin{equation*}
d_{f}(0)=0, \quad d_{f}(1)=1, \quad d_{f}(2)=3, \quad d_{f}(3)=2, \quad d_{f}(4)=5, \quad d_{f}(5)=4 \tag{2.13}
\end{equation*}
$$

Then d_{f} is not a derivation of X since

$$
\begin{equation*}
d_{f}(2 * 3)=d_{f}(3)=2 \tag{2.14}
\end{equation*}
$$

but

$$
\begin{equation*}
\left(d_{f}(2) * 3\right) \wedge\left(2 * d_{f}(3)\right)=(3 * 3) \wedge(2 * 2)=0 \wedge 0=0 \tag{2.15}
\end{equation*}
$$

and thus $d_{f}(2 * 3) \neq\left(d_{f}(2) * 3\right) \wedge\left(2 * d_{f}(3)\right)$.
Define an endomorphism f of X by

$$
\begin{equation*}
f(0)=0, \quad f(1)=1, \quad f(2)=3, \quad f(3)=2, \quad f(4)=5, \quad f(5)=4 . \tag{2.16}
\end{equation*}
$$

Then it is easily checked that d_{f} is an f-derivation of X.
Remark 2.8. From Example 2.7, we know that there is an f-derivation of X which is not a derivation of X.

For convenience, we denote $f_{x}=0 *(0 * f(x))$ for all $x \in X$. Note that $f_{x} \in L_{p}(X)$.
Theorem 2.9. Let d_{f} be a self-map of a BCI-algebra X defined by $d_{f}(x)=f_{x}$ for all $x \in X$. Then d_{f} is an $(l, r)-f$-derivation of X. Moreover, if X is commutative, then d_{f} is an (r, l) -f-derivation of X.

Proof. Let $x, y \in X$.
Since

$$
\begin{align*}
0 *\left(0 *\left(f_{x} * f(y)\right)\right) & =0 *(0 *((0 *(0 * f(x))) * f(y))) \\
& =0 *(0 *((0 * f(y)) *(0 * f(x)))) \\
& =0 *(0 *(0 * f(y * x)))=0 * f(y * x) \tag{2.17}\\
& =0 *(f(y) * f(x))=(0 * f(y)) *(0 * f(x)) \\
& =(0 *(0 * f(x))) * f(y)=f_{x} * f(y),
\end{align*}
$$

we have $f_{x} * f(y) \in L_{P}(X)$, and thus

$$
\begin{equation*}
f_{x} * f(y)=\left(f(x) * f_{y}\right) *\left(\left(f(x) * f_{y}\right) *\left(f_{x} * f(y)\right)\right) . \tag{2.18}
\end{equation*}
$$

It follows that

$$
\begin{align*}
d_{f}(x * y) & =f_{x * y}=0 *(0 * f(x * y))=0 *(0 *(f(x) * f(y))) \\
& =(0 *(0 * f(x))) *(0 *(0 * f(y)))=f_{x} * f_{y} \\
& =\left(0 *\left(0 * f_{x}\right)\right) *(0 *(0 * f(y)))=0 *\left(0 *\left(f_{x} * f(y)\right)\right) \tag{2.19}\\
& =f_{x} * f(y)=\left(f(x) * f_{y}\right) *\left(\left(f(x) * f_{y}\right) *\left(f_{x} * f(y)\right)\right) \\
& =\left(f_{x} * f(y)\right) \wedge\left(f(x) * f_{y}\right)=\left(d_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right),
\end{align*}
$$

and so d_{f} is an $(l, r)-f$-derivation of X. Now, assume that X is commutative. Using Lemma 1.3, it is sufficient to show that $d_{f}(x) * f(y)$ and $f(x) * d_{f}(y)$ belong to the same branch for all $x, y \in X$, we have

$$
\begin{align*}
d_{f}(x) * f(y) & =f_{x} * f(y)=0 *\left(0 *\left(f_{x} * f(y)\right)\right) \\
& =\left(0 *\left(0 * f_{x}\right)\right) *(0 *(0 * f(y))) \tag{2.20}\\
& =f_{x} * f_{y} \in V\left(f_{x} * f_{y}\right),
\end{align*}
$$

and so $f_{x} * f_{y}=(0 *(0 * f(x))) *\left(0 *\left(0 * f_{y}\right)\right)=0 *\left(0 *\left(f(x) * f_{y}\right)\right)=0 *(0 *(f(x) *$ $\left.\left.d_{f}(y)\right)\right) \leq f(x) * d_{f}(y)$, which implies that $f(x) * d_{f}(y) \in V\left(f_{x} * f_{y}\right)$. Hence, $d_{f}(x) *$ $f(y)$ and $f(x) * d_{f}(y)$ belong to the same branch, and so

$$
\begin{align*}
d_{f}(x * y) & =\left(d_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right) \tag{2.21}\\
& =\left(f(x) * d_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right)
\end{align*}
$$

This completes the proof.
Proposition 2.10. Let d_{f} be a self-map of a BCI-algebra X. Then the following hold.
(i) If d_{f} is an $(l, r)-f$-derivation of X, then $d_{f}(x)=d_{f}(x) \wedge f(x)$ for all $x \in X$.
(ii) If d_{f} is an $(r, l)-f$-derivation of X, then $d_{f}(x)=f(x) \wedge d_{f}(x)$ for all $x \in X$ if and only if $d_{f}(0)=0$.

Proof. (i) Let d_{f} be an $(l, r)-f$-derivation of X. Then,

$$
\begin{align*}
d_{f}(x) & =d_{f}(x * 0)=\left(d_{f}(x) * f(0)\right) \wedge\left(f(x) * d_{f}(0)\right) \\
& =\left(d_{f}(x) * 0\right) \wedge\left(f(x) * d_{f}(0)\right)=d_{f}(x) \wedge\left(f(x) * d_{f}(0)\right) \\
& =\left(f(x) * d_{f}(0)\right) *\left(\left(f(x) * d_{f}(0)\right) * d_{f}(x)\right) \tag{2.22}\\
& =\left(f(x) * d_{f}(0)\right) *\left(\left(f(x) * d_{f}(x)\right) * d_{f}(0)\right) \\
& \leq f(x) *\left(f(x) * d_{f}(x)\right)=d_{f}(x) \wedge f(x) .
\end{align*}
$$

But $d_{f}(x) \wedge f(x) \leq d_{f}(x)$ is trivial and so (i) holds.
(ii) Let d_{f} be an $(r, l)-f$-derivation of X. If $d_{f}(x)=f(x) \wedge d_{f}(x)$ for all $x \in X$, then for $x=0, d_{f}(0)=f(0) \wedge d_{f}(0)=0 \wedge d_{f}(0)=d_{f}(0) *\left(d_{f}(0) * 0\right)=0$.

Conversely, if $d_{f}(0)=0$, then $d_{f}(x)=d_{f}(x * 0)=\left(f(x) * d_{f}(0)\right) \wedge\left(d_{f}(x) * f(0)\right)=$ $(f(x) * 0) \wedge\left(d_{f}(x) * 0\right)=f(x) \wedge d_{f}(x)$, ending the proof.

Proposition 2.11. Let d_{f} be an $(l, r)-f$-derivation of a BCI-algebra X. Then,
(i) $d_{f}(0) \in L_{p}(X)$, that is, $d_{f}(0)=0 *\left(0 * d_{f}(0)\right)$;
(ii) $d_{f}(a)=d_{f}(0) *(0 * f(a))=d_{f}(0)+f(a)$ for all $a \in L_{p}(X)$;
(iii) $d_{f}(a) \in L_{p}(X)$ for all $a \in L_{p}(X)$;
(iv) $d_{f}(a+b)=d_{f}(a)+d_{f}(b)-d_{f}(0)$ for all $a, b \in L_{p}(X)$.

Proof. (i) The proof follows from Proposition 2.10(i).
(ii) Let $a \in L_{p}(X)$, then $a=0 *(0 * a)$, and so $f(a)=0 *(0 * f(a))$, that is, $f(a) \in$ $L_{p}(X)$. Hence

$$
\begin{align*}
d_{f}(a) & =d_{f}(0 *(0 * a)) \\
& =\left(d_{f}(0) * f(0 * a)\right) \wedge\left(f(0) * d_{f}(0 * a)\right) \\
& =\left(d_{f}(0) * f(0 * a)\right) \wedge\left(0 * d_{f}(0 * a)\right) \\
& =\left(0 * d_{f}(0 * a)\right) *\left(\left(0 * d_{f}(0 * a)\right) *\left(d_{f}(0) * f(0 * a)\right)\right) \\
& =\left(0 * d_{f}(0 * a)\right) *\left(\left(0 *\left(d_{f}(0) * f(0 * a)\right)\right) * d_{f}(0 * a)\right) \tag{2.23}\\
& =0 *\left(0 *\left(d_{f}(0) *(f(0) * f(a))\right)\right) \\
& =0 *\left(0 *\left(d_{f}(0) *(0 * f(a))\right)\right) \\
& =d_{f}(0) *(0 * f(a))=d_{f}(0)+f(a) .
\end{align*}
$$

(iii) The proof follows directly from (ii).
(iv) Let $a, b \in L_{p}(X)$. Note that $a+b \in L_{p}(X)$, so from (ii), we note that

$$
\begin{align*}
d_{f}(a+b) & =d_{f}(0)+f(a+b) \\
& =d_{f}(0)+f(a)+d_{f}(0)+f(b)-d_{f}(0)=d_{f}(a)+d_{f}(b)-d_{f}(0) . \tag{2.24}
\end{align*}
$$

Proposition 2.12. Let d_{f} be a (r, l) - f-derivation of a BCI-algebra X. Then,
(i) $d_{f}(a) \in G(X)$ for all $a \in G(X)$;
(ii) $d_{f}(a) \in L_{p}(X)$ for all $a \in G(X)$;
(iii) $d_{f}(a)=f(a) * d_{f}(0)=f(a)+d_{f}(0)$ for all $a \in L_{p}(X)$;
(iv) $d_{f}(a+b)=d_{f}(a)+d_{f}(b)-d_{f}(0)$ for all $a, b \in L_{p}(X)$.

Proof. (i) For any $a \in G(X)$, we have $d_{f}(a)=d_{f}(0 * a)=\left(f(0) * d_{f}(a)\right) \wedge\left(d_{f}(0) * f(a)\right)$ $=\left(d_{f}(0) * f(a)\right) *\left(\left(d_{f}(0) * f(a)\right) *\left(0 * d_{f}(a)\right)\right)=0 * d_{f}(a)$, and so $d_{f}(a) \in G(X)$.
(ii) For any $a \in L_{p}(X)$, we get

$$
\begin{align*}
d_{f}(a) & =d_{f}(0 *(0 * a))=\left(0 * d_{f}(0 * a)\right) \wedge\left(d_{f}(0) * f(0 * a)\right) \\
& =\left(d_{f}(0) * f(0 * a)\right) *\left(\left(d_{f}(0) * f(0 * a)\right) *\left(0 * d_{f}(0 * a)\right)\right) \tag{2.25}\\
& =0 * d_{f}(0 * a) \in L_{p}(X)
\end{align*}
$$

(iii) For any $a \in L_{p}(X)$, we get

$$
\begin{align*}
d_{f}(a) & =d_{f}(a * 0)=\left(f(a) * d_{f}(0)\right) \wedge\left(d_{f}(a) * f(0)\right) \\
& =d_{f}(a) *\left(d_{f}(a) *\left(f(a) * d_{f}(0)\right)\right)=f(a) * d_{f}(0) \tag{2.26}\\
& =f(a) *\left(0 * d_{f}(0)\right)=f(a)+d_{f}(0) .
\end{align*}
$$

(iv) The proof follows from (iii). This completes the proof.

Using Proposition 2.12, we know there is an $(l, r)-f$-derivation which is not an (r, l) -f-derivation as shown in the following example.

Example 2.13. Let \mathbb{Z} be the set of all integers and "-" the minus operation on \mathbb{Z}. Then $(\mathbb{Z},-, 0)$ is a BCI-algebra. Let $d_{f}: X \rightarrow X$ be defined by $d_{f}(x)=f(x)-1$ for all $x \in \mathbb{Z}$. Then,

$$
\begin{align*}
\left(d_{f}(x)-f(y)\right) \wedge\left(f(x)-d_{f}(y)\right) & =(f(x)-1-f(y)) \wedge(f(x)-(f(y)-1)) \\
& =(f(x-y)-1) \wedge(f(x-y)+1) \\
& =(f(x-y)+1)-2=f(x-y)-1 \tag{2.27}\\
& =d_{f}(x-y) .
\end{align*}
$$

Hence, d_{f} is an $(l, r)-f$-derivation of X. But $d_{f}(0)=f(0)-1=-1 \neq 1=f(0)-d_{f}(0)=$ $0-d_{f}(0)$, that is, $d_{f}(0) \notin G(X)$. Therefore, d_{f} is not an $(r, l)-f$-derivation of X by Proposition 2.12(i).

3. Regular f-derivations

Definition 3.1. An f-derivation d_{f} of a BCI-algebra X is said to be regular if $d_{f}(0)=0$.
Remark 3.2. We know that the f-derivations d_{f} in Examples 2.5 and 2.7 are regular.
Proposition 3.3. Let X be a commutative BCI-algebra and let d_{f} be a regular $(r, l)-f$ derivation of X. Then the following hold.
(i) Both $f(x)$ and $d_{f}(x)$ belong to the same branch for all $x \in X$.
(ii) d_{f} is an $(l, r)-f$-derivation of X.

Proof. (i) Let $x \in X$. Then,

$$
\begin{align*}
0 & =d_{f}(0)=d_{f}\left(a_{x} * x\right) \\
& =\left(f\left(a_{x}\right) * d_{f}(x)\right) \wedge\left(d\left(a_{x}\right) * f(x)\right) \\
& =\left(d\left(a_{x}\right) * f(x)\right) *\left(\left(d\left(a_{x}\right) * f(x)\right) *\left(f\left(a_{x}\right) * d_{f}(x)\right)\right) \tag{3.1}\\
& =\left(d\left(a_{x}\right) * f(x)\right) *\left(\left(d\left(a_{x}\right) * f(x)\right) *\left(f_{x} * d_{f}(x)\right)\right) \\
& =f_{x} * d_{f}(x) \text { since } f_{x} * d_{f}(x) \in L_{P}(X),
\end{align*}
$$

and so $f_{x} \leq d_{f}(x)$. This shows that $d_{f}(x) \in V\left(f_{x}\right)$. Clearly, $f(x) \in V\left(f_{x}\right)$.
(ii) By (i), we have $f(x) * d_{f}(y) \in V\left(f_{x} * f_{y}\right)$ and $d_{f}(x) * f(y) \in V\left(f_{x} * f_{y}\right)$. Thus $d_{f}(x * y)=\left(f(x) * d_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right)=\left(d_{f}(x) * f(y)\right) \wedge\left(f(x) * d_{f}(y)\right)$, which implies that d_{f} is an $(l, r)-f$-derivation of X.

Remark 3.4. The f-derivations d_{f} in Examples 2.5 and 2.7 are regular f-derivations but we know that the $(l, r)-f$-derivation d_{f} in Example 2.2 is not regular. In the following, we give some properties of regular f-derivations.

Definition 3.5. Let X be a BCI-algebra. Then define $\operatorname{ker} d_{f}=\left\{x \in X \mid d_{f}(x)=0\right.$ for all f-derivations $\left.d_{f}\right\}$.

Proposition 3.6. Let d_{f} be an f-derivation of a BCI-algebra X. Then the following hold:
(i) $d_{f}(x) \leq f(x)$ for all $x \in X$;
(ii) $d_{f}(x) * f(y) \leq f(x) * d_{f}(y)$ for all $x, y \in X$;
(iii) $d_{f}(x * y)=d_{f}(x) * f(y) \leq d_{f}(x) * d_{f}(y)$ for all $x, y \in X$;
(iv) $\operatorname{ker} d_{f}$ is a subalgebra of X. Especially, if f is monic, then $\operatorname{ker} d_{f} \subseteq X_{+}$.

Proof. (i) The proof follows by Proposition 2.10(ii).
(ii) Since $d_{f}(x) \leq f(x)$ for all $x \in X$, then $d_{f}(x) * f(y) \leq f(x) * f(y) \leq f(x) * d_{f}(y)$.
(iii) For any $x, y \in X$, we have

$$
\begin{align*}
d_{f}(x * y) & =\left(f(x) * d_{f}(y)\right) \wedge\left(d_{f}(x) * f(y)\right) \\
& =\left(d_{f}(x) * f(y)\right) *\left(\left(d_{f}(x) * f(y)\right) *\left(f(x) * d_{f}(y)\right)\right) \tag{3.2}\\
& =\left(d_{f}(x) * f(y)\right) * 0=d_{f}(x) * f(y) \leq d_{f}(x) * d_{f}(y),
\end{align*}
$$

which proves (iii).
(iv) Let $x, y \in \operatorname{ker} d_{f}$, then $d_{f}(x)=0=d_{f}(y)$, and so $d_{f}(x * y) \leq d_{f}(x) * d_{f}(y)=0 *$ $0=0$ by (iii), and thus $d_{f}(x * y)=0$, that is, $x * y \in \operatorname{ker} d_{f}$. Hence, $\operatorname{ker} d_{f}$ is a subalgebra of X. Especially, if f is monic, and letting $x \in \operatorname{ker} d_{f}$, then $0=d_{f}(x) \leq f(x)$ by (i), and so $f(x) \in X_{+}$, that is, $0 * f(x)=0$, and thus $f(0 * x)=f(x)$, which implies that $0 * x=x$, and so $x \in X_{+}$, that is, $\operatorname{ker} d_{f} \subseteq X_{+}$.

Theorem 3.7. Let f be monic of a commutative BCI-algebra X. Then X is p-semisimple if and only if $\operatorname{ker} d_{f}=\{0\}$ for every regular f-derivation d_{f} of X.

Proof. Assume that X is p-semisimple BCI-algebra and let d_{f} be a regular f-derivation of X. Then $X_{+}=\{0\}$, and so $\operatorname{ker} d_{f}=\{0\}$ by using Proposition 3.6(iv). Conversely, let $\operatorname{ker} d_{f}=\{0\}$ for every regular f-derivation d_{f} of X. Define a self-map d_{f} of X by $d_{f}^{*}(x)=$ f_{x} for all $x \in X$. Using Theorem 2.9, d_{f}^{*} is an f-derivation of X. Clearly, $d_{f}^{*}(0)=f_{0}=$ $0 *(0 * f(0))=0$, and so d_{f}^{*} is a regular f-derivation of X. It follows from the hypothesis that $\operatorname{ker} d_{f}^{*}=\{0\}$. In addition, $d_{f}^{*}(x)=f_{x}=0 *(0 * f(x))=f(0 *(0 * x))=$ $f(0)=0$ for all $x \in X_{+}$, and thus $x \in \operatorname{ker} d_{f}^{*}$, which shows that $X_{+} \subseteq \operatorname{ker} d_{f}^{*}$. Hence, by Proposition 3.6(iv), $X_{+}=\operatorname{ker} d_{f}^{*}=\{0\}$. Therefore X is p-semisimple.

Definition 3.8. An ideal A of a BCI-algebra X is said to be an f-ideal if $f(A) \subseteq A$.
Definition 3.9. Let d_{f} be a self-map of a BCI-algebra X. An f-ideal A of X is said to be d_{f}-invariant if $d_{f}(A) \subseteq A$.

Theorem 3.10. Let d_{f} be a regular (r, l) - f-derivation of a BCI-algebra X, then every f ideal A of X is d_{f}-invariant.

Proof. By Proposition 2.10(ii), we have $d_{f}(x)=f(x) \wedge d_{f}(x) \leq f(x)$ for all $x \in X$. Let $y \in d_{f}(A)$. Then $y=d_{f}(x)$ for some $x \in A$. It follows that $y * f(x)=d_{f}(x) * f(x)=0 \in$ A. Since $x \in A$, then $f(x) \in f(A) \subseteq A$ as A is an f-ideal. It follows that $y \in A$ since A is an ideal of X. Hence $d_{f}(A) \subseteq A$, and thus A is d_{f}-invariant.

Theorem 3.11. Let d_{f} be an f-derivation of a BCI-algebra X. Then d_{f} is regular if and only if every f-ideal of X is d_{f}-invariant.

Proof. Let d_{f} be a derivation of a BCI-algebra X and assume that every f-ideal of X is d_{f}-invariant. Then since the zero ideal $\{0\}$ is f-ideal and d_{f}-invariant, we have $d_{f}(\{0\}) \subseteq$ $\{0\}$, which implies that $d_{f}(0)=0$. Thus d_{f} is regular. Combining this and Theorem 3.10, we complete the proof.

Acknowledgments

This work was supported by the Education Committee of Hubei Province (2004Z002, D200529001). The authors would like to thank the Editor-in-Chief and referees for the valuable suggestions and corrections for the improvement of this paper.

References

[1] M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36 (1991), no. 1, 39-45.
[2] H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346.
[3] H. E. Bell and G. Mason, On derivations in near-rings, Near-Rings and Near-Fields (Tübingen, 1985), North-Holland Math. Stud., vol. 137, North-Holland, Amsterdam, 1987, pp. 31-35.
[4] M. A. Chaudhry, Branchwise commutative BCI-algebras, Math. Japon. 37 (1992), no. 1, 163170.
[5] M. Daoji, BCI-algebras and abelian groups, Math. Japon. 32 (1987), no. 5, 693-696.
[6] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), no. 3-4, 167176.
[7] K. Kaya, Prime rings with α-derivations Hacettepe, Bull. Mater. Sci. Eng. 16-17 (1987-1988), 63-71.
[8] Y. L. Liu, J. Meng, and X. L. Xin, Quotient rings induced via fuzzy ideals, Korean J. Comput. Appl. Math. 8 (2001), no. 3, 631-643.
[9] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japon. 37 (1992), no. 3, 569-572.
[10] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[11] L. Tiande and X. Changchang, p-radical in BCI-algebras, Math. Japon. 30 (1985), no. 4, 511517.

Jianming Zhan: Department of Mathematics, Hubei Institute for Nationalities, Enshi 445000, Hubei Province, China

E-mail address: zhanjianming@hotmail.com
Yong Lin Liu: Department of Applied Mathematics, School of Science, Xidian University, Xi'an 710071, Shaanxi, China; Department of Mathematics, Nanping Teachers College, Nanping 353000, Fujian, China

E-mail address: ylliun@tom.com

