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In 2001, Chen and Shao gave the nonuniform estimation of the rate of convergence in
Berry-Esseen theorem for independent random variables via Stein-Chen-Shao method.
The aim of this paper is to obtain a constant in Chen-Shao theorem, where the ran-
dom variables are not necessarily identically distributed and the existence of their third
moments are not assumed. The bound is given in terms of truncated moments and the
constant obtained is 21.44 for most values. We use a technique called Stein’s method, in
particular the Chen-Shao concentration inequality.

1. Introduction and main result

Let X1,X2, . . . ,Xn be independent and not necessarily identically distributed random vari-
ables with zero mean and finite variance. Define W = X1 + X2 + ··· + Xn and assume
that Var(W) = 1. Let Fn be the distribution function of W and Φ the standard normal
distribution function. It is well known that if the Lindeberg condition,

∀ε > 0,
n∑
i=1

EX2
i I
(∣∣Xi

∣∣ > ε
)−→ 0 as n−→∞, (1.1)

where I(A) is an indicator random variable such that

I(A)=
1 if A is true,

0 otherwise,
(1.2)

is satisfied, then

∀x ∈R, Fn(x)−→Φ(x) as n−→∞. (1.3)

Furthermore, if E|Xi|3 <∞, then we have the uniform Berry-Esseen theorem

sup
x∈R

∣∣Fn(x)−Φ(x)
∣∣≤ C0

n∑
i=1

E
∣∣Xi

∣∣3
, (1.4)
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and the nonuniform Berry-Esseen theorem

∣∣Fn(x)−Φ(x)
∣∣≤ C1(

1 + |x|)3

n∑
i=1

E
∣∣Xi

∣∣3
, (1.5)

where both C0 and C1 are absolute constants.
Note that in case Xi’s are identically distributed, (1.4) and (1.5) were first obtained

by Esseen [4] and Nagaev [8], respectively. Bikjalis [1] generalized Nagaev’s result to the
case that Xi’s are not necessarily identically distributed random variables. Paditz [9, 10]
calculated C1 to be 114.7 and 32 in 1977 and 1989, respectively, and Michel [7] reduced
it to 30.84 for the independent and identically distributed case.

In 2001, Chen and Shao gave nonuniform and uniform bounds for independent and
not necessarily identically distributed random variables without assuming the existence
of third moments. Their result states as follows.

Theorem 1.1 (Chen-Shao theorem). Let X1,X2, . . . ,Xn be independent random variables
with zero means and

∑n
i=1EX

2
i = 1. Let W = X1 +X2 + ···+Xn and let Fn be the distribu-

tion function of W . Then,

∣∣F(x)−Φ(x)
∣∣≤ C

n∑
i=1

{
EX2

i I
(∣∣Xi

∣∣≥ 1 + |x|)(
1 + |x|)2 +

E
∣∣Xi

∣∣3
I
(∣∣Xi

∣∣ < 1 + |x|)(
1 + |x|)3

}
, (1.6)

∣∣F(x)−Φ(x)
∣∣≤ 4.1

n∑
i=1

{
EX2

i I
(∣∣Xi

∣∣≥ 1
)

+E
∣∣Xi

∣∣3
I
(∣∣Xi

∣∣ < 1
)}
. (1.7)

Observe that the constant 4.1 in (1.7) is smaller than 6 as obtained by Feller [5] and it
was pointed out by Loh [6] that the truncation at 1 in (1.7) is optimal in the sense that

EX2I
(|X| ≥ 1

)
+E|X|3I(|X| < 1

)= inf
A

{
EX2I(X ∈A) +E|X|3I(X ∈ AC

)}
. (1.8)

The standard tool used Esseen [4], Nagaev [8], Bikjalis [1], Paditz [9, 10], and Michel [7]
is the Fourier-analytic method. But Chen and Shao [3] proved (1.6) and (1.7) by com-
bining truncation with Stein’s method [14] and the concentration inequality approach.
The concentration inequality approach was originally used by Stein for independent and
identically distributed random variables. It was extended by Chen [2] to dependent and
nonidentically distributed random variables with arbitrary index sets. In [3], the con-
centration inequality approach is improved and extended to nonuniform bounds. The
improved approach is much more effective than that in [2]. In this paper, we combine
the concentration inequality in [3] with the coupling approach to calculate the constant
C in (1.6). The followings are our main results.

Theorem 1.2. Let X1,X2, . . . ,Xn be independent random variables with zero means and∑n
i=1EX

2
i = 1. Let W = X1 + X2 + ···+Xn and let Fn be the distribution function of W .

Then

∣∣Fn(x)−Φ(x)
∣∣≤ C0

n∑
i=1

{
EX2

i I
(∣∣Xi

∣∣≥ 1 + |x/4|)(
1 + |x/4|)2 +

E
∣∣Xi

∣∣3
I
(∣∣Xi

∣∣ < 1 + |x/4|)(
1 + |x/4|)3

}
,

(1.9)
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where

C0 =


21.44 if |x| ≤ 3 or |x| ≥ 14,

32 if 3 < |x| ≤ 3.99 or 7.98 < |x| < 14,

60 otherwise.

(1.10)

Corollary 1.3. If Xi’s in Theorem 1.1 have finite third moment, then

∣∣Fn(x)−Φ(x)
∣∣≤ C1

∑n
i=1E

∣∣Xi

∣∣3(
1 + |x/4|)3 , (1.11)

where

C1 =
21.44 if |x| ≤ 7.98 or |x| ≥ 14,

32 if 7.98 < |x| < 14.
(1.12)

Observe that the bound in Theorem 1.2 is given in terms of truncated moments. It
is worthwhile to note also that truncated moments were considered by Sazonov [13]. In
his work, he gave two main methods for deriving speed of convergence results in the
central limit theorem (CLT), namely, the Fourier-analytic method and the method of
composition which used convolutions directly. These methods are used to derive more
results for random vectors. For nonuniform bound in CLT of random vectors, one can
see, for examples, Rotar [11, 12].

2. Auxiliary results

In this section, we give auxiliary results in order to prove the main theorem in Section 3.
Let X1,X2, . . . ,Xn, W , Fn, and Φ be defined as in Theorem 1.2. In order to use the con-
centration inequality and the coupling approach, we introduce random variables J , X̃1,
X̃2, . . . , X̃n defined in the following way. The random variables J , X1,X2, . . . ,Xn, X̃1,
X̃2, . . . , X̃n are independent, J uniformly distributed over the set {1,2, . . . ,n}, (Xi, X̃i) is
a coupling pair, that is, Xi and X̃i are the same distributions. For a > 0, we also let

Yj,a = XjI
(∣∣Xj

∣∣ < 1 + a
)
, Ỹ j,a = X̃ j I

(∣∣X̃ j

∣∣ < 1 + a
)
,

Sa =
n∑
j=1

Yj,a, S̃a = Sa−YJ ,a + ỸJ ,a,

αa =
n∑
j=1

EX2
j I
(∣∣Xj

∣∣≥ 1 + a
)
, βa =

n∑
j=1

E
∣∣Xj

∣∣3
I
(∣∣Xj

∣∣ < 1 + a
)
,

δa = αa
(1 + a)2

+
βa

(1 + a)3
.

(2.1)

Observe that (Yj,a, Ỹ j,a) is a coupling pair and (Sa, S̃a) is an exchangeable pair in the sense
that

P
(
Sa ∈ E, S̃a ∈ Ẽ

)= P
(
Sa ∈ Ẽ, S̃a ∈ E

)
(2.2)
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for arbitrary Borel sets E and Ẽ on R. From the fact that (a + b)n ≤ 2n−1(an + bn) for
a,b ≥ 0, we have

E
∣∣YJ ,a

∣∣3 = 1
n

n∑
j=1

E
∣∣Xj

∣∣3
I
(∣∣Xj

∣∣ < 1 + a
)= βa

n
, (2.3)

E
∣∣ỸJ ,a−YJ ,a

∣∣3 ≤ 8
n

n∑
j=1

E
∣∣Xj

∣∣3
I
(∣∣Xj

∣∣ < 1 + a
)= 8βa

n
. (2.4)

In proposition 2.1, we use the coupling approach to bound ES2
a and ES4

a which are used
in the proof of the concentration inequality.

Proposition 2.1. (1) ESa S̃a = (1− 1/n)Sa + (1/n)ESa, where EXY is the conditional expec-
tation of Y with respect to X .

(2) ES2
a ≤ 1 + (αa/(1 + a))2.

(3) |ESa|3 ≤ 12βa + 3(αa/(1 + a)) + (αa/(1 + a))3.
(4) ES4

a ≤ 53(1 + a)βa + 30βa(αa/(1 + a)) + 6(αa/(1 + a))2 + (αa/(1 + a))4 + 6βa +
6αa + 3.

(5) If (1 + a)2αa + (1 + a)βa < 1/80 and a ≥ 3, then ES2
a ≤ 1 + (3.8× 10−8) and ES4

a ≤
3.69.

(6) If (1 + a)2αa + (1 + a)βa ≥ 1/80 and a≥ 14, then ES4
a/a

4 ≤ 391δa.

Proof. (1)

ESa S̃a = ESa
(
Sa−YJ ,a + ỸJ ,a

)
= Sa−ESaYJ ,a +ESaỸJ ,a

= Sa− 1
n

n∑
j=1

ESaYj,a +
1
n

n∑
j=1

ESaỸ j,a

= Sa− 1
n

n∑
j=1

Yj,a +
1
n

n∑
j=1

EYj,a

=
(

1− 1
n

)
Sa +

1
n
ESa.

(2.5)

(2) Let h :R2 →R be defined by

h(t̃, t)= t̃2− t2. (2.6)

Since h is antisymmetric in the sense that h(t̃, t)=−h(t, t̃) and (Sa, S̃a) is an exchangeable
pair, by Stein [15, equation (9), page 10],

E
(
S̃2
a− S2

a

)= Eh
(
S̃a,Sa

)= 0. (2.7)
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From this fact and (1), we have

0= E
(
S̃a− Sa

)(
S̃a + Sa

)
= 2E

(
S̃a− Sa

)
Sa +E

(
S̃a− Sa

)2

= 2E
(
ESa S̃a− Sa

)
Sa +E

(
S̃a− Sa

)2

=−2
n
ES2

a +E
(
S̃a− Sa

)2
+

2
n
E2Sa,

(2.8)

which implies that

ES2
a =

n

2
E
(
ỸJ ,a−YJ ,a

)2
+E2Sa

=
n∑
j=1

{
EX2

j I
(∣∣Xj

∣∣ < 1 + a
)−E2XjI

(∣∣Xj

∣∣ < 1 + a
)}

+E2Sa

≤
n∑
j=1

EX2
j I
(∣∣Xj

∣∣ < 1 + a
)

+E2Sa

≤ 1 +
(

αa
1 + a

)2

,

(2.9)

where we have used the fact that
∑n

j=1EX
2
j = 1 and

∣∣ESa∣∣=
∣∣∣∣∣

n∑
j=1

EXjI
(∣∣Xj

∣∣ < 1 + a
)∣∣∣∣∣=

∣∣∣∣∣
n∑
j=1

EXjI
(∣∣Xj

∣∣≥ 1 + a
)∣∣∣∣∣≤ αa

1 + a
(2.10)

in the last inequality.
(3) By the same argument of (2), with h(t̃, t)= (t̃− t)(t̃2 + t2),

ES3
a =

n

2
E
(
S̃a− Sa

)(
S̃2
a− S2

a

)
+ESaES

2
a

= n

2
E
(
S̃a− Sa

)2(
S̃a + Sa

)
+ESaES

2
a

= n

2
E
(
ỸJ ,a−YJ ,a

)2[(
ỸJ ,a−YJ ,a

)
+ 2Sa

]
+ESaES

2
a

= n

2
E
(
ỸJ ,a−YJ ,a

)3
+nE

(
ỸJ ,a−YJ ,a

)2
Sa +ESaES

2
a.

(2.11)

Hence,

∣∣ES3
a

∣∣≤ n

2
E
∣∣ỸJ ,a−YJ ,a

∣∣3
+n

∣∣∣E(ỸJ ,a−YJ ,a
)2
Sa
∣∣∣+ESaES

2
a

≤ 4βa +n
∣∣∣E(ỸJ ,a−YJ ,a

)2
Sa
∣∣∣+

(
αa

1 + a

)
+
(

αa
1 + a

)3

,
(2.12)
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where we have used (2.4), (2.10), and (2) in the last inequality. Note that

∣∣∣E(ỸJ ,a−YJ ,a
)2
Sa
∣∣∣= ∣∣∣∣∣1

n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
n∑
l=1

Yl,a

∣∣∣∣∣
≤
∣∣∣∣∣1
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
Yj,a

∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
1
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
n∑
l=1
l �= j

EYl,a

∣∣∣∣∣∣∣∣∣
≤ 1

n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2∣∣Yj,a
∣∣+

1
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2∣∣ESa∣∣
+

1
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
E
∣∣Yj,a

∣∣
≤ 8

n

n∑
j=1

E
∣∣Yj,a

∣∣3
+

2
n

(
αa

1 + a

)

≤ 8βa
n

+
2
n

(
αa

1 + a

)
.

(2.13)

Hence, by (2.12) and (2.13), |ES3
a| ≤ 12βa + 3(αa/(1 + a)) + (αa/(1 + a))3.

(4) Using the same argument of (2), with h(t̃, t)= (t̃− t)(t̃3 + t3), we have

ES4
a =

n

2
E
(
S̃a− Sa

)(
S̃3
a− S3

a

)
+ESaES

3
a

= n

2
E
(
S̃a− Sa

)2[(
S̃a− Sa

)2
+ 3S̃aSa

]
+ESaES

3
a

= n

2
E
(
ỸJ ,a−YJ ,a

)4
+

3n
2
E
(
ỸJ ,a−YJ ,a

)2(
S2
a +

(
ỸJ ,a−YJ ,a

)
Sa
)

+ESaES
3
a

≤ n(1 + a)E
∣∣ỸJ ,a−YJ ,a

∣∣3
+

3n
2
E
(
ỸJ ,a−YJ ,a

)2
S2
a

+ 3n(1 + a)E
∣∣(ỸJ ,a−YJ ,a

)2
Sa
∣∣+ESaES

3
a

≤ 32(1 + a)βa + 6αa + 12βa

(
αa

1 + a

)
+ 3

(
αa

1 + a

)2

+
(

αa
1 + a

)4

+
3n
2
E
(
ỸJ ,a−YJ ,a

)2
S2
a,

(2.14)

where we have used (2.4), (2.10), (2.13), and (3) in the last inequality. From (2.14) and
the fact that

E
(
ỸJ ,a−YJ ,a

)2
S2
a

= 1
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
E


n∑
l=1
l �= j

Yl,a


2

+
2
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
Yj,aE


n∑
l=1
l �= j

Yl,a
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+
1
n

n∑
j=1

E
(
Ỹ j,a−Yj,a

)2
Y 2
j,a

≤ 2
n

n∑
j=1

EY 2
j,aE


n∑
l=1
l �= j

Yl,a


2

+
8
n

n∑
j=1

E
∣∣Yj,a

∣∣3

∣∣∣∣∣∣∣∣∣E


n∑
l=1
l �= j

Yl,a


∣∣∣∣∣∣∣∣∣+

4(1 + a)
n

n∑
j=1

E
∣∣Yj,a

∣∣3

≤ 2
n

n∑
j=1

EY 2
j,aES

2
a−

4
n

n∑
j=1

EY 2
j,aESaYj,a +

2
n

n∑
j=1

EY 2
j,aEY

2
j,a

+
8
n

n∑
j=1

E
∣∣Yj,a

∣∣3∣∣ESa∣∣+
8
n

n∑
j=1

E
∣∣Yj,a

∣∣3∣∣EYj,a
∣∣+

4(1 + a)
n

βa

≤ 2
n

+
2
n

(
αa

1 + a

)2

+
4
n

n∑
j=1

E
∣∣Yj,a

∣∣3
√
ES2

a +
8βa
n

(
αa

1 + a

)
+

14(1 + a)βa
n

≤ 2
n

+
4βa
n

+
12βa
n

(
αa

1 + a

)
+

2
n

(
αa

1 + a

)2

+
14(1 + a)βa

n
,

(2.15)

we have

ES4
a ≤ 53(1 + a)βa + 30βa

(
αa

1 + a

)
+ 6

( αa
1 + a

)2

+
(

αa
1 + a

)4

+ 6βa + 6αa + 3. (2.16)

(5) Follows directly from (2) and (4).
(6)

ES4
a

a4
≤ 53

a3

(
1 + a

a

)
βa +

30βa
a4

(
αa

1 + a

)
+

6
a4

(
αa

1 + a

)2

+
1
a4

(
αa

1 + a

)4

+
6βa
a4

+
6αa
a4

+
3
a4

≤ 70.697βa
(1 + a)3

+
0.035αa
(1 + a)2

+
3.997

(1 + a)4

≤ 70.697βa
(1 + a)3

+
0.035αa
(1 + a)2

+ 319.76αa

≤ 391δa,

(2.17)

where we have used the fact that a ≥ 14, αa ≤ 1, and (1 + a)/a ≤ 1.072 in the second
inequality and the fact that (1 + a)2αa + (1 + a)βa ≥ 1/80 in the last inequality. �

Next, we will prove the concentration inequality.

Proposition 2.2 (concentration inequality). Let i ∈ {1,2, . . . ,n} and W (i) =W − Xi.
Then for 3≤ a < b <∞ and (1 + a)2αa + (1 + a)βa < 1/80,

P
(
a≤W (i) ≤ b

)≤ 40.98
(1 + a)3

(b− a) + 46.38δa. (2.18)
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Proof. Let Si,a = Sa−Yi,a. We observe that W (i) = Si,a when max1≤ j≤n, j �=i |Xj| < 1 + a. So

P
(
a≤W (i) ≤ b

)≤ P
(
a≤ Si,a ≤ b

)
+P

max
1≤ j≤n
j �=i

∣∣Xj

∣∣≥ 1 + a


≤ P

(
a≤ Si,a ≤ b

)
+

αa
(1 + a)2

.

(2.19)

Let γ = βa/2 and f :R→R defined by

f (t)=


0 for t < a− γ,

(1 + t+ γ)3(t− a+ γ) for a− γ ≤ t ≤ b+ γ,

(1 + t+ γ)3(b− a+ 2γ) for t > b+ γ.

(2.20)

So f is a nondecreasing function satisfying f ′(t) ≥ (1 + a)3 for a− γ < t < b + γ, and
f ′(t)≥ 0 otherwise. Let M(w, t)=w[I(−w ≤ t < 0)− I(0≤ t <−w)]. Hence,

ESi,a f
(
Si,a)=

n∑
j=1
j �=i

EYj,a
(
f
(
Si,a
)− f

(
Si,a−Yj,a

))

=
n∑
j=1
j �=i

EYj,a

∫ 0

−Yj,a

f ′
(
Si,a + t

)
dt

=
n∑
j=1
j �=i

EYj,a

{∫
R
f ′
(
Si,a + t

)[
I
(−Yj,a ≤ t < 0

)− I
(
0 < t ≤−Yj,a

)]
dt
}

=
n∑
j=1
j �=i

E
{∫

R
f ′
(
Si,a + t

)
M
(
Yj,a, t

)
dt
}

≥ (1 + a)3
n∑
j=1
j �=i

E
{
I
(
a≤ Si,a ≤ b

)∫
|t|≤γ

M
(
Yj,a, t

)
dt
}

= (1 + a)3E

I
(
a≤ Si,a ≤ b

) n∑
j=1
j �=i

∣∣Yj,a
∣∣min

(
γ,
∣∣Yj,a

∣∣)


≥ 0.46(1 + a)3{P(a≤ Si,a ≤ b
)−P

(
Ui ≤ 0.46)

}
,

(2.21)

where Ui =
∑n

j=1, j �=i |Yj,a|min(γ,|Yj,a|) and we have used the fact that

I
(
t1 ≤w ≤ t2

)
y ≥ c

(
I
(
t1 ≤w ≤ t2

)−(1− y

c

)
I(y ≤ c)

)
(2.22)



K. Neammanee 1959

for t1, t2, y ≥ 0, c > 0 in the last inequality. Hence,

P
(
a≤ Si,a ≤ b

)≤ 1
0.46(1 + a)3

ESi,a f
(
Si,a
)

+P
(
Ui ≤ 0.46

)
. (2.23)

Next, we will bound the two terms on the right-hand side of (2.23). By the same argument
as that in Proposition 2.1, we can show that ES4

i,a ≤ 3.69 and ES2
i,a ≤ 1 + (3.8× 10−8). So

E
∣∣Si,a f (Si,a)∣∣≤ (b− a+ 2γ)E

∣∣Si,a∣∣∣∣Si,a + (1 + γ)
∣∣3

≤ 4
(
b− a+βa

)(
ES4

i,a + |1 + γ|3E∣∣Si,a∣∣)
≤ 4

(
b− a+βa

)(
ES4

i,a +
∣∣∣∣1 +

βa
2

∣∣∣∣3√
ES2

i,a

)
≤ 18.85

(
b− a+βa

)
.

(2.24)

By the facts that min(a,b)≥ b− b2/4a for a,b > 0,

EX2
i I
(∣∣Xi

∣∣≤ 1 + a
)≤ (βa)2/3

< 0.021,

αa ≤ 1
80(1 + a)2

≤ 7.8× 10−4 for a≥ 3,
(2.25)

we have

EUi =
n∑
j=1
j �=i

E
∣∣Yj,a

∣∣min
(
γ,
∣∣Yj,a

∣∣)

≥
n∑
j=1
j �=i

(
EY 2

j,a−
E
∣∣Yj,a

∣∣3

4γ

)

≥
n∑
j=1

{
EX2

j I
(∣∣Xj

∣∣ < 1 + a
)−EX2

j I
(∣∣Xj

∣∣≥ 1 + a
)}− β

γ

=
∑
j=1
j �=i

{
EX2

j I
(∣∣Xj

∣∣ < 1 + a
)−E2XjI

(∣∣Xj

∣∣≥ 1 + a
)}− 0.5

= 1−EX2
i I
(∣∣Xi

∣∣ < 1 + a
)− 2

n∑
j=1

EX2
j I
(∣∣Xi

∣∣≥ 1 + a
)− 0.5

≥ 1− (βa)2/3− 2αa− 0.5

≥ 0.477.

(2.26)

Using the same argument as in Proposition 2.1(5), we can show that

E
∣∣Ui−EUi

∣∣4 ≤ 3.69γ4 = 0.231β4
a ≤ 4.512× 10−7 βa

(1 + a)3
. (2.27)
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Hence,

P
(
Ui ≤ 0.46

)≤ P
(
EUi−Ui ≥ 0.477− 0.46

)
= P

(
EUi−Ui ≥ 0.017

)
≤ E

∣∣Ui−EUi

∣∣4

(0.017)4

≤ 5.402βa
(1 + a)3

.

(2.28)

From (2.19), (2.23), (2.24), and (2.28),

P
(
a≤W (i) ≤ b

)≤ 40.978
(1 + a)3

(
b− a+βa

)
+

5.402βa
(1 + a)3

+
αa

(1 + a)2

≤ 40.98(b− a)
(1 + a)3

+ 46.36δa.
(2.29)

�

Proposition 2.3. For x ≥ 2,

E
∣∣ f ′x (W)

∣∣≤ 15
(1 + x)2

, (2.30)

where fx is the unique solution of the Stein equation

f ′(w)−w f (w)= I(w ≤ x)−Φ(x). (2.31)

Proof. From Stein [15, pages 22 and 24], we know that

0 < f ′x (w) < 1−Φ(x) for w ≤ 0,

0 < f ′x (x)≤ 1−Φ(x)
[
1 +
√

2πwe(1/2)w2
Φ(x)

]
for 0 < w ≤ x,∣∣ f ′x (w)

∣∣≤ 1 ∀w ∈R.
(2.32)

Hence,

E
∣∣ f ′x (W)

∣∣= E
∣∣ f ′x (W)

∣∣I(W ≤ 0) +E
∣∣ f ′x (W)

∣∣I(0 <W ≤ 4x
5

)
+E

∣∣ f ′x (W)
∣∣I(W >

4x
5

)
≤ (1−Φ(x)

)
P(W ≤ 0) +

(
1−Φ(x)

)
E
(
1 +
√

2πWeW
2/2)I(0 <W ≤ 4x

5

)
+

E
(
1 +W2

)(
1 + (4x/5)

)2

≤ (1−Φ(x)
)

+
(
1−Φ(x)

)(
1 +

4
√

2π
5

xe8x2/25

)
+

2(
1 + (4x/5)

)2 .

(2.33)
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Since

1−Φ(x)≤ e−(1/2)x2

√
2πx

for x ≥ 0, (2.34)

(see Stein [15, equation (25), page 23]) and ex
2/2 > x for x ≥ 2, we have

(
1−Φ(x)

)
(1 + x)2 ≤ 1√

2πx2
(1 + x)2 = 1√

2π

(
1
x

+ 1
)2

≤ 0.9, (2.35)

which implies that

1−Φ(x)≤ 0.9
(1 + x)2

. (2.36)

From (2.34) and the fact that e9x2/50 > 9x2/50, we derive

√
2π
(
1−Φ(x)

)
(1 + x)2xe8x2/25 ≤ e−9x2/50(1 + x)2

≤ 50
9

(
1
x

+ 1
)2

≤ 12.5,

(2.37)

that is,

4
√

2π
5

(
1−Φ(x)

)
xe8x2/25 ≤ 10

(1 + x)2
. (2.38)

From (2.33), (2.36), (2.38), and the fact that (1 + x)/(1 + 4x/5)≤ 5/4, we have proved the
proposition. �

Proposition 2.4. Let x ≥ 14 and g : R→ R defined by g(w)= (w fx(w))′. If (1 + x)2αx +
(1 + x)βx < 1/80, then for |u| ≤ 1 + x/4,

Eg
(
W (i) +u

)≤ 4.60
(1 + x/4)3

+ 5.13δx/4(1 + x). (2.39)

Proof. From Chen and Shao [3, pages 248–249], we know that

g(x− 1)= [√2π
(
1 + (x− 1)2)e(x−1)2/2Φ(x− 1) + (x− 1)

](
1−Φ(x)

)
, (2.40)

g is increasing for 0≤w < x, and

Eg
(
W (i) +u

)≤ 2
1 + x3

+ 2
(
1−Φ(x)

)
+ g(x− 1) +Eg

(
W (i) +u

)
I
(
x− 1 <W (i) +u < x

)
.

(2.41)

For x ≥ 14, elementary calculation yields

(1 + x)3

1 + x3
≤ 1.23 (2.42)
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and ex
2/2 ≥ (1/3!)(x2/2)3 ≥ 800x2. Using similar argument as that in deriving (2.36), we

have

1−Φ(x)≤ 0.0006
(1 + x)3

. (2.43)

By (2.40) and (2.34),

g(x− 1)≤√2π
(
1 + (x− 1)2)e(x−1)2/2(1−Φ(x)

)
+ x

(
1−Φ(x)

)
≤
(
x− 2 +

2
x

)
e−x+1/2 +

1√
2π

e−(1/2)x2

≤ 0.056
(1 + x)3

,

(2.44)

where we have used the fact that f (x)= {(x− 2 + 2/x)e−x+1/2 + (1/
√

2π)e−(1/2)x2}(1 + x)3

is decreasing on [14,∞) in the last inequality. So, by (2.41), (2.42), (2.43), and (2.44),

Eg
(
W (i) +u

)≤ 2.517
(1 + x)3

+Eg
(
W (i) +u

)
I
(
x− 1 <W (i) +u < x

)
= 2.517

(1 + x)3
+
∫ x

x−1
−g(w)dP

(
w <W (i) +u < x

)
= 2.517

(1 + x)3
+ g(x− 1)P

(
x− 1 <W (i) +u < x

)
+
∫ x

x−1
g′(w)P

(
w <W (i) +u < x

)
dw

≤ 2.573
(1 + x)3

+
∫ x

x−1
g′(w)

[
40.98

(1 +w−u)3
(x−w) + 46.38δw−u

]
dw,

(2.45)

where the last inequality follows from Proposition 2.2, (2.44), and the fact that

w−u≥ (x− 1)−
(

1 +
x

4

)
≥ 3x

5
≥ 3 for |u| < 1 +

x

4
. (2.46)

Since δx is decreasing in x, g is nonnegative and increasing on [0,x), and |g(x)| ≤ 1 + |x|,
(2.45) can then be bounded by

Eg
(
W (i) +u

)≤ 2.573
(1 + x)3

+
40.98

(1 + 3x/5)3

∫ x

x−1
g′(w)(x−w)dw+ 46.38δ3x/5g(x)

≤ 2.573
(1 + x)3

+
40.98

(1 + 3x/5)3

∫ x

x−1
(x−w)dg(w) + 46.38(1 + x)δ3x/5

≤ 2.573
(1 + x)3

+
40.98

(1 + 3x/5)3

∫ x

x−1
g(w)dw+ 46.38(1 + x)δ3x/5

= 2.573
(1 + x)3

+
40.98

(1 + 3x/5)3

(
x fx(x)

)
+ 46.38(1 + x)δ3x/5

≤ 4.60
(1 + x/4)3

+ 5.13δx/4(1 + x),

(2.47)
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where we have applied the fact that |x fx(x)| ≤ 1, (1 + x/4)/(1 + x)≤ 0.30, (1 + x/4)/(1 +
3x/5) ≤ 0.48, and δ3x/5 ≤ (1 + x/4)3/(1 + 3x/5)3δx/4 ≤ 0.111δx/4 for x ≥ 14 in the last in-
equality. �

We are now ready to prove our main results.

3. Proof of main results

3.1. Proof of Theorem 1.2. It suffices to consider only x ≥ 0 as we can simply apply the
result to −W when x < 0.

Case 3.1 (0≤ x ≤ 3). By (1.7) and (1.8),

21.44
n∑
i=1

[
EX2

i I
(∣∣Xi

∣∣≥ 1 + x/4
)

(1 + x/4)2
+
E
∣∣Xi

∣∣3
I
(∣∣Xi

∣∣ < 1 + x/4
)(

1 + x/4
)3

]

≥ 4.1
n∑
i=1

[
EX2

i I

(∣∣Xi

∣∣≥ 1 +
x

4

)
+E

∣∣Xi

∣∣3
I

(∣∣Xi

∣∣ < 1 +
x

4

)]

≥ 4.1
n∑
i=1

[
EX2

i I
(∣∣Xi

∣∣≥ 1
)

+E
∣∣Xi

∣∣3
I
(∣∣Xi

∣∣ < 1
)]

≥ ∣∣F(x)−Φ(x)
∣∣.

(3.1)

Case 3.2 (x ≥ 14).

Subcase 3.3 ((1 + x)2αx + (1 + x)βx ≥ 1/80). Using similar argument as that in showing
(2.36), we see that 1−Φ(x) ≤ 0.009/(1 + x)4. This inequality, together with inequality
(1 + x)2αx + (1 + x)βx ≥ 1/80, gives 1−Φ(x)≤ 0.738δx, which in turn implies that

∣∣F(x)−Φ(x)
∣∣≤ P(W ≥ x) +

(
1−Φ(x)

)
≤ P(W ≥ x) + 0.738δx.

(3.2)

Using the same argument as in (2.19), we have

P(W ≥ x)≤ P
(
Sx ≥ x

)
+

αx
(1 + x)2

≤ ES4
x

x4
+

αx
(1 + x)2

(which by Proposition 2.1(6))

≤ 391δa +
αx

(1 + x)2

≤ 392δx.

(3.3)

From (3.2), (3.3), and the fact that δx ≤ ((1 + x/4)/(1 + x))3δx/4 ≤ 0.05δx/4, we have

∣∣F(x)−Φ(x)
∣∣≤ 20.26δx/4. (3.4)
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Subcase 3.4 ((1 + x)2αx + (1 + x)βx < 1/80). Let Ki,x/4(t) = EYi,x/4{I(0 < t ≤ Yi,x/4)
− I(Yi,x/4 ≤ t < 0)}. From Chen and Shao [3, pages 250–251], we set

F(x)−Φ(x)= R1 +R2 +R3 +R4, (3.5)

where

R1 =
n∑
i=1

E
{
I
(∣∣Xi

∣∣ < 1 +
x

4

)∫
|t|≤1+x/4

(
f ′x
(
W (i) +Xi

)− f ′x
(
W (i) + t

))
Ki,x/4(t)dt

}
,

R2 =
n∑
i=1

E
{
I
(∣∣Xi

∣∣≥ 1 +
x

4

)∫
|t|≤1+x/4

(
f ′x
(
W (i) +Xi

)− f ′x
(
W (i) + t

))
Kix/4(t)dt

}
,

R3 = αx/4E f
′
x (W),

R4 =−
n∑
i=1

E
{
XiI

(∣∣Xi

∣∣≥ 1 +
x

4

)(
f (W)− f

(
W (i)))},

(3.6)

and observe that |R1| ≤ R11 +R12, where

R11 =
n∑
i=1

∣∣∣∣E{I(∣∣Xi

∣∣ < 1 +
x

4

)∫
|t|≤1+x/4

Ki,x/4(t)
∫ Xi

t
Eg
(
W (i) +u

)
dudt

}∣∣∣∣,

R12 =
n∑
i=1

E
{
I
(∣∣Xi

∣∣ < 1 +
x

4

)∫
|t|≤1+x/4

P
(
x−max

(
t,Xi

)≤W (i) ≤ x

−min
(
t,Xi

) | Xi
)
Ki,x/4(t)dt

}
.

(3.7)

By the fact that | f ′x (s)− f ′x (t)| ≤ 1 for all x,s, t ∈R (see Chen and Shao [3, page 246]),
we have

∣∣R2
∣∣≤ n∑

i=1

P
(∣∣Xi

∣∣≥ 1 +
x

4

)

≤
n∑
i=1

EX2
i I
(∣∣Xi

∣∣≥ 1 + x/4
)

(1 + x/4)2

= αx/4
(1 + x/4)2

(3.8)

and by Proposition 2.3,

∣∣R3
∣∣= αx/4

∣∣E f ′x (W)
∣∣≤ 15αx/4

(1 + x)2
≤ 15αx/4

(1 + x/4)2
. (3.9)
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Since 0≤ fx(w)≤min(
√

2π/4,1/|x|) for all x > 0 (see Chen and Shao [3, equation (4.6),
page 246]),

∣∣R4
∣∣≤ n∑

i=1

E
∣∣Xi

∣∣I(∣∣Xi

∣∣≥ 1 + x/4
)

x

≤
n∑
i=1

EX2
i I
(∣∣Xi

∣∣≥ 1 + x/4)
(1 + x/4)x

≤ αx/4
(1 + x/4)x

≤ αx/4
(1 + x/4)2

.

(3.10)

Hence,

∣∣R2 +R3 +R4
∣∣≤ 17αx/4

(1 + x/4)2
. (3.11)

By Proposition 2.4, we have

R11 ≤ 2
[

4.60
(1 + x/4)3

+ 5.13(1 + x)δx/4

] n∑
i=1

E
∣∣Yi,x/4

∣∣3

≤ 9.2βx/4
(1 + x/4)3

+ 10.26(1 + x)δx/4βx/4

≤ 9.2βx/4
(1 + x/4)3

+ 0.128δx/4,

(3.12)

where we have used the fact that (1 + x)βx/4 ≤ (1 + x)βx < 1/80 in the last inequality.
By Proposition 2.2 and the fact that

x−max
(
t,Xi

)≥ x−
(

1 +
x

4

)
= 3x

4
− 1≥ 2x

3
for |t| ≤ 1 +

x

4
, (3.13)

we have

∣∣R12
∣∣≤ n∑

i=1

E
{
I
(∣∣Xi

∣∣≤1+
x

4

)∫
|t|≤1+x/4

(
40.98

(1+2x/3)3

(|t|+∣∣Xi

∣∣)+ 46.38δ2x/3

)
Ki,x/4(t)dt

}

≤ 81.96(
1 + 2x/3

)3 βx/4 + 46.38δ2x/3

≤ 6.982(
1 + x/4

)3 βx/4 + 3.942δx/4,

(3.14)

where we have used the fact that (1 + x/4)/(1 + 2x/3) ≤ 0.44 and δ2x/3 ≤ (1 + x/4)3/(1
+ 2x/3)3δx/4 ≤ 0.085δx/4 for x ≥ 14 in the last inequality.
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Hence, by (3.5), (3.11), (3.12), and (3.14),∣∣F(x)−Φ(x)
∣∣≤ ∣∣R1 +R2 +R3 +R4

∣∣≤ 20.26δx/4. (3.15)

For the case when 3 < x < 14, we can use the same arguments as in Case 3.1 and Case 3.2.

3.2. Proof of Corollary 1.3. From van Beek [16], we know that

∣∣F(x)−Φ(x)
∣∣≤ 0.7975

n∑
i=1

E
∣∣Xi

∣∣3
. (3.16)

Using the same technique in proving Case 3.1 of Theorem 1.2, we see that

∣∣F(x)−Φ(x)
∣∣≤ 21.44

n∑
i=1

E
∣∣Xi

∣∣3
(3.17)

for 0≤ x ≤ 7.98. For x > 7.98, we use Theorem 1.1 and the fact that

EX2
i I
(∣∣Xi

∣∣≥ 1 + |x/4|)(
1 + |x/4|)2 +

E
∣∣Xi

∣∣3
I
(∣∣Xi

∣∣ < 1 + |x/4|)(
1 + |x/4|)3 ≤ E

∣∣Xi

∣∣3(
1 + |x/4|)3 . (3.18)

4. Remark

In the proof of Theorem 1.1, we assume that x ≥ a, where a = 14. It is not necessary to
assume that a= 14. If a > 14 is used, the constant will be sharper.
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