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We prove that the operators in a class of rough fractional integral operators and the re-
lated maximal operators are bounded from Lp(vp) to Lq(uq) with weight pair (u,v).

1. Introduction and results

Suppose that Ω∈ Ls(Sn−1) (s≥ 1) is homogeneous of degree zero in Rn with zero mean
value on Sn−1, then it is well known that the Calderón-Zygmund singular integral is de-
fined by

TΩ f (x)= p.v.
∫
Rn

Ω(x− y)
|x− y|n f (y)dy. (1.1)

In 1967, Bajšanski and Coifman [1] first discussed the boundedness of operators on a
class of singular integral operators TA

Ω which are associated with the commutators of the
Calderón-Zygmund singular integral TΩ. The operator TA

Ω is defined by

TA
Ω f (x)= p.v.

∫
Rn

Rm(A,x, y)
|x− y|n+m−1

Ω(x− y) f (y)dy, (1.2)

where A(x) is defined on Rn and Rm(A;x, y) denotes the mth remainder of the Taylor
series of A at x about y. More precisely,

Rm(A;x, y)=A(x)−
∑
|γ|<m

1
γ!
DγA(y)(x− y)γ, (1.3)

where DγA∈ Lr(Rn) (1 < r ≤∞) or DγA∈ BMO(Rn) for |γ| =m− 1 (m≥ 1). Following
[1], Cohen and Gosselin studied also the boundedness of TA

Ω in [2, 3, 4].
Notice that the fractional integral operator is closely related to the Calderón-Zygmund

singular integral operator, which is defined by

TΩ,α f (x)=
∫
Rn

Ω(x− y)
|x− y|n−α f (y)dy (1.4)
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for 0 < α < n. (See [5, 7, 9] for the boundedness of TΩ,α.) Therefore, a natural and inter-
esting problem is whether there are similar mapping properties if we replace the kernel
function Ω(x)|x|−n by Ω(x)|x|−(n−α) (0 < α < n) in definition (1.2). In this paper, we will
consider the above problem. In a very simple way, which is altogether different from the
method in [3, 4], we will obtain the weighted (Lp,Lq) boundedness with the weight pair
(u,v) for the rough fractional integral operator TA

Ω,α, which is defined by

TA
Ω,α f (x)=

∫
Rn

Rm(A,x, y)
|x− y|n−α+m−1

Ω(x− y) f (y)dy, (1.5)

where 0 < α < n, Ω ∈ Ls(Sn−1) (s > 1) is homogeneous of degree zero in Rn, and Rm(A;
x, y) is as in (1.3). As a corollary of the above result, in this paper, we show also that the
same conclusion holds for the fractional maximal operator MA

Ω,α, where

MA
Ω,α f (x)= sup

r>0

1
rn−α+m−1

∫
|x−y|<r

∣∣Rm(A,x, y)
∣∣∣∣Ω(x− y) f (y)

∣∣dy. (1.6)

Before stating our results, we give some definitions. In the following definitions, p′ =
p/(p− 1) and Q denotes a cube inRn with its sides parallel to the coordinate axes and the
supremum is taken over all such cubes.

Definition 1.1 (Ap (1 < p <∞)). A locally integrable nonnegative function ω(x) is said to
belong to Ap (1 < p <∞) if there is a constant C > 0 such that

sup
Q

(
1
|Q|

∫
Q
ω(x)dx

)(
1
|Q|

∫
Q
ω(x)−1/(p−1)dx

)p−1

≤ C. (1.7)

Definition 1.2 (A(p,q) (1 < p,q <∞)). A locally integrable nonnegative function ω(x) on
Rn is said to belong to A(p,q) (1 < p,q <∞) if there is a constant C > 0 such that

sup
Q

(
1
|Q|

∫
Q
ω(x)qdx

)1/q( 1
|Q|

∫
Q
ω(x)−p

′
dx
)1/p′

≤ C <∞. (1.8)

Definition 1.3 (A∗p (1 < p <∞)). A pair (u(x),v(x)) of nonnegative locally integrable
functions is said to belong to A∗p (1 < p <∞) if there is a constant C > 0 such that

sup
Q

(
1
|Q|

∫
Q
u(x)dx

)(
1
|Q|

∫
Q
v(x)−1/(p−1)dx

)p−1

≤ C. (1.9)

Definition 1.4 (A∗(p,q) (1 < p,q <∞)). A pair (u(x),v(x)) of nonnegative locally inte-
grable functions is said to belong to A∗(p,q) (1 < p,q <∞) if there is a constant C > 0
such that

sup
Q

(
1
|Q|

∫
Q
u(x)qdx

)1/q( 1
|Q|

∫
Q
v(x)−p

′
dx
)1/p′

≤ C <∞. (1.10)



Yong Ding 1837

Now we state the results obtained in this paper as follows.

Theorem 1.5. Let Ω∈ Ls(Sn−1), 0 < α < n, 1 < p < n/α, DγA∈ Lr(Rn) (1 < r ≤∞), |γ| =
m− 1, (m≥ 1), and 1/q = 1/r + 1/p−α/n. Moreover, 1/t = 1/r + 1/p and 1/l = 1/p−α/n.
If s, l, t, p, q and ω satisfy one of the following conditions:

(a) 1≤ s′ < t and (uls
′/q,vls

′/q)∈ A∗(t/s′,q/s′), and uls
′/q,vls

′/q ∈ A(t/s′,q/s′);
(b) s > l and (v−t′s′/p′ ,u−t′s′/p′)∈ A∗(l′/s′, p′/s′), and v−t′s′/p′ ,u−t′s′/p′ ∈A(l′/s′, p′/s′),

then there is a constant C > 0, independent of f , such that

(∫
Rn
|TA

Ω,α f (x)u|qdx
)1/q

≤ C
∑

|γ|=m−1

∥∥DγA
∥∥
Lr

(∫
Rn

∣∣ f (x)v(x)
∣∣pdx

)1/p

. (1.11)

The proof of Theorem 1.5 depends on the following weighted (Lp,Lq) boundedness
and the weak boundedness of the rough fractional integral operator TΩ,α.

Theorem 1.6 (see [6]). Suppose that 0 < α < n, 1 < p < n/α, 1/q = 1/p− α/n, and Ω ∈
Ls(Sn−1). If s, p, q, and (u,v) satisfy one of the following conditions:

(a) 1≤ s′ < p and (us
′
,vs

′
)∈A∗(p/s′,q/s′), and us

′
,vs

′ ∈A(p/s′,q/s′);
(b) s > q and (v−s′ ,u−s′)∈A∗(q′/s′, p′/s′), and v−s′ ,u−s′ ∈ A(q′/s′, p′/s′),

then there is a constant C > 0, independent of f , such that

(∫
Rn
|TΩ,α f (x)u|qdx

)1/q

≤ C
(∫

Rn

∣∣ f (x)v(x)
∣∣pdx

)1/p

. (1.12)

2. Some elementary conclusions

We begin by giving some properties of the weight classes Ap and A∗p , which will be applied
in the proof of theorem.

Some elementary properties of Ap and A∗p (1 < p <∞) are as follows.
(i) Ap1 ⊂Ap2 if 1 < p1 ≤ p2 <∞.

(ii) If (u,v)∈A∗p , then for any 0 < ε < 1, (uε,vε)∈A∗p .
(iii) If (u,v)∈A∗p , then for any r > p, (u,v)∈A∗r .
See [8, 6] for the proofs of (i)–(iii), respectively.
The relations between A(p,q) and Ap, A∗(p,q) and A∗p are explained as follows (see

[6]). Suppose that 0 < α < n, 1 < p < n/α and 1/q = 1/p−α/n, then

ω(x)∈A(p,q)⇐⇒ ω(x)q ∈ Aq(n−α)/n⇐⇒ ω(x)−p
′ ∈A1+p′/q; (2.1)

(u,v)∈A∗(p,q)⇐⇒ (uq,vq
)∈ A∗q(n−α)/n⇐⇒

(
v−p

′
,u−p

′)∈A∗1+p′/q. (2.2)

The proof of Theorem 1.5 is set up on the conclusions of the following two lemmas.

Lemma 2.1. Suppose that 0 < α < n, 1 < p < n/α, 1 < r ≤∞, 1/q = 1/r + 1/p−α/n. More-
over, 1/t = 1/r + 1/p, 1/l = 1/p−α/n.

(a) If 1≤ s′ < t and (uls
′/q,vls

′/q)∈A∗(t/s′,q/s′), then (us
′
,vs

′
)∈A∗(p/s′, l/s′) and (us

′
,

vs
′
)∈ A∗(t/s′,q/s′).

(b) If 1 ≤ s′ < t and uls
′/q,vls

′/q ∈ A(t/s′,q/s′), then us
′
,vs

′ ∈ A(p/s′, l/s′) and us
′
,vs

′ ∈
A(t/s′,q/s′).
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(c) If s > l and (v−s′t′/p′ ,u−s′t′/p′) ∈ A∗(l′/s′, p′/s′), then (v−s′ ,u−s′) ∈ A∗(q′/s′, t′/s′)
and (v−s′ ,u−s′)∈A∗(l′/s′, p′/s′).

(d) If s > l and v−s′t′/p′ ,u−s′t′/p′ ∈ A(l′/s′, p′/s′), then v−s′ ,u−s′ ∈ A(q′/s′, t′/s′) and v−s′ ,
u−s′ ∈A(l′/s′, p′/s′).

Proof. If r =∞, then we have t= p, l=q. Obviously, the conclusions (a)–(d) in Lemma 2.1
hold. Hence, we need only to consider the case 1 < r <∞. Below, we give the proof only
for the conclusion (a), the proofs of conclusions (b)–(d) are similar.

Since s′ < t < p < n/α, we have 0 < αs′ < n, 1 < t/s′ < n/αs′, and 1/(q/s′) = 1/(t/s′)−
αs′/n. By (uls

′/q,vls
′/q)∈A∗(t/s′,q/s′) and (2.2), we have

(
ul,vl

)∈A∗q(n−αs′)/s′n. (2.3)

Noting that q < l, from (2.3) and (iii), we get
(
ul,vl

)∈A∗q(n−αs′)/s′n ⊂A∗l(n−αs′)/s′n. (2.4)

Since 0 < αs′ < n, 1 < p/s′ < n/αs′, and 1/(l/s′) = 1/(p/s′)− αs′/n, using (2.2) again, we
see that (2.4) is equivalent to (us

′
,vs

′
)∈A∗(p/s′, l/s′).

Since q/l < 1, by (2.3) and (ii), we have

(
uq,vq

)= ([ul]q/l,[vl]q/l)∈ A∗q(n−αs′)/s′n. (2.5)

Noting that 0 < αs′ < n, 1 < t/s′ < n/αs′, and 1/(q/s′)= 1/(t/s′)−αs′/n, we see that (2.5) is
equivalent to (us

′
,vs

′
)∈A∗(t/s′,q/s′) by (2.2). Thus we finish the proof of the conclusion

(a). �

Lemma 2.2. Suppose that m≥ 1 and DγA∈ Lloc(Rn) for |γ| =m− 1. Then for a.e. x, y ∈
Rn,

∣∣Rm(A;x, y)
∣∣≤ C|x− y|m−1

∑
|γ|=m−1

((
DγA

)∗
(x) +

(
DγA

)∗
(y)
)
, (2.6)

where f ∗(x) denotes the Hardy-Littlewood maximal function of f (x).

Proof. Obviously, |R1(A;x, y)| ≤A∗(x) +A∗(y) for m= 1. When m> 1, we write

Rm(A;x, y)= Rm−1(A;x, y)−
∑

|γ|=m−1

DγA(y)(x− y)γ. (2.7)

Hence,
∣∣Rm(A;x, y)

∣∣
|x− y|m−1

≤
∣∣Rm−1(A;x, y)

∣∣
|x− y|m−1

+C
∑

|γ|=m−1

∣∣DγA(y)
∣∣. (2.8)

Thus by (2.8), if we can show that
∣∣Rm−1(A;x, y)

∣∣
|x− y|m−1

≤ C
∑

|γ|=m−1

((
DγA

)∗
(x) +

(
DγA

)∗
(y)
)
, (2.9)

then we get (2.6).
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Now we give the proof of (2.9). We take φ ∈ C∞0 (Rn) with 0 ≤ φ(x) ≤ 1 such that
φ(x) = 1 if |x| ≤ 1, φ(x) = 0 if |x| ≥ 2. Let |x − y| = ε/2 and φε(x) = φ(x/ε). For F ∈
C1

0(Rn), by [10] we have F(y) = cn
∫
Rn〈∇ξF, (y− ξ)/|y− ξ|n〉dξ, where ∇ξF = (D1F,

D2F, . . . ,DnF) and DjF = ∂F/∂ξj . Moreover, 〈·,·〉 is the notation of the inner product.
Hence,

∣∣Rm−1(A;x, y)
∣∣

|x− y|m−1
=
∣∣Rm−1(A;x, y)φε(x− y)

∣∣
|x− y|m−1

= C
1

|x− y|m−1

∣∣∣∣
∫
Rn

〈
∇ξ
(
Rm−1(A;x,ξ)φε(x− ξ)

)
,

y− ξ

|y− ξ|n
�
dξ
∣∣∣∣

≤ C
(

1
|x− y|m−1

∣∣∣∣
∫
Rn

〈(∇ξRm−1(A;x,ξ)
)
φε(x− ξ),

y− ξ

|y− ξ|n
�
dξ
∣∣∣∣

+
1

|x− y|m−1

∣∣∣∣
∫
Rn

〈
Rm−1(A;x,ξ)

(∇ξφε(x− ξ)
)
,

y− ξ

|y− ξ|n
�
dξ
∣∣∣∣
)

:= I + II.
(2.10)

Because 〈∇ξ(Rm−1(A;x,ξ)),(y − ξ)〉 = ∑
|γ|=m−1D

γA(ξ)
∑
| j|=1((x− ξ)γ− j(y− ξ) j /

(m− j)!), we have

∣∣〈(∇ξRm−1(A;x,ξ)
)
φε(x− ξ),(y− ξ)

〉∣∣
≤ Cχ{|x−ξ|≤2ε}(ξ)

∑
|γ|=m−1

∣∣DγA(ξ)
∣∣|x− ξ|m−2|y− ξ|. (2.11)

Hence for I , we get

I ≤ C

|x− y|m−1

∑
|γ|=m−1

∫
|x−ξ|≤2ε

∣∣DγA(ξ)
∣∣|x− ξ|m−2

|y− ξ|n−1
dξ

≤ C
∑

|γ|=m−1

1
ε

∫
|y−ξ|≤3ε

∣∣DγA(ξ)
∣∣

|y− ξ|n−1
dξ ≤ C

∑
|γ|=m−1

(
DγA

)∗
(y).

(2.12)

To obtain the estimate of II , we need to use an equality in [2],

Rm−1(A;x,ξ)=
∑

|γ|=m−1

m− 1
γ!

(x− ξ)′γ
∫ |x−ξ|

0
ρm−2DγA

(
x− ρ(x− ξ)′

)
dρ, (2.13)

where y′ = y/|y| ∈ Sn−1. Since for j = 1,2, . . . ,n,

Dj
(
φε(x− ξ)

)=−1
ε

(
Djφ

)
ε(x− ξ), supp

{(
Djφ

)
ε(x− ξ)

}⊂ {ξ : ε≤ |x− ξ| ≤ 2ε
}

,

(2.14)
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we have |y− ξ| ∼ |x− ξ| and

II ≤
∑

|γ|=m−1

C

εm

∫
ε≤|x−ξ|≤2ε

(x− ξ)′γ

|x− ξ|n−1

∫ |x−ξ|
0

ρm−2
∣∣DγA

(
x− ρ(x− ξ)′

)∣∣dρdξ

≤ C
∑

|γ|=m−1

1
εm

∫ 2ε

ε

∫ t

0
ρm−1

∫
Sn−1

∣∣DγA
(
x− ρu′

)∣∣du′dρdt

≤ C
∑

|γ|=m−1

1
εm

∫ 2ε

ε

∫
|u|≤t

∣∣DγA(x−u)
∣∣|u|m−n−1dudt

≤ C
∑

|γ|=m−1

(
DγA

)∗
(x)

1
εm

∫ 2ε

ε

∑
j≥0

(
2− j t

)m−1
dt ≤

∑
|γ|=m−1

(
DγA

)∗
(x).

(2.15)

Thus (2.9) follows from (2.12) and (2.15). �

3. Proof of Theorem 1.5

Now we turn to the proof of Theorem 1.5. For m≥ 1, by (2.6), we get

∣∣TA
Ω,α f (x)

∣∣≤ C
∫
Rn

∑
|γ|=m−1

((
DγA

)∗
(x) +

(
DγA

)∗
(y)
)∣∣Ω(x− y)

∣∣
|x− y|n−α | f (y)|dy

= C
∑

|γ|=m−1

[(
DγA

)∗
(x) ·T|Ω|,α

(| f |)(x) +T|Ω|,α
((
DγA

)∗ · | f |)(x)
]
.

(3.1)

Thus,

(∫
Rn

∣∣TA
Ω,α f (x)u(x)

∣∣qdx
)1/q

≤ C
∑

|γ|=m−1

{(∫
Rn

[(
DγA

)∗
(x)T|Ω|,α

(| f |)u(x)
]q
dx
)1/q

+
(∫

Rn

[
T|Ω|,α

((
DγA

)∗| f |)(x)u(x)
]q
dx
)1/q}

:= C
∑

|γ|=m−1

(I + II).

(3.2)

If r = ∞, then t = p, l = q. From (3.2) and L∞ boundedness of the Hardy-Littlewood
maximal operator, it is easy to see that neither I nor II is larger than

∥∥(DγA
)∗∥∥

L∞

(∫
Rn

[
T|Ω|,α

(| f |)(x)u(x)
]q
dx
)1/q

. (3.3)

By Theorem 1.6, we know that when r =∞, the conclusion of Theorem 1.5 holds.
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As for the case 1 < r <∞, we first consider the condition (a). Since 1/l = 1/q− 1/r, we
have 1/(r/q) + 1/(l/q)= 1. Using Hölder’s inequality, we get

I =
(∫

Rn

[(
DγA

)∗
(x)T|Ω|,α

(| f |)(x)u(x)
]q
dx
)1/q

≤
(∫

Rn

(
DγA

)∗
(x)q·r/qdx

)(1/q)·(q/r)(∫
Rn

[
T|Ω|,α

(| f |)(x)u(x)
]q·l/q

dx
)(1/q)·(q/l)

= ∥∥(DγA
)∗∥∥

Lr
∥∥T|Ω|,α(| f |)∥∥Ll(ul).

(3.4)

By 1/l = 1/p− α/n, s′ < t < p, and the conclusions (a) and (b) of Lemma 2.1, we have
(us

′
,vs

′
) ∈ A∗(p/s′, l/s′) and us

′
,vs

′ ∈ A(p/s′, l/s′). Applying Theorem 1.6 for (s, p, l) and
(u,v) and the Lr(r > 1) boundedness of Hardy-Littlewood maximal operator, we have

I ≤ C
∥∥DγA

∥∥
Lr

(∫
Rn

∣∣ f (x)v(x)
∣∣pdx

)1/p

. (3.5)

Now we estimate II . Since 1 > 1/t > 1/p, so 1 < t < p < n/α and 1/q = 1/t−α/n. By s′ < t,
using the conclusions (a) and (b) of Lemma 2.1 again, we have (us

′
,vs

′
) ∈ A∗(t/s′,q/s′)

and us
′
,vs

′ ∈ A(t/s′,q/s′). Hence by the weighted (Lt,Lq) boundedness of TΩ,α with dif-
ferent weights (Theorem 1.6), the Lr(r > 1) boundedness of Hardy-Littlewood maximal
operator and using Hölder’s inequality for r/t and p/t, we get

II =
(∫

Rn

[
T|Ω|,α

((
DγA

)∗| f |)(x)u(x)
]q
dx
)1/q

≤ C
(∫

Rn

[(
DγA

)∗
(x)
∣∣ f (x)

∣∣v(x)
]t
dx
)1/t

≤ C
∥∥DγA

∥∥
Lr

(∫
Rn

∣∣ f (x)v(x)
∣∣pdx

)1/p

.

(3.6)

From (3.2)–(3.6), we prove that TA
Ω,α is a bounded operator from Lp(vp) to Lq(uq) when

the condition (a) of Theorem 1.5 is satisfied.
Applying the conclusions (c), (d) of Lemma 2.1 and Theorem 1.6 under the condition

(b), respectively, and by the same method as above, we may prove that when the condition
(b) of Theorem 1.5 is satisfied, the operator TA

Ω,α is also bounded from Lp(vp) to Lq(uq).
Here we omit the details.

Remark 3.1. As a corollary of Theorem 1.5, below we will show that the same conclusions
hold also for the multilinear fractional maximal operator MA

Ω,α (see (1.6) for its defini-
tion). Using the idea of proving [5, Lemma 2], we can obtain the following pointwise
relation between MA

Ω,α and T̄A
|Ω|,α.

Lemma 3.2. Let 0 < α < n, Ω∈ L1(Sn−1). Then

MA
Ω,α f (x)≤ T̄A

|Ω|,α
(| f |)(x) for x ∈Rn, (3.7)

where

T̄A
|Ω|,α

(| f |)(x)=
∫
Rn

∣∣Rm(A,x, y)
∣∣

|x− y|n−α+m−1

∣∣Ω(x− y)
∣∣∣∣ f (y)

∣∣dy. (3.8)
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From the process proving Theorem 1.5, it is easy to see that the conclusions of
Theorem 1.5 hold still for T̄A

|Ω|,α. Combining this with Lemma 3.2, we can easily obtain
the weighted (Lp,Lq) boundedness of MA

Ω,α for different wights.

Remark 3.3. When DγA∈ BMO(Rn), the weighted boundedness of TA
Ω,α with the weight

pair (u,v) will be given in the following paper.
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