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We reformulate Hecke’s open problem of 1923, regarding the Fourier-analytic proof of
higher reciprocity laws, as a theorem about morphisms involving stratified topological
spaces. We achieve this by placing Kubota’s formulations of n-Hilbert reciprocity in a new
topological context, suited to the introduction of derived categories of sheaf complexes.
Subsequently, we begin to investigate conditions on associated sheaves and a derived cat-
egory of sheaf complexes specifically designed for an attack on Hecke’s eighty-year-old
challenge.

1. Introduction

Around 1923, Hecke gave what is often called the analytic proof of quadratic reciprocity
for an arbitrary number field, including it as the showpiece of his famous work [15].
Hecke’s proof is Fourier analytic, given that there resides at its core the derivation of a
functional equation for a (Hecke-) ϑ-function by classical Fourier-analytic means. Evi-
dently, this tactic is based on a classical method of Cauchy [15, page 218]. Some forty
years after Hecke’s work, this theme of quadratic reciprocity via Fourier analysis was taken
up by Weil in his seminal paper [26], where the matter was fitted into the greater context
of Siegel’s analytic theory of quadratic forms. Weil demonstrated that Hecke’s Fourier-
analytic maneuvers are equivalent to the fact that the double cover of the adelization of
the symplectic group for a number field is split on the rational points. Tellingly, this split-
ting is due to the invariance of the so-called Weil Θ-functional under the natural action of
the rational points as facilitated by the projective Weil representation. At a deeper level all
this is part and parcel of Hecke’s ϑ-functional equations. To boot, Weil’s derivation of the
indicated critical invariance ultimately comes about by means of a generalization of noth-
ing less than Poisson summation. But something of a paradigm shift has occurred, from
ϑ-functions and their functional equations (classical Fourier analysis), to unitary repre-
sentation theory and low-degree cohomology of local as well as adelic algebraic groups
(abstract Fourier analysis). After all, the aforementioned double symplectic cover is es-
sentially uniquely determined by a suitable 2-cocycle.
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Maybe it is not inappropriate, in light of the foregoing, to suggest that a proper broader
context for this approach to quadratic reciprocity is that of correspondences and duality
theories. Indeed, Hecke’s use of ϑ-functional equations points back to Riemann’s second
proof of the functional equation for his famous ζ-function [8, 23] which, in turn, can
be regarded as a prototype for the Hecke correspondence(s) [13, 14, 27]. Also, in [26],
Weil, at the pivotal stage of proving the invariance property of his Θ-functional, employs
a transfer-of-structure tactic essentially through maneuvers with a Fourier transform. Fi-
nally, in [3] we took up the related theme of the interplay between Weil indices (which are
closely connected to the local 2-cocycles determining local double symplectic covers and
coming from the projective Weil representation) and local constants, that is, local Artin
root numbers as given in Tate’s thesis [24] (and attached to L-functions). We propose, as
an ideological motivation for what follows in this paper, the thesis that the proper next
step is revealed by Grothendieck and his school: functional equations for special functions
should be allowed to evolve into, for example, Verdier duality [7], and the fundamental
tool of the Fourier transform should be cast as an avatar due to Deligne, Mukai, or Sato
(see, e.g., [5, 6, 16, 22]). But we are getting ahead of ourselves.

Doubtless, a little belatedly, then, we ask the obvious question of why we should con-
cern ourselves with this hackneyed theme of quadratic reciprocity in the first place. The
answer is that Hecke’s punchline in [15] was a challenge to carry out for general reci-
procity laws (of arbitrary degree) what he had just done for quadratic reciprocity. Hecke
asked for counterparts to his ϑ-functions, capable of filling a similar role to the latter
but for higher reciprocity laws. In [2], we addressed this question directly, that is, pur-
posely naively, and proved that a natural generalization of Hecke’s ϑ-functions, built on
a form of higher (even) degree in place of the fundamental quadratic form defining a
ϑ-function, satisfies a functional equation of altogether forbidding complexity. This cir-
cumstance dovetails, as it were, with the algebraic philosophy behind Weil’s reformulation
of the matter in unitary group representation-theoretic terms. To be precise, the specific
question of generalization was left aside by Weil in [26] but was taken up a little later, in
1967 and 1969, by Kubota, in [19, 20]. With Kubota the focus falls specifically on splitting
properties (relative to the respective sets of rational points) of metaplectic groups, this
being Weil’s term for the indicated generalizations of the symplectic group with the dou-
ble cover discussed above being the most fundamental one. Kubota succeeded in show-
ing that n-Hilbert reciprocity is equivalent to having the n-fold (metaplectic) cover of
the adelization of SL2 over the given global number field split on the respective ratio-
nal points. Unfortunately, no independent proof of this splitting (without presupposing
reciprocity) was available and so Hecke’s challenge went unmet due to circularity. This is
substantially the present state of affairs.

Granting, then, that (i) the methodology of the Fourier-analytic approach to qua-
dratic reciprocity evolves into something like Grothendieck’s approaches to duality and
that (ii) Hecke’s eighty-year-old challenge can be met by showing that a certain meta-
plectic group is split on its rational points, we propose in this article to develop Kub-
ota’s formalism in the (“dual”) setting of the structure sheaves attached to certain topo-
logical spaces, namely, the spaces naturally associated to algebraic groups which con-
spire to realize the critical metaplectic group in a short exact sequence. What emerges
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is that the all-important splitting behavior manifests itself as a four-part proposition
(see Proposition 5.1 below) about a commutative diagram in the category of topologi-
cal spaces. This proposition sets the stage for the tactic of applying methods from the
subject of derived categories and perhaps even perverse sheaves.

The structure of the present paper is as follows. Section 2 is an account of the analytic
proof of 2-Hilbert reciprocity based on Weil’s work in [26], and on Kubota’s work in
[19, 20]. The reader is referred to [4] for a more thorough dissection of this material.
Next, Section 3 is a presentation of Kubota’s generalization of the quadratic formalism to
the general case, n≥ 2; here, the main reference is [20], of course, but see also Matsumoto
[21] and Kazhdan and Patterson [17]. In Section 4, we go into the question of realizing
the adelic groups that populate Kubota’s short exact sequences in topological terms and
address the issue of stratification, anticipating a possible later advent of perverse sheaves.
In Section 5, we give the aforementioned formulation of the pivotal splitting property
of Kubota’s metaplectic group in diagrammatical terms in the category of topological
spaces. Section 6 is concerned with the relevant diagrams of topological spaces as sites for
sheaves and introduces the dual formulation of Kubota’s formalism in terms of sheaves.
In Section 7, the machinery of derived categories is introduced, and we begin to close in
on our dualized splitting property by means of a theorem about a certain long exact Hom
sequence. Finally, in Section 8, we look toward what lies ahead.

2. Quadratic reciprocity: the double cover of SL2

Let k be a global algebraic number field with k∗ its dual space. Then, with x ∈ k and

y∗ ∈ k∗, get a nondegenerate bilinear form in (x, y∗)
B�→ y∗(x); it can be regarded as an

element of H2(k⊕ k∗,C×1 ) and so defines an extension of k⊕ k∗ by C×1 whose group law
is twisted by B. This central extension is Heis(k), the Heisenberg group attached to k.
With p any place of k we get k ⊂ kp and k∗ ⊂ k∗p and can extend B to Bp on kp⊕ k∗p ; this
results in an element of H2(kp⊕ k∗p ,C×1 ), and the corresponding local Heisenberg group
Heis(kp) is the central extension of kp⊕ k∗p by C×1 with group law twisted by Bp.

By definition, the symplectic group (globally as well as locally) is the isotropy group
for the foregoing data. It is well known (and in any case easy to prove) that in this lowest-
dimensional case we just get SL2(k) and SL2(kp).

Working locally first, with Heis(kp) and SL2(kp), we can use the Stone-Von Neumann
theorem to infer that, up to conjugation (which will presently be crucial), there exists a
unique irreducible unitary representation, ρ, of Heis(kp) in the usual associated Schwartz-
Bruhat representation space, Sp, whose central character comes from qBp , the quadratic
form defined by Bp. For w = (z,ξ), where z ∈ kp ⊕ k∗p , ξ ∈ C×1 , and for σ ∈ SL2(kp), the
natural action given by w �→ wσ := (zσ ,ξ) yields an action on ρ in that we may define ρσ :
w �→ ρ(wσ). It is immediate that ρσ is also (with ρ) an irreducible unitary representation
of Heis(kp), evidently sharing ρ’s central character. So, by the essential uniqueness part
of the Stone-Von Neumann theorem, ρ and ρσ are conjugate mappings and this provides
that for every σ ∈ SL2(kp) we obtain an element rp(σ) in the automorphism group of Sp

realizing this conjugation. It follows on general algebraic grounds that, as an operator, rp
realizes a complex projective representation, the (local) Weil representation. Projectivity
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entails that there exists a local 2-cocycle cp ∈ H2(SL2(kp),C×1 ) characterized by the fact
that for all σ1,σ2 ∈ SL2(kp), rp(σ1)rp(σ2)= cp(σ1,σ2)rp(σ1σ2).

In [26], Weil shows that cp takes values in µ2 = {1,−1} so that cp actually determines
a central extension, or double cover, of SL2(kp) by µ2 which we denote by SL2(kp)×cp µ2

or simply S̃L2(kp); in particular we have a cp-twisted group law given by the short exact
sequence (or s.e.s.)

1−→ µ2
j−→ S̃L2

(
kp

) p−→ SL2
(
kp

)−→ 1, (2.1)

with j the obvious injection and p the obvious projection.
Although it was already brought out in [26] that cp should bear a close kinship to

quadratic symbols, this was not made completely explicit until Kubota, treating the gen-
eral case of n-fold covering of SL2(kp), presented a definition of the defining 2-cocycle in
terms of the n-Hilbert symbol on k×p × k×p [19]. In the present quadratic case, the local
projective Weil representations rp, with p ranging over the places of k, admit to adeliza-
tion. This is to say that there is a canonical way of defining an adelic projective repre-
sentation rA = ⊗prp (in the notation of [11]; see also [17, page 52]) of the adelic group
SL2(k)A, whose cocycle is cA :=∏p cp. Accordingly we obtain the adelic covering data

1−→ µ2
j−→ S̃L2(k)A := SL2(k)A ×cA

µ2
p−→ SL2(k)A −→ 1. (2.2)

In view of Kubota’s presentation of cp about which we say more in due course, one
shows relatively easily that 2-Hilbert reciprocity, that is,

∏
p

(
a,b
p

)
2
= 1, (2.3)

for all a,b ∈ k×, holds as a consequence of S̃L2(k)A (or cA) being split on SL2(k) in a par-
ticularly strong sense; moreover, the converse holds, too. Of course, here (·,·/p)2 denotes
the 2-Hilbert symbol.

In diagrammatical language, then, quadratic reciprocity comes down to

1 µ2
j

S̃L2(k)A

p
SL2(k)A 1

SL2(k)

j0ω
(2.4)

where j0 is the diagonal imbedding, and, taking a familiar liberty with ⊗,

ω = id⊗ sA : σ �−→ (
σ ,sA(σ)

)
(2.5)

with

sA : SL2(k)−→ µ2 (2.6)
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a group homomorphism. That sA should have this algebraic structure is what is meant by
the aforementioned strong sense in which ω splits cA on the rational points, SL2(k).

Because the existence of ω can be derived from the behavior of rA by Fourier-analytic
means, Weil’s observation, on [26, page 144], that this way of getting quadratic reciprocity
is equivalent to Hecke’s, is legitimized. Indeed, Weil defined an adelic functional, the well-
known Θ-functional (capable of realizing Hecke ϑ-functions under the right assignments
[9, page 145]), and proved by a generalization of Poisson summation that this functional
is invariant under the action of rA(SL2(k)). It follows quickly that if σ1,σ2 ∈ SL2(k), then
cA(σ1,σ2)= 1, and then 2-Hilbert reciprocity (2.3) obtains by choosing σ1, σ2 adroitly.

As regards higher-degree metaplectic covers, that is, Hecke’s challenge as discussed in
Section 1, one can argue that it has thus far been impossible to generalize the foregoing
tactics to get n-Hilbert reciprocity because of the current absence of higher-degree coun-
terparts to the projective Weil representation. However, in [19, 20] Kubota succeeded in
defining an n-fold cover of SL2 (and even GL2) by direct algebraic methods and such a

cover, say, S̃L2(k)(n)
A , is split on SL2(k), just as in the quadratic case; this suffices for the

derivation mutatis mutandis of n-Hilbert reciprocity. But Kubota was forced to employ n-
Hilbert reciprocity à priori in order to get this splitting on the rational points, so Hecke’s
challenge is left unmet because of circularity. As we mentioned in Section 1, it is our
eventual objective to introduce a sheaf-theoretic formalism with which to address this
algebraic strategy of Kubota while circumnavigating n-Hilbert reciprocity. The present
paper, as a first step, is concerned with the topological preliminaries to this enterprise.

3. The n-fold cover of SL2

Let n≥ 2. In [19], to which we refer the reader for proofs and additional details, Kubota
directly defined local 2-cocycles c(n)

p ∈H2(SL2(kp),µn), where µn is the group of nth roots
of 1 (assumed from now on to live in k), as follows. Let σ = (a b

c d

)∈ SL2(kp), set

x(σ)=
c if c 	= 0,

d if c = 0,
(3.1)

and then define, for all σ1, σ2 ∈ SL2(kp),

c(n)
p

(
σ1,σ2

)= (x(σ1
)
,x
(
σ2
)

p

)
n

(−x(σ1
)−1

x
(
σ2
)
,x
(
σ1σ2

)
p

)
n

, (3.2)

where (·,·/p)n is the n-Hilbert symbol on k×p × k×p . The principal result in [19] that c(n)
p

is a factor set as indicated follows entirely from local properties of the n-Hilbert symbol.
We obtain the s.e.s.

1−→ µn
j−→ S̃L2

(
kp

)(n)
:= SL2

(
kp

) ×
c(n)
p

c(n)
p µn

p−→ SL2
(
kp

)−→ 1, (3.3)

generalizing (2.1).
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It is pointed out on [20, page 22] that n-Hilbert reciprocity is not needed to get the
adelization of (3.3) which proceeds thus: let σ1, σ2 be two adeles in SL2(k)A, that is, σ1 =
(σ1,p)p, σ2 = (σ2,p)p (with each “valuation vector” having almost all coordinates in the

corresponding Op’s), so that c(n)
p (σ1,p ,σ2,p) is well defined for every p. Writing c(n)

p (σ1,σ2)

for c(n)
p (σ1,p ,σ2,p), we get (easily) that c(n)

p (σ1,σ2)= 1 a.e. p, whence we can define

c(n)
A

(
σ1,σ2

)=∏
p

c(n)
p

(
σ1,σ2

)
(3.4)

for any σ1, σ2 ∈ SL2(k)A. With c(n)
A ∈H2(SL2(k)A,µn) in this way we immediately obtain

the adelic cover

1−→ µn
j−→ S̃L2(k)(n)

A := SL2(k)A ×
c(n)

A

µn
k−→ SL2(k)A −→ 1. (3.5)

By the way, as already alluded to at the end of Section 1, another characterization of

S̃L(k)(n)
A can be gleaned from Matsumoto’s construction [17, 21]. Moreover, Kazhdan

and Patterson take special care to mention on [17, page 51] that n-Hilbert reciprocity is

equivalent to the fact that c(n)
A should be split on SL2(k), evidently along the same lines

as (2.4) (although they phrase things in terms of GL2). For our aims, the point is that
n-Hilbert reciprocity is not necessary for the construction of (3.4) and (3.5), even though
it is in fact sufficient (as Kubota suggests on [19, page 115]).

The upshot is that, concerning Hecke’s challenge, it will be enough to devise a splitting
homomorphism ω = id⊗sA, with sA : SL2(k)→ µn (just as in (2.5) and (2.6)) situated as
follows:

1 µn
j

S̃L2(k)(n)
A

p
SL2(k)A 1

SL2(k)

ω
j0 (3.6)

just as in (2.4). In [19, 20] Kubota, presupposing n-Hilbert reciprocity, gives an ex-
plicit formula for sA which, in fact, provides that it is a homomorphism on SL2(k) (see
also [10, page 27]). This is the strong sense in which ω splits c(n)

A on SL2(k) as dis-

cussed above, seeing that simply because, by virtue of splitting, sA(σ ,σ2) = c(n)
A (σ1,σ2)

sA(σ1)sA(σ2) for all σ1,σ2 ∈ SL2(k); it follows from sA being a homomorphism that c(n)
A ≡ 1

on SL2(k)2 = SL2(k)× SL2(k).
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So, by way of a summary, the n-fold cover, S̃L2(k)(n)
A , defined by c(n)

A in (3.4), does not
require n-Hilbert reciprocity, that is, for all a,b ∈ k×

∏
p

(
a,b
p

)
n
= 1, (3.7)

for its existence; but n-Hilbert reciprocity is equivalent to c(n)
A being split on SL2(k), the

set of rational points of SL2(k)A, by ω, as per (3.6). This means that

p ◦ω = j0, (3.8)

in the indicated strong sense that

ω = id⊗sA, (3.9)

where

sA : SL2(k)−→ µn (3.10)

is a homomorphism (i.e., c(n)
A ≡ 1 on SL2(k)2). Accordingly we now focus our attention on

demonstrating the existence of ω and sA by means of derived and triangulated categories
and perverse sheaves.

4. Topological groups and stratifications

The respective topological groups underlying S̃L2(kp)(n) and S̃L2(k)(n)
A , as per (3.3) and

(3.5), are just SL2(kp)× µn and SL2(k)A × µn with the obvious product topologies. We

will provide an example immediately to show that in general c(n)
p , as given by (3.1) and

(3.2), fails to be continuous, whence the c(n)
p -twisted group structure on S̃L2(kp)(n) fails

to realize this group as an autonomous topological group. This forces us to approach the
matter of topologically encoding this twisting in a new way, as we will see presently. But
let us first take a look at our example.

Example 4.1. Let p=∞, σm =
(1+1/m 1

1/m 1

)
. Then, as m→∞, σm→

(
1 1
0 1

)
so that (by (3.1)) we

get x(limm→∞ σm)= x
((

1 1
0 1

))= 1 while, from x(σm)= 1/m, it follows that limm→∞x(σm)=
0. So, x is discontinuous. Coupled with the continuity of the n-Hilbert symbol (at all

places; see [18, page 101]) this compromises the continuity of c(n)∞ .

On to the topological maneuvers. We work in the adelic topology, noting that, except for
the splitting in (3.6), everything goes through in exactly the same way in the p-adic case.
The following sequence of topological groups is obviously split exact:

1−→ µn
j−→ SL2(k)A×µn

p−→ SL2(k)A −→ 1. (4.1)

Double it in the following sense (generally writing X2 for X ×X , as done above already
for SL2(k)):

µ2
n

j⊗ j (
SL2(k)A×µn

)2 p⊗p
SL2(k)2

A, (4.2)
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where we use the alternative notation, �, �, for injections and surjections to distinguish
that we are working in the category of topological spaces as opposed to the category of
groups: (4.1) and (3.5) live in the category of (topological) groups, but (4.2) lives in the
category of topological spaces. We also take the notational liberty of writing, generally,
f ⊗ g : (x, y) �→ ( f (x), f (y)). Next, write m� (resp., mr) for multiplication in µn (resp.,

SL2(k)A) and write mc(n)
A

for the c(n)
A -twisted multiplication in S̃L(k)(n)

A ; obtain the hy-
bridized diagram

µ2
n

m�

j⊗ j (
SL2(k)A×µn

)2 p⊗p

m
c
(n)
A

SL2(k)2
A

mr

1 µn
j

S̃L2(k)(n)
A

p
SL2(k)A 1

(4.3)

Now, in SL2(k)2
A, say (σ1,σ2) ∼ (σ ′1,σ ′2) if and only if c(n)

A (σ1,σ2) = c(n)
A (σ ′1,σ ′2), an ob-

vious equivalence relation whose equivalence classes are precisely the sets (c(n)
A )−1(ξ),

with ξ ∈ µn. This equivalence relation lifts immediately to (SL2(k)A × µn)2 by setting

((σ1,ξ1),(σ2,ξ2)) ∼ ((σ ′1,ξ′1),(σ ′2,ξ′2)) if and only if, again, c(n)
A (σ1,σ2) = c(n)

A (σ ′1,σ ′2); get

equivalence classes of the form (c(n)
A )−1(ξ)×µ2

n, with a harmless abuse of notation (iden-

tifying ((σ1,ξ1),(σ2,ξ2)) with (σ1,σ2,ξ1,ξ2)). Observe that if c(n)
A (σ1,σ2)= c(n)

A (σ ′1,σ ′2)= ξ0,

then, in S̃L2(k)(n)
A , the products (σ1,ξ1)(σ2,ξ2) and (σ ′1,ξ′1)(σ ′2,ξ′2), with ξ1, ξ2, ξ′1, ξ′2 un-

restricted, each obtain as multiplicative translations by ξ0 in the second coordinate of,
respectively, (σ1σ2,ξ1ξ2) and (σ ′1σ

′
2,ξ′1ξ

′
2), both in SL2(k)A×µn. Therefore, the given equiv-

alence relation provides a way of encoding the action of twisting by c(n)
A in the setting of

(SL2(k)A× µn)2, partitioned into the equivalence classes (c(n)
A )−1(ξ)× µ2

n, with ξ ranging
over µn: for a given choice, ξ = ξ0, the effect of mc(n)

A
on the class of ξ0 is to append the

aforementioned translation by ξ0 to the untwisted result of multiplying in SL2(k)A× µn.
In order to bring this out diagrammatically we recast (4.3) as follows, bearing in mind
that the earlier harmless abuse of notation is still in effect (and will be from now on):

µ2
n

m�

j⊗ j ∐
ξ∈µn

(
c(n)

A

)−1
(ξ)×µ2

n

m
c
(n)
A

p⊗p ∐
ξ∈µn

(
c(n)

A

)−1
(ξ)

mr

1 µn
j

S̃L2(k)(n)
A

p
SL2(k)A 1

(4.4)

We reiterate that (σ1,σ2,ξ1,ξ2)∈ (c(n)
A )−1(ξ0)×µ2

n is tantamount to having c(n)
A (σ1,σ2)= ξ0

and the effect of mc(n)
A

on the element is to map it to (σ1,σ2,ξ1ξ2ξ0).
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In the setting of (4.4) the splitting of c(n)
A by ω as discussed at the end of Section 3 takes

the following shape. We have seen that, in order to get at Hecke’s challenge in accord

with [19], it is necessary and sufficient that c(n)
A (σ1,σ2)= 1 for all σ1,σ2 ∈ SL2(k), that is,

SL2(k)2 ⊂ (c(n)
A )−1(1). Said differently, we require a mapping

Ω : SL2(k)2 −→ (
SL2(k)A×µn

)2 =
∐
ξ∈µn

(
c(n)

A

)−1
(ξ)×µ2

n (4.5)

such that

im(Ω)⊂
(
c(n)

A

)−1
(1)×µ2

n (4.6)

and, with m0 : SL2(k)2→ SL2(k) the usual group law on SL2(k), we want that

ω ◦m0 =mc(n)
A
◦Ω. (4.7)

It is enough to prove that (4.6) holds; (4.7) is immediate (see (4.8) below). The hard part

is getting Ω and ω so that the latter splits c(n)
A on SL2(k), which is a somewhat different

matter, as we will see momentarily.
As we have already indicated a few times, the strategy we seek to employ in attacking

(4.6) is, in broad terms, concerned with employing the machinery of derived and trian-
gulated categories and perverse sheaves. Soon we turn to the topological prerequisites for
this approach; the algebraic situation is summarized in the following diagram extend-
ing (4.4):

µ2
n

m�

j⊗ j (
c(n)

A

)−1
(1)×µ2

n ⊂
∐
ξ∈µn

(
c(n)

A

)−1
(ξ)×µ2

n

p⊗p ∐
ξ∈µn

(
c(n)

A

)−1
(ξ)

(
SL2(k)A×µn

)2

m
c
(n)
A

SL2(k)2
A

mr

1 µn
j

S̃L2(k)(n)
A

p
SL2(k)A 1

SL2(k)2
m0

Ω

j0⊗ j0

SL2(k)

j0
ω

(4.8)
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Here the critical subdiagram is, obviously,

(
c(n)

A

)−1
(1)×µ2

n ⊂
∐
ξ∈µn

(
c(n)

A

)−1
(ξ)×µ2

n

p⊗p
SL2(k)2

A

SL2(k)2

j0⊗ j0
ΩΩ

(4.9)

where the notational abuse of duplicating Ω is justified à forteriori once (4.6) is taken
care of. Note, too, that the requirement p ◦ ω = j0 (see (3.8)) is equivalent to having
(p⊗ p)◦Ω= j0⊗ j0.

Now, as regards the topological prerequisites just alluded to, we need first of all to
address the question of stratification (in the sense of [1] of course). Starting with the
local case we have the following proposition.

Proposition 4.2. Each set (c(n)
p )−1(ξ) is locally closed in SL2(kp)2.

Proof. With c(n)
p given by (3.2) we get that, with σ1,σ2 ∈ SL2(kp),

(
c(n)
p

)−1
(ξ)

=
∐

ν∈µn

(σ1,σ2
) | (x(σ1

)
,x
(
σ2
)

p

)
n
= ν,

(−x(σ1
)−1

x
(
σ2
)
,x
(
σ1σ2

)
p

)
n

= ξν−1

 .
(4.10)

Write σ1 =
(
a b
c d

)
, σ2 =

( e f
g h

)
, so that σ1σ2 =

(
ae+bg a f +bh
ce+dg c f +dh

)
, and distinguish the following

four sets partitioning SL2(kp)2:
(i) A= {(σ1,σ2) | c,g 	= 0},

(ii) B = {(σ1,σ2) | c = 0, g 	= 0},
(iii) C = {(σ1,σ2) | c 	= 0, g = 0},
(iv) D = {(σ1,σ2) | c = 0, d = 0}.

Infer that if (σ1,σ2)∈ A, then x(σ1)= c, and x(σ2)= g; if (σ1,σ2)∈ B, then x(σ1)= d
and x(σ2)= g; if (σ1,σ2)∈ C, then x(σ1)= c, x(σ2)= h; and if (σ1,σ2)∈D, then x(σ1)= d,
x(σ2) = h. Accordingly each consituent set in (4.10) (for every ν ∈ µn) is partitioned in
turn into the disjoint union of four subsets of A, B, C, D, say, Aν, Bν, Cν, Dν, defined by
the preceding conditions. Given that we now have 4n pairwise disjoint sets, that is, finitely
many, it is enough to check that each of these is locally closed. Consider, for a fixed ν, the
(typical) set Aν

Aν =
{(

σ1,σ2
)∈A |

(
c,g
p

)
n
= ν,

(−g/c,x(σ1,σ2
)

p

)
= ξν−1

}
. (4.11)
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Regarding x(σ1σ2) we get that ce+ dg = 0 yields either that d,e 	= 0 or d = e = 0; whence,
as A (and so Aν) is characterized by c,g 	= 0, the latter condition, d = e = 0, forces b =
−1/c, g =−1/ f . However, this is not really of concern to us: what does matter is that Aν,
in turn, is partitioned into the disjoint union of three sets as follows:

Aν =
{(

σ1,σ2
) | ce+dg 	= 0,

(
c,g
p

)
n
= ν,

(−g/c,ce+dg

p

)
n
= ξν−1

}

�
{(

σ1,σ2
) | ce+dg = 0,with d = e = 0,

(
c,g
p

)
n
= ν,

(−g/c,c f +dh

p

)
n
= ξν−1

}

�
{(

σ1,σ2
) | ce+dg = 0, with d = e = 0,

(
c,g
p

)
n
= ν,

(−g/c,c f +dh

p

)
n
= ξν−1

}
.

(4.12)

Consider, for example, the second set in (4.12), cut out by the conditions c,d,e,g 	= 0,
ce + dg = 0, ((c,g)/p)n = ν, ((−g/c,c f + dh)/p)n = ξν−1, making for the intersection of
seven (obvious) sets. By the continuity of the ordinary arithmetical operations, the equa-
tion ce + dg = 0 cuts out a closed set; the conditions c,d,e,g 	= 0 cut out four open sets.
Beyond this we have that it follows from local class field theory that the n-Hilbert symbol
is continuous (as we had occasion to note above, in our example concerning the discon-

tinuity of c(n)∞ ); whence, with −g/c, c f + dh continuous, too, the remaining conditions,
((c,g)/p)n = ν and (−(g/c,c f +dh)/p)n = ξν−1 cut out closed sets. It follows immediately
that the second set in (4.12) is locally closed. The same kinds of arguments conspire to
prove the other two sets in (4.12) to be locally closed. So Aν is locally closed. Since the
decomposition (4.12) of Aν is altogether typical vis à vis its counterparts Bν, Cν, and Dν,
we may conclude that, similarly, each of these is locally closed. Since ν ∈ µn, a finite set,

get that A, B, C, D, and, therefore, (c(n)
p )−1(ξ), as per (4.10), are locally closed. �

Corollary 4.3. Each set (c(n)
p )−1(ξ)×µ2

n is locally closed in (SL2(kp)×µn)2.

Proof. Being open as well as being closed commute with passing to a product topology
relative to a discrete space. �

Turning now to the adelic case, consider the equation

c(n)
A

(
σ1,σ2

)=∏
p

c(n)
p

(
σ1,p,σ2,p

)= ξ, (4.13)

where σ1 = (σ1,p)p, σ2 = (σ2,p)p ∈ SL2(kp), as before, and ξ ∈ µn. Fixing an ordering of
the places p of k we define a multiplicative partition, π×� (ξ), of length � (which we may
suppress, writing π×(ξ)), to be any adele (αp)p such that in the �th position αp 	= 1 but in
all subsequent places αp = 1 (for π×(ξ) such an � should exist), and, additionally,

∏
p

αp = ξ. (4.14)
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It follows immediately that (4.13) holds if and only if c(n)
p (σ1,pσ2,p) = αp for all p, for

some π×(ξ); in other words, we have that (σ1,σ2) = ((σ1,p)p, (σ2,p)p) ∈ (c(n)
A )−1(ξ) if and

only if there exists a multiplicative partition π×(ξ)= (αp)p, of ξ, such that, for any p, (σ1,p,

σ2,p)∈ (c(n)
p )−1(αp).

And now we get the following proposition.

Proposition 4.4. If (c(n)
A )−1(ξ;π×(ξ)) is the set of all pairs of adeles (σ1,σ2) = ((σ1,p)p,

(σ2,p)p) ∈ SL2(k)2
A such that c(n)

A (σ1,σ2) = ξ in that c(n)
p (σ1,p, σ2,p) = αp, where π×(ξ) =

(αp)p, then (c(n)
A )−1(ξ;π×(ξ)) is locally closed.

Proof. Write Sπ×(ξ) for the set of � places (with π×(ξ) of length �) p1, p2, . . . ,p� for which,
possibly, αpi 	= 1, that is, the initial segment of the ordered set of places of k, outside of
which the coordinates αp occupy Op. We can form the restricted product

∏
p∈Sπ×(ξ)

(
c(n)
p

)−1(
αp

)× ∏
p 	∈Sπ×(ξ)

(
c(n)
p

)−1
(1)∩ SL2(k)2

A (4.15)

and obtain herein the collection of all adele pairs (σ1,σ2) which are mapped to ξ by

c(n)
A = ∏p c

(n)
p by means of π×(ξ). In other words, (4.15) defines nothing else than

(c(n)
A )−1(ξ;π×(ξ)). Now, by means of Proposition 4.2, every factor in (4.15) is p-adically

locally closed so that there must exist open sets U (p)
1 , U (p)

αp and closed sets F(p)
1 , F(p)

αp for

which (c(n)
p )−1(αp)=U

(p)
αp ∩F

(p)
αp , (c(n)

p )−1(1)=U
(p)
1 ∩F

(p)
1 . Consequently,

(
c(n)

A

)−1(
ξ;π×(ξ)

)= [ ∏
p∈Sπ×(ξ)

U (p)
αp
×

∏
p 	∈Sπ×(ξ)

U
(p)
1

]

∩
[ ∏

p∈Sπ×(ξ)

F(p)
αp
×

∏
p 	∈Sπ×(ξ)

F
(p)
1

]
∩ SL2(k)2

A

(4.16)

upon rearranging the Cartesian product (generalizing the set-theoretic relation that

(U1 ∩ F1)× (U2 × F2) = (U1 ×U2)∩ (F1 × F2)). Infer from (4.16) that (c(n)
A )−1(ξ;π×(ξ))

is adelically locally closed. �

Corollary 4.5. For every ξ ∈ µn and every multiplicative partition π×(ξ), of ξ, the set

(c(n)
A )−1(ξ;π×(ξ))×µ2

n ⊂ (SL2(k)A×µn)2 is locally closed.

Proof. This is similar to the proof of Corollary 4.3. �

Corollary 4.6. For every ξ ∈ µn, we have that (c(n)
A )−1(ξ) × µ2

n =
∐

all π×(ξ)(c
(n)
A )−1(ξ;

π×(ξ))× µ2
n. Furthermore, if we write �(π×(ξ)) for the length of π×(ξ) (so that �(π×� (ξ))

=�), we obtain that

(
c(n)

A

)−1
(ξ)×µ2

n =
∞∐
�=1

∐
�(π×(ξ))=�

(
c(n)

A

)−1(
ξ;π×(ξ)

)×µ2
n. (4.17)
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Therefore (c(n)
A )−1(ξ)×µ2

n is the countable disjoint union of the adelically locally closed sets

Xξ; � :=
∐

�(π×(ξ))=�

(
c(n)

A

)−1(
ξ;π×(ξ)

)×µ2
n. (4.18)

Proof. Evidently we only have to check that each Xξ; � is locally closed. But we have from

Corollary 4.5 that each constituent set (c(n)
A )−1(ξ;π×(ξ))× µ2

n is locally closed, so it just
remains for us to observe that there are fewer than n�(<∞) multiplicative partitions of ξ
of length �. �

It follows from the preceding that in (4.8) the critical player (SL2(k)A × µn)2 can be
decomposed as

(
SL2(k)A×µn

)2 =
∞∐
�=1

∐
ξ∈µn

∐
�(π×(ξ))=�

(
c(n)

A

)−1(
ξ;π×(ξ)

)×µ2
n

=
∞∐
�=1

∐
ξ∈µn

Xξ;�.

(4.19)

So, finally, and in view of what will transpire in the next section, write µ= µn,X0 = SL2(k),

XA = SL2(k)A, and X̃A = S̃L2(k)(n)
A , for notational ease, and rewrite (4.8) as

µ2

m�

j⊗ j ∞∐
�=1

X1;� ⊂
∞∐
�=1

∐
ξ∈µ

Xξ; �

m
c
(n)
A

p⊗p
X2

A

mr

1 µ
j

X̃A

p
XA 1

X2
0

Ω

m0

j0⊗ j0

X0

j0
ω

(4.20)

5. Interpretations of splitting

We noted in the preceding section, in connection with (4.8) and (4.9) and so also in
connection with (4.20), that p ◦ω = j0 is equivalent to (p⊗ p)◦Ω= j0⊗ j0, staying with
the abuse of notation in (4.9). This is trivial in light of (4.8) but it behooves us to observe
that the formalism of (4.20) suggests that Ω should be of the form

Ω= ( id⊗sA
)⊗ ( id⊗sA

)
: SL2(k)2 −→ (

SL2(k)A×µn
)2

,(
σ1,σ2

) �−→ (
σ1,sA

(
σ1
)
,σ2,sA

(
σ2
))
.

(5.1)



2146 Derived categories and general reciprocity

We also noted that having ω split c(n)
A on SL2(k), or, equivalently, having ω split X̃A on X0

as indicated in (4.20), is just the stipulation that for all σ1, σ2 ∈ SL2(k)

sA
(
σ1
)
sA
(
σ2
)= sA

(
σ1σ2

)
c(n)

A

(
σ1,σ2

)
, (5.2)

and the strong form of splitting given by Kubota in [20] is simply the statement that
sA should be a group homomorphism. We will summarize these things in the form of
a single central proposition, below, the proof of which is really already present in the
earlier parts of this paper. It is important for our larger aims to fit this proposition into
as spare a diagrammatical setting as possible, seeing that we seek to bring sheaf-theoretic
methods into play. Therefore, the task facing us now is to cast (5.2) in the form of the
commutativity of a diagram closely related to (4.8) and (4.20). Before long we will pass
to a “dual” diagram where structure sheaves take the place of topological spaces so as
to be in a position to address the existence of something of a dual morphism to sA by
means of derived categories. It is in this latter connection that Corollary 4.6 acquires its
justification: the fact that the Xξ; � are locally closed, so that

∐
ξ∈µ Xξ; � is too, facilitates

the definition of stratifications in the sense of [1].
First of all, if

j0 : S̃L2(k)(n)
A −→ µn,

(σ ,ξ) �−→ ξ,
(5.3)

or j0 : X̃A → µ (in contrast with j : (σ ,ξ) �→ σ), and, accordingly,

j0⊗ j0 :
(

SL2(k)A×µn
)2 −→ µ2

n,(
σ1,ξ1,σ2,ξ2

) �−→ (
ξ1,ξ2

)
,

(5.4)

then we quickly get the following amplification of the critical part of (4.20). However,
this harbors a more-than-semantical difficulty in that mc(n)

A
’s continuity is compromised

because of possible discontinuities in c(n)
A ’s local factors (as per the example in Section 4):

µ2

m�

∞∐
�=1

∐
ξ∈µ

Xξ;�

m
c
(n)
A

j0⊗ j0

µ X̃A

j0

X2
0

Ω=(id⊗sA)⊗(id⊗sA)

m0

X0

sA

sA⊗sA
(5.5)
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Now, although (5.5) is not properly a diagram in the category of topological spaces, we
can extricate ourselves from this problem by invoking our earlier observation that in

the equivalence classes (c(n)
A )−1(ξ)×µ2

n =
∐∞

�=1Xξ;� , whose union over ξ ∈ µn evidently
exhausts the target space for Ω, the problematical action of mc(n)

A
is just ordinary multipli-

cation in SL2(k)A× µn followed by translation in the second coordinate by ξ (fixed). So,
mc(n)

A
obviously acts continuously on each

∐∞
�=1Xξ;� . So, at the cost of adding yet another

set of diagrams to the mix, we convey this as follows, with the meanings of mξ;c(n)
A

and
⊗ξ∈µ mξ;c(n)

A
=⊗ξ mξ;c(n)

A
being the obvious ones:

µ2

m�

∐
ξ∈µ

∞∐
�=1

Xξ; � =j0⊗ j0

⊗
ξ
m

ξ; c
(n)
A

∞∐
�=1

∐
ξ∈µ

Xξ; �

µ X̃A

j0

X2
0

Ω

m0

X0

sA sA⊗sA

(5.6)

so that, for each ξ0 ∈ µn,

µ2

m�

∞∐
�=1

Xξ0; �
j0⊗ j0

m
ξ0; c

(n)
A

∐
ξ∈µ

∞∐
�=1

Xξ; �
pξ0

µ X̃A

j0

X2
0

m0

Ω

X0

sA

sA⊗sA

(5.7)
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Admittedly there is still some apparent difficulty qua categorical membership due to the
evident discontinuity of the projection pξ0 . However, this can be circumvented by going
after not Ω but, first, Ωξ0 as given in (5.8) below. Under these circumstances the pathol-
ogy of the pξ0 disappears from the game and, subsequently, the collective data {Ωξ0}ξ0∈µ
suffices to give us Ω:

µ2

m�

∞∐
�=1

Xξ0; �
j0⊗ j0

m
ξ0; c

(n)
A

µ X̃A

j0

X2
0

m0

Ωξ0

X0

sA⊗sA

sA

(5.8)

Each object in (5.8) is a topological space and each mapping (or arrow) in (5.8) is con-
tinuous, which is to say a morphism.

And now we come to the aforementioned central proposition.

Proposition 5.1. (i) In (4.20), (5.5), (5.6), (5.7), and (5.8) the existence of sA, that of
sA⊗ sA, and that of Ω (as given in (5.1)) are all equivalent.

(ii) The mappings sA, sA⊗ sA are group homomorphisms if and only if c(n)
A |X2

0
≡ 1, which

is to say (cf. (4.6), (4.17), and (4.18)) that im(Ω)⊂∐∞�=1X1; � .
(iii) The (group homo-) morphism ω = id⊗sA splits X̃A on X0 if and only if the following

subdiagram of (5.8) is commutative, in the category of topological spaces, for every ξ0 ∈ µ:

µ X̃A

j0
∞∐
�=1

Xξ0; �

m
ξ0, c

(n)
A

X0

sA

X2
0

Ωξ0

m0

(5.9)



Michael Berg 2149

(iv) Suppose that in place of Ω= (id⊗sA)⊗ (id⊗sA) (as per (5.1) in (5.6), (5.7), (5.8))
we have merely a morphism, say,

Ξ : X2
0 −→ (XA×µ)2 =

∞∐
�=1

∐
ξ∈µ

Xξ; � , (5.10)

(cf. (4.5)) such that

im(Ξ)⊂
∞∐
�=1

X1; � (5.11)

(cf. (4.6)). This is sufficient (and necessary) for n-Hilbert reciprocity.

Proof. (i) The existence of sA is obviously equivalent to that of sA ⊗ sA. Beyond this the
equivalence of the existence of sA and that of Ω = (id⊗sA)⊗ (id⊗sA) follows from the
obvious equivalence of p ◦ω = j0 and (p⊗ p)◦Ω= j0⊗ j0.

(ii) This follows from (5.2).
(iii) The commutativity of (5.9), for all ξ0 ∈ µ, is precisely the commutativity of

µ X̃A

j0
∞∐
�=1

∐
ξ∈µ

Xξ0; � =
(
XA×µ

)2
m

c
(n)
A

X0

sA

X2
0

m0

Ω

(5.12)

Now the commutativity of (5.12) is precisely the statement that sA ◦m0 = j0 ◦mc(n)
A
◦Ω.

Applying the left expression to (σ1,σ2) ∈ X2
0 = SL2(k)2 produces the left side of (5.2),

while applying the right expression to (σ1,σ2) produces the right side of (5.2).
(iv) This is immediate from our discussion at the end of Section 3. �

The thrust of Proposition 5.1 is that with (5.9) situated in the category of topolog-
ical spaces we are at last poised for an implementation of the methodology of derived
categories in order to address Hecke’s challenge in a new way.

6. The abelian category of sheaves over X̃A

With (5.9) being a diagram in the category of topological spaces we now set out to de-
vise a diagram of sheaves on the appropriate site, that is, the appropriate vertex of (5.9),
geared toward carrying the arithmetical information of n-Hilbert reciprocity. In other
words, we seek to recast the indicated parts of Proposition 5.1 in terms of the homological
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algebra that pertains first to sheaves, then to derived categories of sheaf complexes, and,
subsequently, we will have to stipulate suitable properties of the various sheaves that arise
so as to capture all the relevant arithmetical structure. As this makes for a natural two-
part strategy, we take the liberty of developing the first part, involving as yet unspecified
sheaves and morphisms, in general terms, leaving the various choices till later. However,
we add a few inter alia remarks in anticipation of these assignments and choices. We
summarize things in Section 8 (and then proceed to look ahead).

Since X̃A carries a copy of X0 = SL2(k) and a copy of µ = µn within itself, it is natu-
ral to assign it the role of base space (or site, in the sense of Grothendieck), supporting
an array of sheaves designed to convey n-Hilbert reciprocity. Write ? for ∗ or ! as per
Grothendieck’s notation for his “six functors” (and then some); we also reserve the right
to replace, for instance, a sheaf morphism f ! by R f !, where R denotes Verdier’s derived
functor, should the need arise.

So, if X
f−→Y is a continuous mapping of topological spaces, we get, covariantly, f∗

and f! mapping sheaves on X to sheaves on Y , and, contravariantly, f ∗ and f ! mapping
the other way. Of course, f∗ (resp., f ∗) is just the direct (resp., inverse) image functor
attached to f , and then f! and f ! are characterized by well-known adjointness properties
relative to f∗ and f ∗. For further details, see [5, 6, 7, 16].

We begin by incorporating the morphism

i⊗ 1 : SL2(k)= X0 −→ SL2(k)A×c(n)
A
µn = X̃A,

σ �−→ (σ ,1)
(6.1)

into (5.9) (redrawn as per (5.8)):

∞∐
�=1

Xξ0, �

m
ξ0; c

(n)
A

µ X̃A

j0

X2
0

m0

Ωξ0

X0

sA

i⊗1

(6.2)
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With � an a priori unspecified sheaf on X̃A, identified with its sheaf space [25] or espace
étalé, we get the following sheaf diagrams relative to the vertices of (6.2):

j0? � �

µ X̃A

j0
(6.3a)

�
(
mξ0;c(n)

A

)?
�

X̃A

∞∐
�=1

Xξ0;�

m
ξ0;c

(n)
A

(6.3b)

� (i⊗ 1)?�

X̃A X0
i⊗1

(6.3c)

�
(
(i⊗ 1)◦m0

)?
�

X̃A X2
0

(i⊗1)◦m0

(6.3d)

Thus, taking note of the fact that, in general, with the ? varying individually, f? f ? and
[ f ? f?] do not cancel out to identity morphisms, we get, as sheaves on X̃A,

(
j0
)?
j0? � �

X̃A

(6.4a)

�
(
mξ0; c(n)

A

)
?

(
mξ0; c(n)

A

)?
�

X̃A

(6.4b)

� (i⊗ 1)?(i⊗ 1)?�

X̃A

(6.4c)

�
(
(i⊗ 1)◦m0

)
?

(
(i⊗ 1)◦m0

)?
�

X̃A

(6.4d)
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As we suggested above, a critical future task is to specify properties imposed on � (or

on a collection of �’s) consonant with the action of c(n)
A , that is, with n-Hilbert reciprocity.

A large part of this specification is the definition of maps ι, ν, ι0, ν0 as follows:

(
mξ0;c(n)

A

)
?

(
mξ0;c(n)

A

)?
�

(
j0
)?
j0? �

ι
�

ν

ι0

(
(i⊗ 1)◦m0

)
?

(
(i⊗ 1)◦m0

)?
�

(i⊗ 1)?(i⊗ 1)?�

ν0

(6.5)

(This is an incomplete diagram in the category of sheaves on X̃A.) In order to simplify
notation, write ( j0)? j0? �=�, (mξ0;c(n)

A
)?(mξ0;c(n)

A
)?�=�, ((i⊗ 1) ◦m0)?((i⊗ 1) ◦m0)?�=

� and (i⊗ 1)?(i⊗ 1)?�=�, and get

�

�
ι

�

ν

ι0

�

�

ν0

(6.6)

Suppose, now, that we have, say, Φ=Φ(�)∈Hom(�, �) in hand. Then the next (and
essentially final) step is to infer from the existence of Φ(�) the unique determination of
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Ωξ0 as situated thus:

(
mξ0; c(n)

A

)
?

(
mξ0; c(n)

A

)?
�

Φ (
(i⊗ 1)◦m0

)
?

(
(i⊗ 1)◦m0

)?
�

X̃A = S̃L2(k)(n)
A

∞∐
�=1

Xξ0; �

m
ξ0; c

(n)
A

X2
0 = SL2(k)2

Ωξ0

(i⊗1)◦m0

(6.7)

Therefore, the idea is that the existence of (possibly sufficiently many) Φ(�) as per

�

Φ

�

ϕ

ι
�

ν

ι0

�

�

ν0

(6.8)

for suitably characterized �, is enough to yield the critical existence of Ωξ0 as in (6.2).
Proposition 5.1 then actually yields that getting Ωξ0 for all ξ0 ∈ µn is enough as far as n-
Hilbert reciprocity goes. However, we have included ϕ, in (6.8) parallel to sA just as Φ is
parallel to Ωξ0 , in order to cover the full structure of (5.8). Naturally a diagram similar to
(6.7) holds with ϕ (resp., sA ) in place of Φ (resp., Ωξ0 ).

Beyond this the preceding developments are also based on the choice of i⊗ 1, as given

by (6.1), to imbed SL2(k)= X0 in S̃L2(k)(n)
A = X̃A. Obviously there are other options avail-

able, for example, of the form i⊗ ξ, where ξ ∈ µn abusively signifies the indicated con-
stant map.

In any event, with the precise formulation of the connection between Φ and Ωξ0 left for
the future, we now turn to diagram (6.8) proper. In a (still) somewhat vague fashion, we
may regard it as “dual” to (5.9), and the first order of business is to get at Φ’s existence as
a question of homological algebra in the derived category defined on the abelian category
of sheaves on X̃A.
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7. The derived category of sheaf complexes on X̃A

First here are some generalities (consult [12, 16]). If A is an abelian category, its associ-
ated derived category D(A) is formed by localizing the category of chain complexes from
A, taken modulo chain homotopy, at the ideal of quasi-isomorphisms. (Two chain com-
plexes are quasi-isomorphic if and only if they possess the same cohomology groups.)

Such a derived category is in fact a triangulated category, meaning that if A•
f−−→ B• is

any morphism of complexes, understood rightly, then the mapping cone construction

A•
f−−→ B• → Z•f provides a notion of distinguished triangle subject (by definition) to a

quartette of characterizing axioms. Essentially, we have that, with the proper sign con-
ventions in place (as regards chain morphisms), rotations of distinguished triangles are
again distinguished, as are isomorphs of distinguished triangles, and we also have that,
for morphisms (ladders) between distinguished triangles, any two (rungs) determine the
third.

It is a routine exercise to prove that any distinguished triangle A•
f−−→ B• → Z• gives

rise, mechanically, to two so-called long exact Hom-sequences. For our purposes the one
of interest is of the form

··· ←−HomD(A)

(
Z•[−1],C•

)
←−HomD(A)

(
A•,C•

) f ∗←−−HomD(A)
(
B•,C•

)←−
←−HomD(A)

(
Z•,C•

)←− ··· .
(7.1)

Here Z•[−1] is the chain complex obtained by shifting Z• “one vertex to the right” (and
abiding by a differential sign convention). By definition, a triangulated category comes
equipped with a translation functor [1]: X �→ X[1] (for any object X), automatically ad-
mitting iteration through all of Z.

With A the category of sheaves on X̃A, that is, A =Sh/X̃A, just write D in place of
D(A). Associating a sheaf, for example, �, with the complex �• which has each nonzero
vertex equal to 0 and the 0th vertex equal to � yields a natural imbedding of Sh/X̃A in
D. Accordingly (6.8) evolves into

�•

Φ

�• ι

ϕ

�•

ι0

ν

�•

�

ν0

(7.2)

We now get the following proposition.
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Proposition 7.1. The existence of Φ follows if HomD(Z•[−1], �•) = 0, where the mor-
phism �• ν−→�• sits in some distinguished triangle �• ν−→�• → Z•.

Proof. We get, from (7.1), the exactness of the long Hom-sequence

··· ←−HomD

(
Z•[−1],�•

)←−HomD

(
�•,�•

) ν∗←−HomD

(
�•,�•

)←−
←−HomD

(
Z•,�•

)←− ··· . (7.3)

As always, ν∗ is just the mapping taking �• →�• to �• →�• factoring through ν (as well
as �• → �•). Therefore, if HomD(Z•[−1], �•) = 0, as given, then ν∗ is surjective and

this implies that the morphism �• ν0◦ι0−−−→ �• (in HomD(�•, �•)) possesses a preimage
Φ∈HomD(�•,�•). In other words, ν∗(Φ)=Φ◦ ν= ν0 ◦ ι0:

�•

ι0

ν
�•

Φ

�•
ν0

�•

(7.4)

�

Thus, returning to our original notation, in order to obtain Φ =Φ(�) as situated in
the diagram (6.7), it suffices to have, in D=D(Sh/X̃A),

HomD

(
Z•[−1],

(
(i⊗ 1)◦m0

)
?

(
(i⊗ 1)◦m0

)?
�•
)
= 0, (7.5)

where Z• completes a distinguished triangle based on

ν : �• −→
(
mξ0; c(n)

A

)
?

(
mξ0; c(n)

A

)?
�• (7.6)

(as in (6.5)) and ν is a morphism to be defined, as is the case for � (and �•). We note that
(7.5) is a very demanding condition in view of the fact that a morphism of chain com-
plexes in D is represented by 0 if and only if it composes with some quasi-isomorphism
to yield a mapping which is chain homotopic to 0 (see [12, pages 38–39]). Beyond this
we face the task of deciding the proper (possibly different) substitutions for the two ?’s
which occur, of course, and a good deal more besides; see the next section.

8. A preview of future work

Taking stock of what we have done in the preceding pages and looking toward what lies
ahead, we can discern a pair of interconnected themes. One of these concerns the top row
of (4.20), regarded as a sequence of continuous mappings between topological spaces,
foremost among them is the inclusion

∐∞
�=1 X1; � ⊂

∐∞
�=1

∐
ξ∈µXξ;� . The sets Xξ;� , as given

by (4.18), are locally closed and the tactical reasons for our identification of sets of such
a special nature are twofold. In the first place, getting Ω to map entirely into

∐∞
�=1X1;�

would produce n-Hilbert reciprocity immediately, following Proposition 5.1(iv). In the
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second place (and a more reasonable prospect), getting Ω to map into the larger set∐∞
�=1

∐
ξ∈µ Xξ;� (cf. (5.10) as well as the remarks below) might be facilitated by introduc-

ing suitable perversities on this target site once we have effected the indicated transition
to our proposed dual setting of sheaves and sheaf complexes. In order to introduce the
machinery of perverse sheaves, locally closed strata are of course indicated [1, 16].

The other theme concerns the diagrams (5.8) and (6.2), both of which spring forth
from (4.20). We see from Proposition 5.1(i), (ii), (iii) that the critical issue is to prove the
existence of Ω (as already suggested in the preceding), that is, of the Ωξ0 for all ξ0 ∈ µ.
We propose to go at this by means of exploiting the homological algebra pertaining to
the derived category D=D(Sh/X̃A). By Proposition 5.1(iii) the existence (and shape) of
Ω should be the final word on Hecke’s challenge; going to the quasi-dual diagram (6.5)
we see that getting at Φ’s existence, as something of an avatar of Ωξ0 , is a “homolog-
ical” affair. In other words, by Proposition 7.1 we find that everything comes down to
determining suitable � such that HomD(Z•[−1], ((i⊗ 1) ◦m0)?((i⊗ 1) ◦m0)?�•) = 0,
where �• can be situated in some appropriate distinguished triangle of the form �• ν−→
(mξ0; c(n)

A
)?(mξ0; c(n)

A
)?�• → Z•.

Thus center stage is soon assumed by the question of the arithmetical nature of � as
(at first) a sheaf on X̃A. This means that � must be designed not only so as to yield (7.5)
but also to provide the completion of the hugely important diagram (6.7): � should be
chosen such that the existence of Φ=Φ(�), or of a class of such morphisms in D, precip-
itates the existence of Ωξ0 . Then varying ξ0 across µ= µn will yield Ω. The determination
of � is a multifaceted affair, involving the imperative of properly covering the action of

c(n)
A ∈ H2(SL2(k)A,µn), the half dozen or so individual assignments of ∗ or ! to ? (not to

mention what Verdier’s R might bring about when we go to the derived category), and
the stipulation of ι, ν, ι0, ν0. And � must also be rigged so as to provide the vanishing
of the above Hom group as per Proposition 7.1. This is a relatively subtle business, only
one major aspect of which is the matter of choosing the right distinguished triangle in
which to fit ν. We are quickly faced with rather intricate technical questions concerning
the indicated derived category as already mentioned at the end of Section 7. There is a
real likelihood that our choice of (6.1) as the requisite imbedding of the rational points in
our base site X̃A will have to be revisited: the morphisms i⊗ ξ0, with ξ0 ∈ µ, are obvious
candidates.

In any event, the next phase of the campaign will be concerned with the behavior of

our (quasi-) dual formalism of sheaves on X̃A = S̃L2(k)(n)
A instead of Kubota’s original for-

malism of the metaplectic group S̃L2(k)(n)
A itself. We have presented, in the present article,

the scaffolding for this enterprise whose ultimate goal is the resolution of Hecke’s chal-
lenge to provide the analytic proof of general reciprocity for a number field. As we stress
throughout [4], Hecke’s own treatment of the quadratic case in [15], as well as Weil’s in
[26], should be classed, properly speaking, as Fourier analytic; indeed, both Hecke and
Weil gain victory by a masterful exploitation of Fourier transform tactics culminating in
ϑ-functional equations. Following Grothendieck, functional equations should be encour-
aged to evolve to theorems about, say, Poincaré duality or Serre duality. In our proposed
context of the derived category of sheaf complexes on X̃A, possibly with perversities to be
defined before too long, we should look toward duality theorems per sé, that is, special
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correspondences, doubtless in connection with (6.7) and the relationship between Φ and
Ωξ0 . Recent work in the area of microlocal analysis (see [16, 22], e.g.) has centered on
using the Fourier-Sato transform in a very suggestive manner.
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