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We obtain a property which characterizes the Chebyshev orthogonal polynomials of first,
second, third, and fourth kind. Indeed, we prove that the four Chebyshev sequences are
the unique classical orthogonal polynomial families such that their linear combinations,
with fixed length and constant coefficients, can be orthogonal polynomial sequences.

1. Introduction

The classical orthogonal polynomials (OP) on the real line, which are the most useful
and important families, can be characterized by different conditions (see [3]). In the case
of bounded support, the classical model is the family of Jacobi polynomials, which has
been extensively studied. Very well-known families of Jacobi polynomials are the so-called
Chebyshev polynomials of first, second, third, and fourth kind (see [9]).

The orthogonal polynomials with respect to rational modifications of these Chebyshev
weights are the Bernstein polynomials (see [3, 9]). It is well known that the Bernstein
polynomials can be expressed as linear combinations of Chebyshev polynomials, with
fixed length and constant coefficients (see [4, 5]). This property of orthogonality satisfied
by the linear finite combinations of sequences of orthogonal polynomials is quite general.
Indeed, taking into account the result of Uvarov (see [10]), the orthogonal polynomial
sequences with respect to a rational modification of a positive measure on an interval
can be written as a linear combination of the orthogonal polynomials with respect to the
original measure, with fixed length and coefficients depending on the degrees. Although
the representation of the Bernstein polynomials is a consequence of Uvarov’s result, it is
important to note that in this first case, the coefficients are constant.

The study of linear combinations of orthogonal polynomials is an interesting sub-
ject for different reasons. For example, several quadrature formulas have been obtained
choosing the nodal points as the zeros of some linear combinations. Another reason could
be the important role that these linear combinations of OP play in the problem of lin-
earization of products of OP, as well as, in the problem of approximation of the polyno-
mial solution for differential equations. For a detailed presentation of these problems and
some others, see [6].
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The general problem of the orthogonality for combinations of length three was studied
in [2]. Indeed, there necessary and sufficient conditions on the sequences of coefficients
of the linear combinations with fixed length three were obtained in order that the new
sequences be orthogonal. Very interesting examples appear in [2] and also in [1]. An-
other interesting contribution in the same direction is [7], in which the authors study the
orthogonality of linear combinations of two orthogonal polynomial sequences. Applying
the results in [2, 7], we have studied in [4] the following inverse problem, that is, we have
determined that the four Chebyshev sequences are the unique Jacobi sequences such that
their linear combinations with length 2 or 3 and constant coefficients can be orthogonal.

Our aim in this paper is to prove that the four Chebyshev families are the unique fam-
ilies among all the classical orthogonal polynomials such that linear finite combinations
with arbitrary fixed length and constant coefficients can be orthogonal sequences. How-
ever, this property can be satisfied by nonclassical orthogonal polynomial sequences. In-
deed, we give examples of nonclassical orthogonal polynomial sequences such that linear
combinations, with fixed length and constant coefficients, are orthogonal.

The structure of the paper is the following. In Section 2, first we recall some properties
concerning the classical orthogonal polynomials and we present the Bernstein orthogonal
polynomials. Moreover, we construct several examples of finite linear combinations, with
constant coefficients, of nonclassical orthogonal polynomials, such that they are again
orthogonal sequences. Finally, in Section 3, we prove our main result, that is, the property
that characterizes the four Chebyshev orthogonal polynomial sequences.

2. The Bernstein polynomials

In the positive definite case, the classical orthogonal polynomials are the Jacobi poly-

nomials P
(α,β)
n (x) which are orthogonal with respect to the positive measure on [−1,1],

dµα,β(x) = (1− x)α(1 + x)βdx, with α,β > −1, the Sonine-Laguerre polynomials L(α)
n (x)

orthogonal with respect to the positive measure on [0,+∞), dµα(x)= xαe−xdx, with α >
−1, and the Hermite polynomials Hn(x) orthogonal with respect to the positive measure
on (−∞,+∞), dµ(x)= e−x2

dx.
By virtue of their orthogonality, the classical monic polynomials satisfy the following

three-term recurrence relations:

P
(α,β)
n (x)= (x−βn−1

)
P

(α,β)
n−1 (x)− γn−1P

(α,β)
n−2 (x), n≥ 1, (2.1)

where

βn = β2−α2

(2n+α+β)(2n+α+β+ 2)
,

γn = 4n(n+α)(n+β)(n+α+β)
(2n+α+β)2(2n+α+β+ 1)(2n+α+β− 1)

,

(2.2)

with P0(x)= 1 and P−1(x)= 0 (β0 =−α in case α+β = 0);

L(α)
n (x)= (x−βn−1

)
L(α)
n−1(x)− γn−1L

(α)
n−2(x), n≥ 1, (2.3)
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where

βn = 2n+α− 1, γn = (n− 1)(n+α− 1), (2.4)

with L(α)
0 (x)= 1 and L(α)

−1 (x)= 0;

Hn(x)= xHn−1(x)− γn−1Hn−2(x), n≥ 1, (2.5)

where

γn = 1
2

(n− 1), (2.6)

with H0(x)= 1 and H−1(x)= 0.
Notice that the unique classical families with constant coefficients in the three-term

recurrence relation are those Jacobi families corresponding to α = ±1/2 and β = ±1/2,
that is, the Chebyshev families. Indeed, they satisfy for n≥ 2 the same recurrence relation
Pn(x)= xPn−1(x)− (1/4)Pn−2(x), n≥ 2, with different initial conditions.

The Bernstein polynomials generalize the classical Chebyshev polynomials. They are
orthogonal with respect to positive measures obtained by introducing a positive polyno-
mial divisor into the Chebyshev weight function (see [3, 5, 9]). Next, we recall a useful
representation for these Bernstein sequences.

Let qk(x) be a polynomial with real coefficients and positive in [−1,1]. By Féjer-Riesz
representation, there exists a polynomial Ak(z)=∑k

i=0mizi such that Ak(z) �= 0 for |z| ≤
1, Ak(0) > 0 and qk(cosθ)= |Ak(eiθ)|2.

If dµ1(x) is the rational modification of the Chebyshev measure of first kind dµ1(x)=
dx/(πqk(x)

√
1− x2), and {Pn(x,µ1)} is the monic orthogonal polynomial sequence with

respect to µ1 (MOPS(µ1)), then for n≥ k,

Pn
(
x,µ1

)= Ṫn(x) +
k∑
i=1

mi

m0

1
2i
Ṫn−i(x), (2.7)

where {Ṫn(x)} is the sequence of monic Chebyshev polynomials of first kind.
If dµ2(x) is the rational modification of the Chebyshev measure of second kind

dµ2(x)= 2
√

1− x2dx/(πqk(x)), and {Pn(x,µ2)} is the (MOPS(µ2)), then for n≥ k,

Pn
(
x,µ2

)= U̇n(x) +
k∑
i=1

mi

m0

1
2i
U̇n−i(x), (2.8)

where {U̇n(x)} is the sequence of monic Chebyshev polynomials of second kind.
If dµ3(x) is the rational modification of the Chebyshev measure of third kind dµ3(x)=

1/(πqk(x))
√

(1 + x)/(1− x)dx, and {Pn(x,µ3)} is the (MOPS(µ3)), then for n≥ k,

Pn
(
x,µ3

)= Ẇn(x) +
k∑
i=1

mi

m0

1
2i
Ẇn−i(x), (2.9)

where {Ẇn(x)} is the sequence of monic Chebyshev polynomials of third kind.
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If dµ4(x) is the rational modification of the Chebyshev measure of fourth kind
dµ4(x)= 1/(πqk(x))

√
(1− x)/(1 + x)dx, and {Pn(x,µ4)} is the (MOPS(µ4)), then for n≥k,

Pn
(
x,µ4

)= V̇n(x) +
k∑
i=1

mi

m0

1
2i
V̇n−i(x), (2.10)

where {V̇n(x)} is the sequence of monic Chebyshev polynomials of fourth kind.
Hence, it is clear that these types of linear combinations of Chebyshev polynomials are

again orthogonal sequences. Although our aim is to prove that this property character-
izes these Chebyshev families among all classical families, nevertheless, this property can
be satisfied by nonclassical families. Next we present examples of nonclassical sequences
such that they satisfy the same above property as the Chebyshev families.

Example 2.1. Let {Pn(x)} be the MOPS satisfying the recurrence relation

Pn(x)= (x− εn−1
)
Pn−1(x)−ηn−1Pn−2(x), n≥ 1, (2.11)

with P−1(x)= 0 and P0(x)= 1, and such that ηn = aεn, with a∈R, a �= 0, and εn �= 0, for
all n. Then the sequence of monic polynomials {Qn(x)} defined by

Qn(x)= Pn(x) + aPn−1(x) (2.12)

is the MOPS with respect to a regular linear functional.

It is clear that the sequence {Pn(x)} is different from the Chebyshev families. Besides,
it is easy to see that the sequence {Qn(x)} satisfies the following three-term recurrence
relation:

Qn(x)= (x− bn−1
)
Qn−1(x)− cn−1Qn−2(x), for n≥ 0, (2.13)

with cn = aεn−1 and bn = εn. Indeed,

Qn(x)= Pn(x) + aPn−1(x)

= (x− εn−1
)
Pn−1(x)−ηn−1Pn−2(x) + a

((
x− εn−2

)
Pn−2(x)−ηn−2Pn−3(x)

)
= (x− εn−1

)
Pn−1(x)− aεn−1Pn−2(x) + a

(
x− εn−2

)
Pn−2(x)− a2εn−2Pn−3(x)

= (x− εn−1
)(
Pn−1(x) + aPn−2(x)

)− aεn−2
(
Pn−2(x) + aPn−3(x)

)
= (x− bn−1

)
Qn−1(x)− cn−1Qn−2(x).

(2.14)

Therefore, by Favard’s theorem (see [3]), the sequence {Qn(x)} is the MOPS with respect
to a regular linear functional or a positive definite functional.

In order to obtain that the sequence {Qn(x)} be a MOPS with respect to a positve Borel
measure on [−1,1], we can take, for example, εn = 1/4 and a= 1/16. Then bn = 1/4 and
cn = 1/64, and therefore the measure of orthogonality of the sequence {Qn(x)} belongs
to the class M(1/4,1/4), see [8]. Hence, the support of the measure is a subset of [−1,1].
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3. Linear combinations with constant coefficients of classical polynomials

Jacobi polynomials. Now we consider the sequence of monic polynomials

Qn+k(x)= P
(α,β)
n+k (x) + a1P

(α,β)
n+k−1(x) + ···+ akP

(α,β)
n (x), n, k ≥ 1, (3.1)

with k a fixed integer, and ai (i = 1, . . . ,k) real numbers such that ak �= 0. We continue

denoting by {P(α,β)
n (x)} the MOPS with respect to the Jacobi weight with parameters α

and β.

Theorem 3.1. Let {Qn+k(x)} be the sequence defined in (3.1). If {Qn(x)} is the MOPS with
respect to a linear regular functional or a positive finite measure on [−1,1], then the sequence

{P(α,β)
n (x)}must be one of the four Chebyshev sequences, that is, α=±1/2, β± 1/2.

Proof. If {Qn(x)}n≥1 is a sequence of monic orthogonal polynomials, then there exist two
sequences of real numbers {εn} and {ηn}, such that the following three-term recurrence
relation holds, see [9],

Qn+k(x)= (x− εn+k−1
)
Qn+k−1(x)−ηn+k−1Qn+k−2(x). (3.2)

Taking into account relation (3.1), we can rewrite (3.2) as follows:

Qn+k(x)= (x− εn+k−1
)(

P
(α,β)
n+k−1(x) +

k∑
i=1

aiP
(α,β)
n+k−i−1(x)

)

−ηn+k−1

(
P

(α,β)
n+k−2(x) +

k∑
i=1

aiP
(α,β)
n+k−i−2(x)

)

= (x− εn+k−1
)
P

(α,β)
n+k−1(x) +

((
x− εn+k−1

)
a1−ηn+k−1

)
P

(α,β)
n+k−2(x)

+
k∑
i=2

((
x− εn+k−1

)
ai−ηn+k−1ai−1

)
P

(α,β)
n+k−i−1(x)−ηn+k−1akP

(α,β)
n−2 (x).

(3.3)

On the other hand, if we use the recurrence relation satisfied by the Jacobi polynomials,
then (3.1) becomes

Qn+k(x)= (x−βn+k−1
)
P

(α,β)
n+k−1(x)− γn+k−1P

(α,β)
n+k−2(x)

+
k∑
i=1

ai
((
x−βn+k−i−1

)
P

(α,β)
n+k−i−1(x)− γn+k−i−1P

(α,β)
n+k−i−2(x)

)

= (x−βn+k−1
)
P

(α,β)
n+k−1(x) +

(
a1
(
x−βn+k−2

)− γn+k−1
)
P

(α,β)
n+k−2(x)

+
k∑
i=2

((
x−βn+k−i−1

)
ai− γn+k−iai−1

)
P

(α,β)
n+k−i−1(x)− akγn−1P

(α,β)
n−2 (x).

(3.4)
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By equating the second members of expressions (3.3) and (3.4), we get the following
relations:

εn+k−1 = βn+k−1,

a1εn+k−1 +ηn+k−1 = γn+k−1 + a1βn+k−2,

a2εn+k−1 + a1ηn+k−1 = a1γn+k−2 + a2βn+k−3,

...

akεn+k−1 + ak−1ηn+k−1 = ak−1γn + akβn−1,

akηn+k−1 = akγn−1.

(3.5)

If we substitute εn+k−1 by βn+k−1 and ηn+k−1 by γn−1, we can rewrite the other above equa-

tions using only the coefficients of the recurrence relation of the sequence {P(α,β)
n (x)},

a1
(
βn+k−1−βn+k−2

)= γn+k−1− γn−1,

a2
(
βn+k−1−βn+k−3

)= a1
(
γn+k−2− γn−1

)
,

...

ak
(
βn+k−1−βn−1

)= ak−1
(
γn− γn−1

)
, for n≥ 2.

(3.6)

Now we can consider the following two cases.
(1) If βn+k−1 = βn−1, then it must be α2 = β2, otherwise,

(2n+α+β− 2)(2n+α+β)= (2n+ 2k− 2 +α+β)(2n+ 2k+α+β), (3.7)

which is impossible unless k = 0.
So we assume that α2 = β2.
We consider i =max{ j ∈ {1, . . . ,k− 1} : aj �= 0}, or i = 0 if aj = 0 for every j = 1, . . . ,

k− 1. Then γn+k−(i+1)− γn−1 = 0, and we distinguish between two possibilities.
(i) If β = α, the expression γn+k−(i+1) = γn−1 can be written as follows:

4(n+ k− i− 1)(n+ k− i− 1 +α)2(n+ k− i− 1 + 2α)
(2n+ 2k− 2i− 2 + 2α)2(2n+ 2k− 2i− 2 + 2α+ 1)(2n+ 2k− 2i− 2 + 2α− 1)

= 4(n− 1)(n− 1 +α)2(n− 1 + 2α)
(2n− 2 + 2α)2(2n+ 2α− 1)(2n+ 2α− 3)

,

(3.8)

from which we obtain, after some computations,

(n+ k− i− 1)(n+ k− i− 1 + 2α)(2n+ 2α− 1)(2n+ 2α− 3)

= (n− 1)(n− 1 + 2α)(2n+ 2k− 2i+ 2α− 1)(2n+ 2k− 2i+ 2α− 3).
(3.9)

It is easy to see that the coefficients of the powers n4, n3, and n2 are equal in
both members of the above formula. By equating the coefficients of n and the



E. Berriochoa et al. 2077

independent terms, we get

(
4α2− 1

)
(k− i)= 0,(

4α2− 1
)
(k− i)(2α+ k− i− 2)= 0.

(3.10)

Since k− i �= 0, the system is compatible only for α2 = 1/4. Therefore, we obtain
that α= β = 1/2 or α= β =−1/2.

(ii) If β =−α, the equality γn+k−(i+1) = γn−1 is

4(n+ k− i− 1)(n+ k− i− 1 +α)(n+ k− i− 1−α)(n+ k− i− 1)
(2n+ 2k− 2i− 2)2(2n+ 2k− 2i− 1)(2n+ 2k− 2i− 3)

= 4(n− 1)(n− 1 +α)(n− 1−α)(n− 1)
(2n− 2)2(2n− 1)(2n− 3)

,

(3.11)

from which we deduce

(n+ k− i− 1 +α)(n+ k− i− 1−α)(2n− 1)(2n− 3)

= (2n+ 2k− 2i− 1)(2n+ 2k− 2i− 3)(n− 1 +α)(n− 1−α).
(3.12)

Developing in powers of n, we see that the coefficients of n4, n3, and n2 are the
same in both members of the equality, and by equating the coefficients of n and
the independent term, it yields

(
4α2− 1

)
(k− i)= 0,(

4α2− 1
)
(k− i− 2)= 0,

(3.13)

from which it follows that α2 = 1/4. Therefore, we obtain that α = −β = 1/2 or
α=−β =−1/2.

(2) If βn+k−1 �= βn−1, then ak−1 �= 0 and γn− γn−1 �= 0. Therefore, from (3.6), we get γn−
γn−1 = (ak/ak−1)(βn+k−1 − βn−1), for n ≥ 2. If we take into account the expression of the
coefficients in the recurrence relation for the Jacobi polynomials and we denote R =
ak/ak−1, we have

4n(n+α)(n+β)(n+α+β)
(2n+α+β)2(2n+α+β+1)(2n+α+β−1)

− 4(n− 1)(n− 1 +α)(n− 1 +β)(n− 1 +α+β)
(2n+α+β−2)2(2n+α+β−1)(2n+α+β−3)

= R
(
β2−α2)( 1

(2n+ 2k+α+β− 2)(2n+ 2k+α+β)
− 1

(2n+α+β− 2)(2n+α+β)

)
,

(3.14)
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or equivalently

(2n+α+β+ 2k− 2)(2n+α+β+ 2k)

× ((2n+α+β− 2)2(2n+α+β− 3)n(n+α)(n+β)(n+α+β)

− (2n+α+β)2(2n+α+β+ 1)(n− 1)(n− 1 +α)(n− 1 +β)(n− 1 +α+β)
)

= R
(
β2−α2)((2n+α+β− 2)(2n+α+β)− (2n+α+β+ 2k− 2)(2n+α+β+ 2k)

)
× (2n+α+β)(2n+α+β+ 1)(2n+α+β− 1)(2n+α+β− 2)(2n+α+β− 3).

(3.15)

Finally, we compute the coefficients of n6 and n5 obtaining the following system:

2α2 + 2β2− 1=−4kR
(
β2−α2),(

2α2 + 2β2− 1
)
(3α+ 3β+ 2k− 3)=−2kR

(
β2−α2)(6α+ 6β+ k− 6).

(3.16)

If we substitute the first equation in the second one, we obtain k = 0, which is impossible.
Therefore, case (2) cannot be satisfied. �

Laguerre and Hermite polynomials. We consider the sequence of monic polynomials

Rn+k(x)= L(α)
n+k(x) + a1L

(α)
n+k−1(x) + ···+ akL

(α)
n (x), n,k ≥ 1, (3.17)

with k a fixed integer, and ai (i = 1, . . . ,k) real numbers such that ak �= 0. We continue

denoting by {L(α)
n (x)} the MOPS with respect to the Laguerre weight with parameter α.

We also consider the sequence of monic polynomials

Sn+k(x)=Hn+k(x) + a1Hn+k−1(x) + ···+ akHn(x), n,k ≥ 1, (3.18)

with k a fixed integer, and ai (i = 1, . . . ,k) real numbers such that ak �= 0. We continue
denoting by {Hn(x)} the MOPS with respect to the Hermite weight.

Theorem 3.2. Let {Rn+k(x)} be the sequence defined in (3.17), and let {Sn+k(x)} be the
sequence defined in (3.18). Then the sequence {Rn(x)} is not the MOPS with respect to any
linear regular functional or positive finite measure on [0,+∞), and {Sn(x)} is not the MOPS
with respect to any linear regular functional or positive finite measure on (−∞,+∞).

Proof. The idea is to solve the system (3.6) that appears in the previous theorem with
the recurrence coefficients of the Laguerre and Hermite polynomials respectively. In the
Laguerre case, if βn+k−1−βn−1 = 0, then we get k = 0, which is impossible, and if βn+k−1−
βn−1 �= 0, we also get to a contradiction.

In the Hermite case, since βn = 0, we obtain γn+k−1 = γn−1, which implies that k = 0.
�

As a consequence we obtain the following corollary.

Corollary 3.3. Consider the sequence of monic polynomials

Qn+k(x)= Pn+k(x) + a1Pn+k−1(x) + ···+ akPn(x), n,k ≥ 1, (3.19)



E. Berriochoa et al. 2079

with k a fixed integer, and ai (i= 1, . . . ,k) real numbers such that ak �= 0, and {Pn(x)} a clas-
sical MOPS (Jacobi, Laguerre, or Hermite). If {Qn(x)} is the MOPS with respect to a linear
regular functional, then {Pn(x)} must be one of the four Chebyshev orthogonal polynomial
sequences.
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