COMPACT SPACE-LIKE HYPERSURFACES IN DE SITTER SPACE

JINCHI LV

Received 16 March 2005 and in revised form 7 June 2005

We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

1. Introduction

It is well known that the semi-Riemannian (pseudo-Riemannian) manifolds (M,g) of Lorentzian signature play a special role in geometry and physics, and that they are models of space time of general relativity. Let $M_p^{n+1}(c)$ be an (n + 1)-dimensional complete connected semi-Riemannian manifold with constant sectional curvature *c* and index *p* (see [13, page 227]). It is called an *indefinite space form of index p* and simply a *space form* when p = 0. According to c > 0, c = 0, and c < 0, $M_1^{n+1}(c)$ is called *de Sitter space*, *Minkowski space*, and *anti-de Sitter space*, and is denoted by $S_1^{n+1}(c)$, \mathbb{R}_1^{n+1} , and $H_1^{n+1}(c)$, respectively. In spite of the fact that the geometry of de Sitter space is the simplest model of space time of general relativity, this geometry was not studied thoroughly. Let $\phi : M^n \to S_1^{n+1}(c)$ be a smooth immersion of an *n*-dimensional connected manifold into $S_1^{n+1}(c)$. If the semi-Riemannian metric of $S_1^{n+1}(c)$ induces a Riemannian metric on M^n via ϕ , M^n is called a space-like hypersurface in de Sitter space.

The study of space-like hypersurfaces in de Sitter space $S_1^{n+1}(c)$ has been of increasing interest in the last years, because of their nice Bernstein-type properties. Since Goddard [7] conjectured in 1977 that complete space-like hyperspaces in $S_1^{n+1}(c)$ with constant mean curvature H must be totally umbilical, which turned out to be false in this original statement, an important number of authors have considered the problem of characterizing the totally umbilical space-like hypersurfaces in de Sitter space in terms of some appropriate geometric assumptions. Actually, Akutagawa [1] proved that Goddard's conjecture is true when $H^2 \le c$ if n = 2, and $H^2 < (4(n-1)/n^2)c$ if $n \ge 3$. On the other hand, Montiel [11] proved that Goddard's conjecture is also true under the additional hypothesis of the compactness of the hypersurfaces. We also refer to [14] for an alternative proof of both facts given by Ramanathan in the 2-dimensional case. More recently, Cheng and Ishikawa [5] have shown that compact space-like hyperspaces in $S_1^{n+1}(c)$ with constant

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:13 (2005) 2053–2069 DOI: 10.1155/IJMMS.2005.2053

scalar curvature S < n(n-1)c must be totally umbilical. Aledo el al. [3] have recently found some other characterizations of the totally umbilical compact space-like hypersurfaces in de Sitter space with constant higher-order mean curvatures, under appropriate hypothesis.

In this paper, we will study various equivalent characterizations of totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures. The whole paper is organized as follows. Section 2 gives some preliminaries, Section 3 gives some inequalities on the normalized symmetric functions, and Section 4 reviews some selfadjoint second-order differential operator. The main results of this paper are contained in Section 5, which gives us a more specific and complete picture of totally umbilical compact space-like hypersurfaces in de Sitter space. For simplicity, we omit the volume form dV in all integrals.

2. Preliminaries

We consider Minkowski space \mathbb{R}_1^{n+2} as the real vector space \mathbb{R}^{n+2} endowed with the Lorentzian metric $\langle \cdot, \cdot \rangle$ given by

$$\langle x, y \rangle = -x_0 y_0 + \sum_{i=1}^{n+1} x_i y_i,$$
 (2.1)

for $x, y \in \mathbb{R}^{n+2}$. Then de Sitter space $S_1^{n+1}(c)$ can be defined as the following hyperquadric of \mathbb{R}_1^{n+2} :

$$S_1^{n+1}(c) = \left\{ x \in \mathbb{R}_1^{n+2} \mid |x|^2 = \frac{1}{c} \right\}.$$
 (2.2)

The induced metric from $\langle \cdot, \cdot \rangle$ makes $S_1^{n+1}(c)$ into a Lorentzian manifold with constant sectional curvature *c*. Moreover, if $x \in S_1^{n+1}(c)$, we can put

$$T_x S_1^{n+1}(c) = \{ v \in \mathbb{R}^{n+2} \mid \langle v, x \rangle = 0 \}.$$
 (2.3)

We denote by ∇^L and $\overline{\nabla}$ the metric connections of \mathbb{R}^{n+2}_1 and $S^{n+1}_1(c)$, respectively. Then, we have

$$\nabla_{v}^{L}w - \overline{\nabla}_{v}w = -c\langle v, w \rangle x \tag{2.4}$$

for all $v, w \in T_x S_1^{n+1}(c)$. Let

$$\phi: M^n \longrightarrow S_1^{n+1}(c) \tag{2.5}$$

be a space-like hypersurface in $S_1^{n+1}(c)$ defined above. First, we want to know whether a compact one is orientable. The following proposition gives us the affirmative answer (see [11] or [2] for a proof).

PROPOSITION 2.1. Let $\phi: M^n \to S_1^{n+1}(c)$ be a space-like hypersurface in $S_1^{n+1}(c)$, $n \ge 2$. If M^n is compact, then M^n is diffeomorphic to S^n . In particular, compact totally umbilical space-like hypersurfaces in $S_1^{n+1}(c)$, $n \ge 2$, are round n-spheres.

Throughout the following, we will exclusively deal with compact space-like hypersurfaces in $S_1^{n+1}(c)$, $n \ge 2$. The above proposition ensures that M^n is orientable. Let N be a time-like unit normal vector field for the immersion ϕ . The field N can be viewed as the Gauss map of M^n into hyperbolic space:

$$N: M^n \longrightarrow H^{n+1}, \tag{2.6}$$

where $H^{n+1} = \{x \in \mathbb{R}^{n+2} \mid |x|^2 = -1, x_0 \ge 1\}$. We will say that M^n is oriented by N. A well-known result is that the Gauss map N is harmonic if and only if the mean curvature H is constant. For a proof, one can refer to [4].

Let ∇ be the Levi-Civita connection associated to the Riemannian metric on M^n induced from $\langle \cdot, \cdot \rangle$. Then, we have

$$h(v,w) = \overline{\nabla}_{v}w - \nabla_{v}w = -\langle \mathcal{A}v, w \rangle N,$$

$$\mathcal{A}v = -\overline{\nabla}_{v}N = -\overline{\nabla}_{v}^{L}N,$$

(2.7)

where \mathcal{A} stands for the shape operator of the immersion ϕ with respect to N and v, w are vector fields tangent to M^n . The operator $L = -\mathcal{A}$ is the Weingarten endomorphism. The eigenvalues of the operator L are called the principal curvatures and will be denoted by $\lambda_1, \ldots, \lambda_n$. The Codazzi equation is expressed by

$$(\nabla_{\nu}\mathcal{A})w = (\nabla_{w}\mathcal{A})v. \tag{2.8}$$

For a suitably chosen local field of orthonormal frames e_1, \ldots, e_n on M^n , we have

$$\mathcal{A}e_i = -\lambda_i e_i. \tag{2.9}$$

The *k*th mean curvature of the space-like hypersurface M^n is defined by

$$H_k = \frac{1}{\binom{n}{k}} \sum_{i_1 < \dots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}.$$
 (2.10)

Note that when k = 1, H_1 is the mean curvature H, and when k = n, H_n is the Gauss-Kronecker curvature. We can easily see that the scalar curvature

$$S = n(n-1)c - \left(\sum_{i} \lambda_{i}\right)^{2} + \sum_{i} \lambda_{i}^{2} = n(n-1)(c - H_{2})$$
(2.11)

and the characteristic polynomial of \mathcal{A} can be written in terms of the H_k 's as

$$\det(tI - \mathcal{A}) = \sum_{k=0}^{n} \binom{n}{k} H_k t^{n-k},$$
(2.12)

where $H_0 = 1$.

Minkowski formulas provide us with a convenient tool in the study of hypersurfaces. One can refer to [12] for the well-known version for space forms. Many interesting results have been got in the study of hypersurfaces by means of Minkowski formulas, for example, [9, 10, 12, 16, 17], and so forth. The proof in [12] followed the idea in [15]. Similar to it, one can easily give the proof of Minkowski formulas for compact space-like hypersurfaces in de Sitter space (see [3]). The following proposition is Minkowski formulas for compact space-like hypersurfaces in de Sitter space.

PROPOSITION 2.2. Let $\phi: M^n \to S_1^{n+1}(c)$ be a compact space-like hypersurface in $S_1^{n+1}(c)$, $n \ge 2$, then

$$\int_{M^n} cH_k \langle \phi, a \rangle - H_{k+1} \langle N, a \rangle = 0, \quad k = 0, 1, \dots, n-1,$$
(2.13)

for any $a \in \mathbb{R}^{n+2}$.

3. Inequalities on the normalized symmetric functions

Let $x_1, ..., x_n \in \mathbb{R}$. The elementary symmetric functions of *n* variables $x_1, ..., x_n$ are defined by

$$\sigma_k = \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \cdots x_{i_k}, \quad k = 0, 1, \dots, n,$$
(3.1)

where $\sigma_0 = 1$. For our purpose, it is useful to consider the normalized symmetric functions by dividing each σ_k by the number of its summands. We denote the normalized symmetric function by

$$E_k = \frac{1}{\binom{n}{k}} \sigma_k, \quad k = 0, 1, \dots, n,$$
(3.2)

where $E_0 = 1$. Since

$$(x-x_1)\cdots(x-x_n) = \sum_{i=0}^n (-1)^i \sigma_i x^{n-i} = \sum_{i=0}^n (-1)^i {n \choose i} E_i x^{n-i},$$
 (3.3)

we see that at least *r* of x_i 's are zero if and only if $E_{n-r+1} = \cdots = E_n = 0$.

PROPOSITION 3.1. All $x_i \ge 0$ if and only if all $E_i \ge 0$, and all $x_i > 0$ if and only if all $E_i > 0$.

Proof. We prove it by induction on *n*. For n = 1, the proposition holds clearly. Now assume that n > 1 and the proposition holds for n - 1. Let $P(x) = (x - x_1) \cdots (x - x_n)$ and $Q(x) = (1/n)P'(x) = (x - y_1) \cdots (x - y_n)$. By Rolle's theorem, y_1, \ldots, y_{n-1} are all real and $x_1 \le y_1 \le x_2 \le \cdots \le x_{n-1} \le y_{n-1} \le x_n$. Clearly, the inductive assumption applies to y_1, \ldots, y_{n-1} . Thus, it follows easily that the proposition holds for *n*.

There are some well-known inequalities on the normalized symmetric functions, for example, Newton-Maclaurin inequalities. One can refer to [8] for the case of n positive numbers. For the sake of completeness, we include here a proof of Newton's inequalities for the general case.

Proposition 3.2.

$$E_k^2 \ge E_{k-1}E_{k+1}, \quad k = 1, \dots, n-1,$$
(3.4)

and each equality holds if and only if $x_1 = \cdots = x_n$, or $E_k = 0 = E_{k-1}E_{k+1}$.

Proof. We prove it by induction on *n*. For n = 2, the inequality holds clearly and the equality holds if and only if $x_1 = x_2$ since $E_1 = 0 = E_0E_2 = E_2$ implies that $x_1 = x_2 = 0$. Now assume that n > 2 and the proposition holds for n - 1. Let $P(x) = (x - x_1) \cdots (x - x_n)$ and Q(x) = (1/n)P'(x). Then

$$P(x) = \sum_{i=0}^{n} (-1)^{i} \sigma_{i} x^{n-i} = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} E_{i} x^{n-i},$$

$$Q(x) = \frac{1}{n} P'(x) = \sum_{i=0}^{n-1} (-1)^{i} \frac{n-i}{n} \binom{n}{i} E_{i} x^{n-i-1} = \sum_{i=0}^{n-1} (-1)^{i} \binom{n-1}{i} E_{i} x^{n-1-i}.$$
(3.5)

On the other hand,

$$Q(x) = (x - y_1) \cdots (x - y_{n-1}) = \sum_{i=0}^{n-1} (-1)^i \binom{n-1}{i} E_i(y_1, \dots, y_{n-1}) x^{n-1-i}, \quad (3.6)$$

where $y_1, ..., y_{n-1}$ are n - 1 roots of the polynomial Q(x). Comparing the coefficients of the powers of x in the above two expressions for Q(x) gives us

$$E_i(y_1,\ldots,y_{n-1}) = E_i(x_1,\ldots,x_n), \quad i = 0,\ldots,n-1.$$
(3.7)

By Rolle's theorem $y_1, ..., y_{n-1}$ are all real. Clearly, $y_1 = \cdots = y_{n-1}$ if and only if $x_1 = \cdots = x_n$. Thus the inductive assumption applies to $E_i(y_1, ..., y_{n-1})$, i = 0, ..., n-1, and the proposition holds for k = 1, ..., n-2 by (3.7).

It remains to prove for k = n - 1, that is,

$$E_{n-1}^{2}(x_{1},\ldots,x_{n}) \geq E_{n-2}(x_{1},\ldots,x_{n})E_{n}(x_{1},\ldots,x_{n}), \qquad (3.8)$$

with equality if and only if $x_1 = \cdots = x_n$, or $E_{n-1} = 0 = E_{n-2}E_n$.

Case 1. If some $x_i = 0$, then $E_n(x_1, ..., x_n) = x_1 \cdots x_n = 0$. Clearly, (3.8) holds with equality if and only if $E_{n-1} = (1/n) \prod_{j \neq i} x_j = 0$, and thus if and only if some $x_j = 0$, $j \neq i$. *Case 2.* If all $x_i \neq 0$, let $x'_i = 1/x_i$. Then, we have

$$\frac{E_i(x_1,...,x_n)}{E_n(x_1,...,x_n)} = E_{n-i}(x'_1,...,x'_n).$$
(3.9)

Since $E_n(x_1,...,x_n) = x_1 \cdots x_n \neq 0$, we see that (3.8) is equivalent to

$$E_1^2(x_1',...,x_n') \ge E_2(x_1',...,x_n'), \tag{3.10}$$

which is true since n > 2.

This completes the proof.

Remark 3.3. For our future purpose, we concern most when each of the above equalities holds if and only if $x_1 = \cdots = x_n$, that is, to find some restrictions on x_i 's to exclude the possibility of $E_k = 0 = E_{k-1}E_{k+1}$ and x_i 's are not all zero. We only know that $E_1^2 = E_2$ holds if and only if $x_1 = \cdots = x_n$ since $E_1 = 0 = E_0E_2 = E_2$ implies that $x_1 = \cdots = x_n = 0$, while we cannot expect it for $k \ge 2$ even if all $x_i \ge 0$, for example, when only one of x_i 's is positive. In particular, when all x_i 's have the same sign, that is, nonnegative or nonpositive simultaneously, and at least k of x_i 's are nonzero (equivalently, $E_1 \cdots E_k \neq 0$) or $E_1 = \cdots = E_n = 0$, we have that $E_k^2 = E_{k-1}E_{k+1}$ holds if and only if $x_1 = \cdots = x_n$.

Newton's inequalities have a very important consequence, Maclaurin's inequalities, by investigating that

$$E_1^2 E_2^4 \cdots E_k^{2k} \ge (E_0 E_2) (E_1 E_3)^2 \cdots (E_{k-1} E_{k+1})^k,$$
 (3.11)

where all $x_i \ge 0$. When all $x_i > 0$ and $2 \le k \le n - 1$, we have

$$E_k^{1/k} \ge E_{k+1}^{1/(k+1)},$$
(3.12)

with equality if and only if $x_1 = \cdots = x_n$. If some of x_i 's are zero and the rest of them are positive, then for $2 \le k \le n - 1$, we still have

$$E_k^{1/k} \ge E_{k+1}^{1/(k+1)},\tag{3.13}$$

with equality if and only if $x_1 = \cdots = x_n$, or at least n - k + 1 of x_i 's are zero.

COROLLARY 3.4. If all $x_i \ge 0$, $1 \le k \le n - 1$, then

$$E_k^{1/k} \ge E_{k+1}^{1/(k+1)},\tag{3.14}$$

with equality if and only if $x_1 = \cdots = x_n$, or $E_{n-k+1} = \cdots = E_n = 0$. COROLLARY 3.5. If $E_1 > 0, \dots, E_k > 0$ and $2 \le k \le n$, then

$$E_1 \ge E_2^{1/2} \ge \dots \ge E_k^{1/k}$$
 (3.15)

with each equality if and only if $x_1 = \cdots = x_n$.

Now we can give a result on the positiveness of mean curvature and higher-order mean curvatures of the compact space-like hypersurfaces in de Sitter space.

THEOREM 3.6. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space with $H_k > 0$ and $2 \le k \le n$. If there exists a point of M^n , where H_1, \ldots, H_{k-1} are positive, then H_1, \ldots, H_{k-1} are positive everywhere on M^n , that is, $H_1 > 0, \ldots, H_{k-1} > 0$.

Proof. We prove it by an open-closed argument. Let

$$U = \{ x \in M^n \mid H_1(x) > 0, \dots, H_{k-1}(x) > 0 \}.$$
(3.16)

Clearly *U* is open, and it is nonempty by the assumption. To prove that $U = M^n$, we only need to prove that *U* is also closed by the connectedness of M^n . Since $H_k > 0$ and M^n is compact, we have

$$a = \min_{x \in M^n} H_k(x) > 0.$$
(3.17)

For any $x \in U$, we have

$$H_1(x) \ge H_2(x)^{1/2} \ge \dots \ge H_{k-1}(x)^{1/(k-1)} \ge H_k(x)^{1/k} \ge a^{1/k} > 0,$$
 (3.18)

by Corollary 3.5. Thus U is closed. This completes the proof.

Finally, we give another two sets of important inequalities by investigating that

$$E_{k}^{2}E_{k+1}^{2}\cdots E_{l}^{2} \ge (E_{k-1}E_{k+1})(E_{k}E_{k+2})\cdots (E_{l-1}E_{l+1}),$$

$$E_{k}^{1/k}\cdots E_{l-1}^{1/(l-1)}E_{l}^{(l+1)/l} \ge E_{k+1}^{1/(k+1)}\cdots E_{l}^{1/l}E_{l+1},$$
(3.19)

where all $x_i \ge 0$ and $1 \le k < l \le n - 1$. Using the argument above leading to Corollary 3.4, we can get the following important inequalities.

THEOREM 3.7. If all $x_i \ge 0$ and $1 \le k < l \le n - 1$, then

$$E_k E_l \ge E_{k-1} E_{l+1}, \tag{3.20}$$

with equality if and only if $x_1 = \cdots = x_n$, or $E_{n-l+1} = \cdots = E_n = 0$. THEOREM 3.8. If $E_{k-1} > 0, \dots, E_{l+1} > 0$ and $1 \le k < l \le n - 1$, then

$$E_k E_l \ge E_{k-1} E_{l+1},$$
 (3.21)

with equality if and only if $x_1 = \cdots = x_n$.

THEOREM 3.9. If all $x_i \ge 0$ and $1 \le k < l \le n - 1$, then

$$E_k^{1/k} E_l \ge E_{l+1}, \tag{3.22}$$

with equality if and only if $x_1 = \cdots = x_n$, or $E_{n-l+1} = \cdots = E_n = 0$. THEOREM 3.10. If $E_1 > 0, \dots, E_{l+1} > 0$ and $1 \le k < l \le n - 1$, then

$$E_k^{1/k} E_l \ge E_{l+1}, \tag{3.23}$$

with equality if and only if $x_1 = \cdots = x_n$.

4. Some selfadjoint second-order differential operators

First, we introduce two known selfadjoint second-order differential operators, the Laplace operator \triangle and the Cheng-Yau operator \square . For any C^2 -function f defined on M^n , we consider the symmetric bilinear form

$$(\nabla^2 f)(w, v) = v(wf) - (\nabla_v w)f.$$

$$(4.1)$$

The Laplace operator \triangle acting on any C^2 -function f defined on M^n is given by

$$\triangle f = \sum_{i} (\nabla^2 f) (e_i, e_i).$$
(4.2)

Since M^n is compact and oriented, the Laplace operator \triangle is selfadjoint relative to the L^2 -inner product of M^n , that is,

$$\int_{M^n} f(\Delta g) = \int_{M^n} (\Delta f) g.$$
(4.3)

Following Cheng and Yau [6], we introduce an operator \Box acting on any C^2 -function f defined on M^n by

$$\Box f = \sum_{i,j} \left[nH\langle e_i, e_j \rangle + \langle \mathcal{A}e_i, e_j \rangle \right] (\nabla^2 f) (e_i, e_j) = \sum_i \left(nH - \lambda_i \right) (\nabla^2 f) (e_i, e_i).$$
(4.4)

Note that the following holds at umbilical points:

$$\Box f = \sum_{i} (n-1)H(\nabla^2 f)(e_i, e_i) = (n-1)H \triangle f.$$
(4.5)

By the Codazzi equation and [6, Proposition 1], we can prove that the operator \Box is selfadjoint relative to the L^2 -inner product of M^n , that is,

$$\int_{M^n} f(\Box g) = \int_{M^n} (\Box f) g.$$
(4.6)

Naturally, we may ask the following question.

Question 4.1. Can we find other selfadjoint second-order differential operators in terms of the shape operator \mathcal{A} , mean curvature, and higher-order mean curvatures?

Fortunately, we do have such a selfadjoint second-order differential operator \mathcal{L}_k for each k = 0, 1, ..., n - 1. The idea is contained in [15, 17]. Following [3], we introduce the *k*th Newton transformation T_k associated to the shape operator \mathcal{A} :

$$T_k = \sum_{i=0}^k \binom{n}{i} H_i \mathcal{A}^{k-i},\tag{4.7}$$

or inductively,

$$T_0 = I, \qquad T_k = \binom{n}{k} H_k I + \mathcal{A} T_{k-1}.$$
(4.8)

It follows from (2.12) that $T_n = 0$. Since the shape operator \mathcal{A} is selfadjoint, it follows easily that the Newton transformations T_k 's are selfadjoint. Clearly, the orthonormal basis $\{e_1, \ldots, e_n\}$ diagonalizes the Newton transformations T_k 's since it diagonalizes the shape operator \mathcal{A} .

PROPOSITION 4.2. If the shape operator \mathcal{A} is negative definite, the Newton transformations T_k 's, k = 0, 1, ..., n - 1, are positive definite.

Proof. Since the shape operator \mathcal{A} is negative definite, all $\lambda_i > 0$. Without loss of generality, to prove that T_k is positive definite, we only need to prove that $\langle T_k e_1, e_1 \rangle > 0$. Let $\lambda'_i = \lambda_i / \lambda_1$, i = 1, ..., n, then we have

$$\langle T_{k}e_{1}, e_{1} \rangle = \sum_{i=0}^{k} {\binom{n}{i}} H_{i}(-\lambda_{1})^{k-i}$$

$$= \sum_{i=0}^{k} \sigma_{i}(\lambda_{1}, \dots, \lambda_{n})(-\lambda_{1})^{k-i}$$

$$= \lambda_{1}^{k} \sum_{i=0}^{k} (-1)^{k-i} \sigma_{i}(1, \lambda_{2}', \dots, \lambda_{n}').$$

$$(4.9)$$

Now we prove that

$$\sum_{i=0}^{k} (-1)^{k-i} \sigma_i(1, x_2, \dots, x_n) > 0, \quad k = 0, 1, \dots, n-1,$$
(4.10)

by induction on *n*, where $x_2, ..., x_n > 0$. Clearly, (4.10) holds for k = 0 or n = 1. Now assume that m > 1, $0 < l \le m - 1$, and (4.10) holds for all n < m and all k < l for n = m. Let n = m and k = l, then we have

$$\sum_{i=0}^{k} (-1)^{k-i} \sigma_i(1, x_2, \dots, x_n) = \sum_{i=0}^{k} (-1)^{k-i} \sigma_i(1, x_2, \dots, x_{n-1}) + x_n \sum_{i=1}^{k} (-1)^{k-i} \sigma_{i-1}(1, x_2, \dots, x_n) = \sum_{i=0}^{k} (-1)^{k-i} \sigma_i(1, x_2, \dots, x_{n-1}) + x_n \sum_{i=0}^{k-1} (-1)^{k-1-i} \sigma_i(1, x_2, \dots, x_n) > 0$$
(4.11)

by the inductive assumption and the fact that $\sum_{i=0}^{k} (-1)^{k-i} \sigma_i(1, x_2, \dots, x_{n-1}) = 0$ for k = n-1. This completes the proof.

The following algebraic properties of T_k can be easily established from the definitions.

$$\operatorname{tr} T_{k} = (n-k) \binom{n}{k} H_{k} = n \binom{n-1}{k} H_{k}, \qquad (4.12)$$

$$\operatorname{tr}(T_k \mathscr{A}) = -(k+1) \binom{n}{k+1} H_{k+1} = -n \binom{n-1}{k} H_{k+1}, \tag{4.13}$$

$$\operatorname{tr}(T_{k}\mathscr{A}^{2}) = n\binom{n}{k+1}HH_{k+1} - (k+2)\binom{n}{k+2}H_{k+2}$$

$$= n\binom{n}{k+1}HH_{k+1} - n\binom{n-1}{k+1}H_{k+2}.$$
(4.14)

One can also easily derive the identities

$$\operatorname{tr}\left(T_{k}\nabla_{\nu}\mathscr{A}\right) = -\binom{n}{k+1}\langle\nabla H_{k+1},\nu\rangle,\tag{4.15}$$

where v is any vector field tangent to M^n . Now for each k = 0, 1, ..., n - 1, we can define a second-order differential operator \mathcal{L}_k acting on any C^2 -function f defined on M^n by

$$\mathscr{L}_k f = \operatorname{div}\left(T_k \nabla f\right). \tag{4.16}$$

It can be easily seen that the operators \mathcal{L}_k 's are selfadjoint. Clearly when k = 0, the operator \mathcal{L}_0 is the Laplace operator $\Delta = \operatorname{div} \circ \nabla$. Later, we will see that when k = 1, the operator \mathcal{L}_1 is the Cheng-Yau operator \Box .

Finally, we can easily derive the following useful expression for \mathcal{L}_k (see [3]):

$$\mathcal{L}_k f = \sum_i \langle T_k \nabla_{e_i} \nabla f, e_i \rangle = \sum_i \langle T_k e_i, e_i \rangle \nabla^2 f(e_i, e_i)$$
(4.17)

for any C^2 -function f defined on M^n .

Remark 4.3. More specifically,

$$\mathscr{L}_k f = \sum_i \sum_{j=0}^k \binom{n}{j} H_j (-\lambda_i)^{k-j} \nabla^2 f(e_i, e_i).$$
(4.18)

Clearly when k = 1, the operator \mathcal{L}_1 is the Cheng-Yau operator $\Box = \sum_i (nH - \lambda_i)\nabla^2$. Note that the following holds at umbilical points:

$$\mathscr{L}_k f = \sum_i \sum_{j=0}^k \binom{n}{j} H_j \left(-\lambda_i\right)^{k-j} \nabla^2 f\left(e_i, e_i\right) = \sum_{i=0}^k (-1)^{k-i} \binom{n}{i} \cdot H_k \triangle f.$$
(4.19)

Remark 4.4. When T_k is positive definite, the operator \mathcal{L}_k is elliptic. In particular, when the shape operator \mathcal{A} is negative definite, the operator \mathcal{L}_k is elliptic by proposition 4.2.

5. Main results

Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space, N a time-like unit normal vector field for ϕ , and $a \in \mathbb{R}_1^{n+2}$ arbitrary. We consider the height function $\langle \phi, a \rangle$ and the function $\langle N, a \rangle$ on M^n . Using (2.4), (2.7), we can get the following expressions for the gradient and Hessian of the above two functions:

$$\langle \nabla \langle \phi, a \rangle, v \rangle = \langle v, a \rangle, \qquad \langle \nabla \langle N, a \rangle, v \rangle = -\langle \mathcal{A}v, a \rangle,$$

$$(\nabla^2 \langle \phi, a \rangle)(v, w) = wv \langle \phi, a \rangle - (\nabla_w v) \langle \phi, a \rangle$$

$$= -c \langle v, w \rangle \langle \phi, a \rangle - \langle \mathcal{A}v, w \rangle \langle N, a \rangle,$$

$$(\nabla^2 \langle N, a \rangle)(v, w) = wv \langle N, a \rangle - (\nabla_w v) \langle N, a \rangle$$

$$= c \langle \mathcal{A}v, w \rangle \langle \phi, a \rangle + \langle \mathcal{A}v, \mathcal{A}w \rangle \langle N, a \rangle - \langle (\nabla_w \mathcal{A})v, a \rangle,$$

$$(5.1)$$

where v, w are vector fields tangent to M^n . Thus, we have

$$\begin{aligned} \mathscr{L}_{k}\langle\phi,a\rangle &= \sum_{i}\sum_{j=0}^{k}\binom{n}{j}H_{j}(-\lambda_{i})^{k-j}\nabla^{2}\langle\phi,a\rangle\langle e_{i},e_{i}\rangle \\ &= \sum_{i}\sum_{j=0}^{k}\binom{n}{j}H_{j}(-\lambda_{i})^{k-j}\left[-c\langle\phi,a\rangle+\lambda_{i}\langle N,a\rangle\right] \\ &= -c\sum_{j=0}^{k}(-1)^{k-j}\binom{n}{j}H_{j}\sum_{i}\lambda_{i}^{k-j}\cdot\langle\phi,a\rangle \\ &+ \sum_{j=0}^{k}(-1)^{k-j}\binom{n}{j}H_{j}\sum_{i}\lambda_{i}^{k+1-j}\cdot\langle N,a\rangle \\ &= -c(n-k)\binom{n}{k}H_{k}\langle\phi,a\rangle+(k+1)\binom{n}{k+1}H_{k+1}\langle N,a\rangle \\ &= n\binom{n-1}{k}\left[-cH_{k}\langle\phi,a\rangle+H_{k+1}\langle N,a\rangle\right]. \end{aligned}$$
(5.2)

Note that the Minkowski formulas in Proposition 2.2 are regained by the selfadjointness of the operators \mathcal{L}_k 's.

For any vector field v tangent to M^n , we have

$$\nabla_{\nu}\nabla\langle N,a\rangle = c\mathcal{A}\nu\langle\phi,a\rangle + \mathcal{A}^{2}\nu\langle N,a\rangle - (\nabla_{\nu}\mathcal{A})a^{T},$$
(5.3)

by the selfadjointness of the operator $\nabla_{v} \mathcal{A}$, where a^{T} is the tangent component of *a* to M^{n} . Thus by (2.8), (4.13), (4.14), and (4.15), we have

$$\begin{aligned} \mathscr{L}_{k}\langle N,a\rangle &= \sum_{i} \langle T_{k} \nabla_{e_{i}} \nabla \langle N,a \rangle, e_{i} \rangle \\ &= \sum_{i} \langle cT_{k} \mathscr{A} e_{i} \langle \phi,a \rangle + T_{k} \mathscr{A}^{2} e_{i} \langle N,a \rangle - T_{k} (\nabla_{e_{i}} \mathscr{A}) a^{T}, e_{i} \rangle \\ &= c \operatorname{tr} (T_{k} \mathscr{A}) \langle \phi,a \rangle + \operatorname{tr} (T_{k} \mathscr{A}^{2}) \langle N,a \rangle - \sum_{i} \langle T_{k} (\nabla_{e_{i}} \mathscr{A}) a^{T}, e_{i} \rangle \\ &= c \operatorname{tr} (T_{k} \mathscr{A}) \langle \phi,a \rangle + \operatorname{tr} (T_{k} \mathscr{A}^{2}) \langle N,a \rangle - \sum_{i} \langle T_{k} (\nabla_{a^{T}} \mathscr{A}) e_{i}, e_{i} \rangle \\ &= c \operatorname{tr} (T_{k} \mathscr{A}) \langle \phi,a \rangle + \operatorname{tr} (T_{k} \mathscr{A}^{2}) \langle N,a \rangle - \operatorname{tr} (T_{k} \nabla_{a^{T}} \mathscr{A}) \\ &= c \operatorname{tr} (T_{k} \mathscr{A}) \langle \phi,a \rangle + \operatorname{tr} (T_{k} \mathscr{A}^{2}) \langle N,a \rangle - \operatorname{tr} (T_{k} \nabla_{a^{T}} \mathscr{A}) \\ &= -cn \binom{n-1}{k} H_{k+1} \langle \phi,a \rangle + n \left[\binom{n}{k+1} H_{k+1} - \binom{n-1}{k+1} H_{k+2} \right] \langle N,a \rangle \\ &+ \binom{n}{k+1} \langle \nabla H_{k+1}, a^{T} \rangle \\ &= -cn \binom{n-1}{k} H_{k+1} \langle \phi,a \rangle + n \left[\binom{n}{k+1} H_{k+1} - \binom{n-1}{k+1} H_{k+2} \right] \langle N,a \rangle \\ &+ \binom{n}{k+1} \langle \nabla H_{k+1},a \rangle. \end{aligned}$$

Remark 5.1. In particular, when k = 0, we have

$$\Delta \langle N, a \rangle = \mathcal{L}_0 \langle N, a \rangle = -cnH \langle \phi, a \rangle + [n^2 H^2 - n(n-1)H_2] \langle N, a \rangle + n \langle \nabla H, a \rangle.$$
(5.5)

Proposition 5.2.

$$\mathscr{L}_{k}\langle N,a\rangle = -\mathscr{L}_{k+1}\langle\phi,a\rangle + \binom{n}{k+1} [H_{k+1} \triangle \langle\phi,a\rangle + \langle\nabla H_{k+1},a\rangle]$$
(5.6)

for $k = 0, 1, \dots, n-1$.

Proof. By (5.2), we have

$$\frac{1}{n}H_{k+1} \bigtriangleup \langle \phi, a \rangle - \frac{1}{n\binom{n-1}{k+1}} \mathscr{L}_{k+1} \langle \phi, a \rangle$$

$$= (H_1 H_{k+1} - H_{k+2}) \langle N, a \rangle.$$
(5.7)

Jinchi Lv 2065

Thus by (5.2) and (5.4), we have

$$\mathscr{L}_{k}\langle N,a\rangle = \frac{\binom{n-1}{k}}{\binom{n-1}{k+1}} \mathscr{L}_{k+1}\langle\phi,a\rangle + \binom{n}{k+1} \left[H_{k+1} \bigtriangleup \langle\phi,a\rangle - \frac{1}{\binom{n-1}{k+1}} \mathscr{L}_{k+1}\langle\phi,a\rangle \right] \\ + \binom{n}{k+1} \langle\nabla H_{k+1},a\rangle$$

$$= -\mathscr{L}_{k+1}\langle\phi,a\rangle + \binom{n}{k+1} [H_{k+1} \bigtriangleup \langle\phi,a\rangle + \langle\nabla H_{k+1},a\rangle].$$

$$\Box$$

THEOREM 5.3. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space and $0 \le i < j \le n-1$, then

$$\int_{M^n} \left[\frac{1}{n\binom{n-1}{j}} \mathscr{L}_j H_i - \frac{1}{n\binom{n-1}{i}} \mathscr{L}_i H_j \right] \langle \phi, a \rangle + (H_{i+1}H_j - H_iH_{j+1}) \langle N, a \rangle = 0, \quad (5.9)$$

or equivalently,

$$\int_{M^n} \frac{1}{n} \left\langle \frac{1}{\binom{n-1}{i}} T_i \nabla H_j - \frac{1}{\binom{n-1}{j}} T_j \nabla H_i, a \right\rangle + \left(H_{i+1} H_j - H_i H_{j+1} \right) \langle N, a \rangle = 0, \quad (5.10)$$

for any vector $a \in \mathbb{R}^{n+2}_1$ *.*

Proof. By (5.2), we have

$$\frac{1}{n\binom{n-1}{i}}H_{j}\mathcal{L}_{i}\langle\phi,a\rangle - \frac{1}{n\binom{n-1}{j}}H_{i}\mathcal{L}_{j}\langle\phi,a\rangle = (H_{i+1}H_{j} - H_{i}H_{j+1})\langle N,a\rangle.$$
(5.11)

Thus,

$$\int_{M^n} \frac{1}{n\binom{n-1}{i}} H_j \mathcal{L}_i \langle \phi, a \rangle - \frac{1}{n\binom{n-1}{j}} H_i \mathcal{L}_j \langle \phi, a \rangle = \int_{M^n} \left(H_{i+1} H_j - H_i H_{j+1} \right) \langle N, a \rangle.$$
(5.12)

Since the operators \mathcal{L}_k 's are selfadjoint, we have

$$\int_{M^n} \left[\frac{1}{n\binom{n-1}{j}} \mathscr{L}_j H_i - \frac{1}{n\binom{n-1}{i}} \mathscr{L}_i H_j \right] \langle \phi, a \rangle + (H_{i+1}H_j - H_iH_{j+1}) \langle N, a \rangle = 0, \quad (5.13)$$

or equivalently,

$$\int_{M^n} \frac{1}{n} \left\langle \frac{1}{\binom{n-1}{i}} T_i \nabla H_j - \frac{1}{\binom{n-1}{j}} T_j \nabla H_i, a \right\rangle + \left(H_{i+1} H_j - H_i H_{j+1} \right) \langle N, a \rangle = 0$$
(5.14)

since the operators $\mathscr{L}_k = \operatorname{div} \circ T_k \nabla$, for any vector $a \in \mathbb{R}^{n+2}_1$.

THEOREM 5.4. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space, $a \in \mathbb{R}_1^{n+2}$ any unit time-like vector with the same time-orientation as N, and $0 \le k \le n-2$, then

$$\int_{M^n} \left\langle \binom{n-1}{k+1} T_k \nabla H_{k+1} - \binom{n-1}{k} T_{k+1} \nabla H_k, a \right\rangle \ge 0, \tag{5.15}$$

and the equality holds if and only if M^n is totally umbilical when k = 0, or additionally if $H_{k+1}^2 + H_k^2 H_{k+2}^2 \neq 0$ when $1 \le k \le n-2$.

Proof. For any unit time-like vector $a \in \mathbb{R}_1^{n+2}$ with the same time orientation as N, that is, $|x|^2 = -1$ and $x_0 \ge 1$, we have $\langle N, a \rangle \le -1$. Thus by taking i = k, j = k + 1 in Theorem 5.3 and Proposition 3.2, we can deduce that

$$\int_{M^n} \left\langle \binom{n-1}{k+1} T_k \nabla H_{k+1} - \binom{n-1}{k} T_{k+1} \nabla H_k, a \right\rangle \ge 0, \tag{5.16}$$

and the equality holds if and only if M^n is totally umbilical when k = 0 or additionally if $H^2_{k+1} + H^2_k H^2_{k+2} \neq 0$ when $1 \le k \le n-2$.

Remark 5.5. In particular, when k = 0, we have

$$\int_{M^n} \langle \nabla H, a \rangle \ge 0, \tag{5.17}$$

and the equality holds if and only if M^n is totally umbilical for any unit time-like vector $a \in \mathbb{R}^{n+2}_1$ with the same time orientation as N.

Remark 5.6. In particular, if H_k and H_{k+1} are constant, $0 \le k \le n-2$, then M^n is totally umbilical when k = 0, or additionally if $H_{k+1}^2 + H_k^2 H_{k+2}^2 \ne 0$ when $1 \le k \le n-2$. See also [3].

THEOREM 5.7. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space with $H_1 \ge 0, ..., H_n \ge 0$, $a \in \mathbb{R}_1^{n+2}$ any unit time-like vector with the same time orientation as N, and $0 \le i < j \le n-1$, $j \ge i+2$, then

$$\int_{M^n} \left\langle \binom{n-1}{j} T_i \nabla H_j - \binom{n-1}{i} T_j \nabla H_i, a \right\rangle \ge 0.$$
(5.18)

Moreover, if $\sum_{k=n-j+1}^{n} H_k^2 \neq 0$, then the equality holds if and only if M^n is totally umbilical.

Proof. For any unit time-like vector $a \in \mathbb{R}^{n+2}_1$ with the same time orientation as N, we have $\langle N, a \rangle \leq -1$. Thus by Theorems 5.3 and 3.7, we can deduce that

$$\int_{M^n} \left\langle \binom{n-1}{j} T_i \nabla H_j - \binom{n-1}{i} T_j \nabla H_i, a \right\rangle \ge 0,$$
(5.19)

and when $\sum_{k=n-j+1}^{n} H_k^2 \neq 0$, the equality holds if and only if M^n is totally umbilical. \Box

COROLLARY 5.8. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space with $H_1 \ge 0, \dots, H_n \ge 0$ and constant $\sum_{i=1}^{k-1} a_i H_i + H_k$, $a_i \ge 0$, $2 \le k \le n-1$. If $\sum_{i=n-k+1}^{n} H_i^2 \ne 0$, then M^n is totally umbilical.

Proof. Fix a unit time-like vector $a \in \mathbb{R}^{n+2}_1$ with the same time orientation as *N*. By Theorems 5.4 and 5.7, we have

$$\int_{M^n} \langle \nabla H_i, a \rangle \ge 0, \quad i = 1, \dots, k.$$
(5.20)

Since

$$0 = \int_{M^n} \left\langle \nabla \left(\sum_{i=1}^{k-1} a_i H_i + H_k \right), a \right\rangle = \sum_{i=1}^{k-1} a_i \int_{M^n} \left\langle \nabla H_i, a \right\rangle + \int_{M^n} \left\langle \nabla H_k, a \right\rangle \ge 0, \quad (5.21)$$

we have

$$\int_{M^n} \langle \nabla H_k, a \rangle = 0. \tag{5.22}$$

Thus, M^n is totally umbilical by Theorem 5.7.

THEOREM 5.9. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space with $H_{k+1} > 0$, $a \in \mathbb{R}_1^{n+2}$ any unit time-like vector with the same time orientation as N, and $0 \le i < j \le k \le n-1$, $j \ge i+2$. If there exists a point of M^n , where H_1, \ldots, H_k are positive, then

$$\int_{M^n} \left\langle \binom{n-1}{j} T_i \nabla H_j - \binom{n-1}{i} T_j \nabla H_i, a \right\rangle \ge 0,$$
(5.23)

with equality if and only if M^n is totally umbilical.

Proof. For any unit time-like vector $a \in \mathbb{R}^{n+2}_1$ with the same time orientation as N, we have $\langle N, a \rangle \leq -1$. Thus by Theorems 5.3, 3.6, and 3.8, we can deduce that

$$\int_{M^n} \left\langle \binom{n-1}{j} T_i \nabla H_j - \binom{n-1}{i} T_j \nabla H_i, a \right\rangle \ge 0,$$
(5.24)

and the equality holds if and only if M^n is totally umbilical.

Let $a \in \mathbb{R}_1^{n+2}$ be a unit time-like vector. The intersection of $S_1^{n+1}(c) \subset \mathbb{R}_1^{n+2}$ and the space-like hyperplane $\{x \in \mathbb{R}_1^{n+2} \mid \langle x, a \rangle = 0\}$ defines an *n*-sphere which is a totally geodesic hypersurface in $S_1^{n+1}(c)$. We will refer to that sphere as the equator of $S_1^{n+1}(c)$ determined by *a*. This equator divides the de Sitter space into two connected components; the future which is given by

$$\{x \in \mathbb{R}^{n+2}_1 \mid \langle x, a \rangle < 0\},\tag{5.25}$$

 \square

and the past given by

$$\{x \in \mathbb{R}^{n+2} \mid \langle x, a \rangle > 0\}.$$
(5.26)

Following [3], we can easily get the following corollary.

COROLLARY 5.10. Let $\phi: M^n \to S_1^{n+1}(c)$, $n \ge 2$, be a compact space-like hypersurface in de Sitter space and $2 \le k \le n-1$. If M^n is contained in the chronological future (or past) relative to the equator of $S_1^{n+1}(c)$ determined by a unit time-like vector $a \in \mathbb{R}_1^{n+2}$ with the same time orientation as N and $H_{k+1} > 0$ (or $(-1)^{k+1}H_{k+1} > 0$), then

$$\int_{M^n} \langle \nabla H_i, a \rangle \ge 0 \quad \left(or \, (-1)^{i+1} \int_{M^n} \langle \nabla H_i, a \rangle \ge 0 \right), \quad 2 \le i \le k, \tag{5.27}$$

with each equality if and only if M^n is totally umbilical.

Proof. First we prove the future case. By Theorem 5.9, it is sufficient to prove that there exists a point of M^n , where all $H_i > 0$. Since M^n is contained in the chronological future relative to the equator determined by a and M^n is compact, there exists a point $x_0 \in M^n$ such that

$$\max_{x \in M^n} \langle \phi(x), a \rangle = \langle \phi(x_0), a \rangle < 0.$$
(5.28)

Thus by maximum principle, we have

$$-c\langle\phi(x_0),a\rangle + \lambda_i\langle N(x_0),a\rangle = -c\langle e_i,e_i\rangle\langle\phi(x_0),a\rangle - \langle \mathcal{A}e_i,e_i\rangle\langle N(x_0),a\rangle$$
$$= \nabla^2\langle\phi,a\rangle\langle e_i,e_i\rangle \le 0.$$
(5.29)

Since $a \in \mathbb{R}^{n+2}_1$ is a unit time-like vector with the same time orientation as N, we have $\langle N, a \rangle \leq -1$. So

$$\lambda_i \ge c \frac{\langle \phi(x_0), a \rangle}{\langle N(x_0), a \rangle} > 0, \quad i = 1, \dots, n.$$
(5.30)

Thus all $H_i > 0$. For the past case, we only need to replace *N* and *a* by -N and -a, respectively, and the proof for the future case applies. This completes the proof.

References

- K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), no. 1, 13–19.
- [2] J. A. Aledo and L. J. Alías, On the volume and the Gauss map image of spacelike hypersurfaces in de Sitter space, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1145–1151.
- [3] J. A. Aledo, L. J. Alías, and A. Romero, Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature, J. Geom. Phys. 31 (1999), no. 2-3, 195–208.
- [4] H.-D. Cao, Y. Shen, and S. Zhu, A Bernstein theorem for complete spacelike constant mean curvature hypersurfaces in Minkowski space, Calc. Var. Partial Differential Equations 7 (1998), no. 2, 141–157.

- Q.-M. Cheng and S. Ishikawa, Spacelike hypersurfaces with constant scalar curvature, Manuscripta Math. 95 (1998), no. 4, 499–505.
- S. Y. Cheng and S. T. Yau, *Hypersurfaces with constant scalar curvature*, Math. Ann. 225 (1977), no. 3, 195–204.
- [7] A. J. Goddard, Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 3, 489–495.
- [8] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.
- [9] S.-E. Koh, A characterization of round spheres, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3657– 3660.
- [10] _____, Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 42 (2000), no. 1, 91–95.
- [11] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), no. 4, 909–917.
- [12] S. Montiel and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, Differential Geometry (B. Lawson, ed.), Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Scientific and Technical, Harlow, 1991, pp. 279–296.
- B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, vol. 103, Academic Press, New York, 1983.
- [14] J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in de Sitter space, Indiana Univ. Math. J. 36 (1987), no. 2, 349–359.
- [15] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465–477.
- [16] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamericana 3 (1987), no. 3-4, 447–453.
- [17] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), no. 2, 211–239.

Jinchi Lv: Department of Mathematics, Princeton University, Princeton, NJ 08544-1000, USA *E-mail address:* jlv@math.princeton.edu