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The scattering of SH-waves by a Griffith crack in an infinitely long elastic strip situated
at an asymmetric position has been analyzed. Applying Fourier transform, the mixed
boundary value problem has been reduced to the solution of dual integral equations
which finally has been reduced to the solution of a Fredholm integral equation of sec-
ond kind. The numerical values of stress intensity factor, crack opening displacement,
and scattered field outside the crack have been illustrated graphically to show the effect
of asymmetry of the crack position.

1. Introduction

Cracks or inclusions are present essentially in most of the structural materials, either as
natural defects or as a result of fabrication processes. The diffraction of elastic waves be-
comes more practical when boundaries are present in the medium. Great attention has
been given to the study of diffraction of elastic waves by cracks situated at asymmetric po-
sition . Loeber and Sih [5] and Mal [6] have studied the problem of diffraction of elastic
waves by a Griffith crack in an infinite medium. The problem of finite crack at the inter-
face of two elastic half-spaces has been discussed by Srivastava et al. [11] and Boström [2].
Finite crack perpendicular to the surface of the infinitely long elastic strip has been stud-
ied by Chen [3] and by Srivastava et al. [10]. Shindo et al. [9] considered the problem of
impact response of a finite crack in an orthotropic strip. Crack in inhomogeneous elastic
strip has been analyzed by Sarkar et al. [8]. Matysiak and Pauk [7] studied edge crack in
an elastic layer resting Winkler foundation. Recently, Birinci and Erdol [1] analyzed the
problem of a layered composite containing a crack in its lower loaded-by-rigid stamp.

In our note, we have treated the diffraction of SH-waves by a crack situated at asym-
metric position in an infinitely long elastic strip which has not been considered yet. This
type of situation arises in almost all cases of fabrication processes in construction tech-
nology. Applying the Fourier transform, the mixed boundary value problem has been
converted to the solution of dual integral equations. The dual integral equations have
been finally reduced to a Fredholm integral equation of second kind by applying Abel’s
transform. Expressions for the stress intensity factor and crack opening displacement
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Figure 2.1. Geometry of the crack.

have been plotted to show the asymmetry of the crack position. Also stress (scattered
field) outside the crack has been calculated and shown by three-dimensional graph.

2. Formulation

Consider the boundary value problem of interaction of SH-waves by Griffith crack sit-
uated at the asymmetric position in an infinitely long elastic strip −d1 ≤ x1 ≤ d2,−∞ <
y1 <∞. The crack is located in the region −a < x1 < a, −∞ < z1 <∞, y1 = 0. Normalizing
all the lengths with respect to a and putting

x1

a
= x,

y1

a
= y,

z1

a
= z,

d1

a
= c,

d2

a
= b, (2.1)

the location of the crack becomes −1 ≤ x ≤ 1, −∞ < z <∞, y = 0 (Figure 2.1) referring
to a Cartesian coordinate system (x, y,z). Let a plane harmonic SH-wave originating at
y =−∞ impinge on crack normally to the x-axis. The only nonvanishing z-component
of displacement which is independent of z is w(x, y,z)=W(x, y)e−iωt. Now our problem
reduces to the solution of the equation

∂2W

∂x2
+
∂2W

∂y2
+ k2

2W = 0, (2.2)

where

k2 = aω

c2
(2.3)
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is subject to the boundary conditions

τyz(x,0)= τ0e
−iωt, |x| < 1, (2.4)

W(x,0)= 0, −c ≤ x ≤−1, 1≤ x ≤ b, (2.5)

τxz(−c, y)= 0, |y| <∞, (2.6)

τxz(b, y)= 0, |y| <∞. (2.7)

Henceforth, the time factor e−iwt which is common to all field variables would be omit-
ted in the sequal.

The nonvanishing stresses are

τyz = µ
∂W

∂y
, (2.8)

τxz = µ
∂W

∂x
. (2.9)

The solution of (2.2) can be taken as

W(x, y)=
∫∞
−∞

A(ξ)e−αyeiξxdξ

+
∫∞

0

[
B(ζ)eβx +C(ζ)e−βx

]
sin(ζ y)dζ , y > 0,

(2.10)

where

α=
√
ξ2− k2

2, β =
√
ζ2− k2

2 . (2.11)

Therefore the expressions of stresses are

τyz(x, y)=−µ
∫∞
−∞

αA(ξ)e−αyeiξxdξ

+µ
∫∞

0
ζ
[
B(ζ)eβx +C(ζ)e−βx

]
cos(ζ y)dζ ,

(2.12)

τxz(x, y)= iµ
∫∞
−∞

ξA(ξ)e−αyeiξxdξ

+µ
∫∞

0
β
[
B(ζ)eβx −C(ζ)e−βx

]
sin(ζ y)dζ.

(2.13)
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From the boundary conditions (2.6) and (2.7), B(ζ) and C(ζ) can be found to be

B(ζ)= 2iζ
πβ
(
e2bβ− e−2cβ

)
[
e−cβ

∫∞
−∞

ξA(ζ)e−icξ

α2 + ζ2
dξ − ebβ

∫∞
−∞

ξA(ζ)eibξ

α2 + ζ2
dξ

]
,

C(ζ)= 2iζ
πβ
(
e2bβ− e−2cβ

)
[
ecβ
∫∞
−∞

ξA(ζ)e−icξ

α2 + ζ2
dξ − e−bβ

∫∞
−∞

ξA(ζ)eibξ

α2 + ζ2
dξ

]
.

(2.14)

Now, from boundary conditions (2.4) and (2.5), we obtain the following dual integral
equations for the determination of the unknown function A(ζ):

∫∞
−∞

αA(ξ)eiξxdξ = p(x), |x| < 1, (2.15)

∫∞
−∞

A(ξ)eiξxdξ = 0, −c ≤ x ≤−1, 1≤ x ≤ b, (2.16)

where

p(x)= τ0

µ
+
∫∞

0
ζ
[
B(ζ)eβx +C(ζ)e−βx

]
dζ. (2.17)

3. Method of solution

In order to reduce the dual integral equations (2.15) and (2.16) to a single Fredholm
integral equation, we assume that

A(ξ)= τ0

2µ

∫ 1

0
tg(t)J0(ξt)dt (3.1)

so that (2.16) is automatically satisfied.
Now, (2.15) can be written as

∫ 1

0
ξ
[
1 +H(ξ)

]
A(ξ)cos(ξx)dξ = p(x)

2
, |x| < 1, (3.2)

where

H(ξ)=
(
α

ξ
− 1
)
. (3.3)

Substituting the value of B(ζ) and C(ζ) from (2.14) and with the help of (3.1), (3.2) can
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be converted to the following Fredholm integral equation of second kind:

g(t) +
∫ 1

0
ug(u)L(u, t)du= 1, (3.4)

where

L(u, t)= L1(u, t)−L2(u, t)−L3(u, t),

L1(u, t)=
∫∞

0
ξH(ξ)J0(ξu)J0(ξt)dξ,

L2(u, t)= 1
2

∫∞
0

ζ2I0(βu)
(
1 + e−2cβ

)
β
(
e2bβ− e−2cβ

) [
I0(βt) +L0(βt)

]
dζ ,

L3(u, t)= 1
2

∫∞
0

ζ2I0(βu)
(
1 + e−2bβ

)
β
(
e2cβ− e−2bβ

) [
I0(βt)−L0(βt)

]
dζ.

(3.5)

Using contour integration technique [11], the integral L1(u, t) can be converted to the
following finite integral:

L1 =−ik2
2

∫ 1

0

√
1−η2J0

(
k2ηt

)
H(1)

0

(
k2ηu

)
dη, u > t,

=−ik2
2

∫ 1

0

√
1−η2J0

(
k2ηu

)
H(1)

0

(
k2ηt

)
dη, u < t.

(3.6)

Now, putting b = c = h, we can find the following result for Griffith crack in a symmetric
position:

L(u, t)=−ik2
2

∫ 1

0

√
1−η2J0

(
k2ηt

)
H(1)

0

(
k2ηu

)
dη

+
∫∞

0

ζ2I0(βu)I0(βt)e−βh

β sinh(βh)
dζ.

(3.7)

4. Quantities of physical interest

The shear stress τyz(x, y) in the plane z = 0 in the neighborhood of the crack can be found
from (2.12) and is given by

τyz(x,0)=−µ
∫∞
∞
αA(ξ)eiξxdξ +µ

∫∞
0
ζ
[
B(ζ)eβx +C(ζ)e−βx

]
dζ. (4.1)

Substituting the values of B(ζ) and C(ζ) from (2.14) and using (3.1), the expression for
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the stress can be presented as

τyz(x,0)= τ0x√
x2− 1

g(1) +O(1), |x| > 1. (4.2)

Defining the stress intensity factor K by

K = lim
x→1+

∣∣∣∣∣
√
x− 1τyz(x,0)

τ0

∣∣∣∣∣, (4.3)

we obtain

K = 1√
2
g(1). (4.4)

Now, crack opening displacement

∆W(x,0)=W(x,0+)−W(x,0−) (4.5)

can be obtained from (2.10) as

∆W(x,0)= 2
∫∞
−∞

A(ξ)eiξxdξ, |x| < 1, (4.6)

which on substitution of the value of A(ξ) from (3.1) takes the form

∆W(x,0)= 2τ0a

µ

∫ 1

x

tg(t)√
t2− x2

dt, |x| < 1. (4.7)

Scattered field τyz(x, y) for x > 1, z > 0 is calculated from (2.12), (2.14), and (3.1) and is
represented by the expression

τyz(x, y)=−τ0

∫∞
0

∫ 1

0
αtg(t)J0(ξt)e−αy cos(ξx)dξ dt

+ τ0

∫∞
0

∫ 1

0

ζ2
(
2e−2mβ + e−2bβ + e−2cβ

)
cos(ζ y)eβx

β
(
1− e−2mβ

) I0(tβ)tg(t)dζ dt,
(4.8)

where m= b+ c.
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Figure 5.1. Dynamic SIF versus dimensionless frequency k2.

5. Numerical results and discussion

The method of Fox and Goodwin [4] has been used to solve the integral equation (3.4)
numerically for different values of dimensionless frequency k2 and b, c which indicate
the asymmetry in position of the crack. The integral in (3.4) has been represented by a
quadrature formula involving values of the desired function g(t) at pivotal points inside
the specified range of integration, and then converted to a set of simultaneous linear
algebraic equations. The solution of linear algebraic equations gives a first approximation
to the pivotal values of g(t), which has been improved by the use of difference-correction
technique.

After solving the integral equation (3.4) numerically, the stress intensity factor (SIF) K
and crack opening displacement (COD) µ∆W(x,0)/τ0a have been calculated numerically
and plotted separately against k2 and dimensionless distance x (0 < x < 1), respectively,
for different values of b and c to show the effect of positional symmetry of the crack.

In Figures 5.1 and 5.2, SIF(K) is plotted against k2 (0.1≤ k2 ≤ 1). In Figure 5.1, the ef-
fect of positional asymmetry of the crack is shown by varying one boundary b(= 2.5,3.5,
4.5) while the other boundary c(= 2) is kept fixed and in Figure 5.2, same effect has been
shown by varying c(= 1.5,2.5,3.5) with b = 2. In both cases, it is observed that the SIF is
increasing initially and then slowly decreasing near k2 = 1 for less asymmetry in position
and shows wave-like nature, and finally decreasing near k2 = 1 as asymmetry in position
increases.

In Figures 5.3 and 5.4, COD is plotted against x (0 ≤ x ≤ 1) for different values of b,
c, and k2. In both cases, it is clear that COD increases as k2 (= 0.5,1,1.5) increases and
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Figure 5.2. Dynamic SIF versus dimensionless frequency k2.
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Figure 5.3. Crack opening displacement versus dimensionless distance; b = 2,c = 4.

as x increases, it decreases and becomes zero at x = 1. The maximum values of COD are
at x = 0. To calculate dimensionless scattered field τyz(x, y)/τ0 outside the crack, double
integrals in the expression (4.8) are evaluated for b = 4, c = 3, k2 = 4.0 and plotted against
different values of x and y (Figure 5.5). From Figure 5.5, it is seen that scattered field is
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Figure 5.4. Crack opening displacement versus dimensionless distance; b = 4,c = 2.
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Figure 5.5. Scattered field outside the crack (b= 4, c = 3; and k2 = 0.4).

decreasing with increases in x as well as y and near boundary, it shows wave-like nature
due to boundary effect.
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