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Using �-congruences and implications, Weaver (1993) introduced the concepts of pre-
variety and quasivariety of first-order structures as generalizations of the corresponding
concepts for algebras. The notion of functional completeness on algebras has been de-
fined and characterized by Burris and Sankappanavar (1981), Kaarli and Pixley (2001),
Pixley (1996), and Quackenbush (1981). We study the notion of functional completeness
with respect to �-congruences. We extend some results on functionally complete alge-
bras to first-order structures A = (A;FA;RA) and find conditions for these structures to
have a compatible Pixley function which is interpolated by term functions on suitable
subsets of the base set A.

1. Introduction

Functional completeness on algebras has been studied in [2, 3, 4], and some results are
given in [1]. Some basic notions in this field are listed in the definition below.

Definition 1.1. Let �= (A;F�) be an algebra and let f : A3 → A be a function.
(i) f is called a majority function if for all a,b ∈A, f (a,a,b)= f (b,a,a)= f (a,b,a)=

a.
(ii) f is called a Pixley function if for all a,b ∈A, f (a,b,b)= f (a,b,a)= f (b,b,a)= a.

(iii) The ternary function d : A3 → A defined by d(a,a,c)= c and d(a,b,c)= a if a �= b
is called the discriminator function on A.

Moreover, if � is a finite nontrivial algebra, then � is called
(iv) primal if every n-ary function on A, n≥ 1, is a term function of �;
(v) quasiprimal if the discriminator function on A is a term function of �;

(vi) functionally complete if every n-ary function on A is a polynomial function of �.

Our aim here is to formulate and characterize a notion of functionally complete first-
order structure A= (A;FA;RA), which takes care (in some sense) of the relations in RA.

Throughout, A= (A;FA;RA) is a nontrivial first-order structure. We denote by Con(A)
the set of congruences of A.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:14 (2005) 2207–2215
DOI: 10.1155/IJMMS.2005.2207

http://dx.doi.org/10.1155/S0161171205409400


2208 A notion of functional completeness for first-order structure

Definition 1.2 [7]. An element θ ∈ Con(A) is called a �-congruence if for any m-ary r in
R and any pairs 〈ai,bi〉 ∈ θ for 1≤ i≤m, 〈a1, . . . ,am〉 ∈ rA if and only if 〈b1, . . . ,bm〉 ∈ rA.

Con�(A) will denote the set of �-congruences of A; it is easy to see that Con�(A)
is a sublattice of Con(A); in fact Con�(A) is a complete lattice, and its largest element
denoted by 1A is generally different from A2 =∇A.

Let	A be the smallest congruence of A; when	A � 1A �∇A, A is not simple, and the
discriminator function d on A is not a term function of A. However, d may be interpolated
by term functions on some parts of A.

For each a in A, the 1A class of a will be denoted by a.

Definition 1.3 [6]. Let A be a structure, and let f : An→ A, n≥ 1, be an n-ary function.
(i) f is said to be 1A compatible if 1A is a congruence of (A; f ); that is, for any pairs

〈ai,bi〉 ∈ 1A for 1≤ i≤ n, 〈 f (a1, . . . ,an), f (b1, . . . ,bn)〉 ∈ 1A.
(ii) f is said to be termal on classes if for each a∈ A, there is an n-ary term ta such that

f and tA
a coincide on a.

(iii) f is said to be term representable on classes if there is an n-ary term t such that f
and tA coincide on every 1A class.

(iv) Let A be finite; then A is said to be�-primal if every 1A compatible n-ary function
on A is term representable on classes.

(v) Let A be finite; then A is said to be�-quasi-primal if the discriminator function on
A is term representable on classes.

We note that a unary function f which is term representable on classes is a term func-
tion.

For any elements a,b ∈ A, let θ(a,b) be the principal congruence on A generated by
〈a,b〉; if a,b ∈An, let Cong(a,b) :=∨1≤i≤n θ(a(i),b(i)).

For any a1, . . . ,am ∈⋃a∈A an, let ai := 〈a1(i), . . . ,am(i)〉 for 1≤ i≤ n; then B(a1, . . . ,an)
:= {x ∈Am;〈x(k),x(l)〉 ∈ Cong(ak,al) for 1≤ k, l ≤m} is a subuniverse of Am.

The next theorem characterizes�-primality.

Theorem 1.4 [6]. A finite structure A is�-primal if and only if the following properties are
satisfied.

(i) The only subuniverses of A2 are	A, 1A, and∇A.
(ii) For any nonzero natural numbers m, n, and elements a1, . . . ,am ∈⋃a∈A an, if ai :=

〈a1(i), . . . ,am(i)〉 for 1≤ i≤ n, then B(a1, . . . ,an)= Sg(a1, . . . ,an) as subuniverses of
Am.

Condition (i) in this theorem implies that A is minimal (i.e., it has no proper substruc-
ture) and rigid (i.e., idA is the only automorphism of A).

2.�-Functionally complete structure

Given a structure A = (A;FA;RA), we will make use of the structure (of different type)
AA := (A;FA ∪{ca;a ∈ A};RA) by adding a constant function with value a for each ele-
ment a of A. So terms of AA are exactly polynomials of A.
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We can rephrase Definition 1.3(ii), (iii), and (iv) in terms of polynomials and obtain
the following definition.

Definition 2.1. (i) f is said to be polynomial on classes if for each a∈ A, there is an n-ary
polynomial pa such that f and pA

a coincide on a.
(ii) f is said to be polynomially representable on classes if there is an n-ary polynomial

p such that f and pA coincide on each class a.
(iii) Let A be finite; A is said to be �-functionally complete if any n-ary 1A compatible

function on A is polynomially representable on classes.

The following results give a relationship between�-primality and�-functional com-
pleteness; the first one is a direct consequence of the definitions.

Theorem 2.2. A is�-functionally complete if and only if AA is�-primal.

Theorem 2.3. A is �-primal if and only if each subuniverse of Am, m≥ 2, contains the set
∆A(m) := {(a,a, . . . ,a) : a∈A} and A is�-functionally complete.

Proof. “If” part. Any constant function on A is a term function of A. Let C be a sub-
universe of Am, m ≥ 2. Then there is some u = 〈u1,u2, . . . ,um〉 in Am such that u ∈ C.
Let a ∈ A, the constant function with value a is representable by a term t on A. Then
〈a,a, . . . ,a〉 = 〈t(u1), . . . , t(um)〉 = tAm

(〈u1, . . . ,um〉)∈ C. So ∆A(m)⊆ C.
“only if” part. Let f be a 1A compatible n-ary function. Then f is representable by

a polynomial p(x1, . . . ,xn,ca1 , . . . ,cam) on classes. Let A={b1, . . . ,bk}; then 〈ai, . . . ,ai〉∈
Sg(〈b1, . . . ,bk〉) ⊆ Ak. There is a unary term ti such that ti(bj) = ai for 1 ≤ j ≤ k. So ti
represents cai on A.

The term q(x1, . . . ,xn)= p(x1, . . . ,xn, t1(x1), . . . , tm(x1)) represents f on classes. �
Now we introduce some important ideas on�-functional completeness.

Lemma 2.4. Let A be a �-functionally complete structure and let C be a subuniverse of 1A

which is a subdirect product of A2 such that the projection πi : C→ A is not an isomorphism
for i= 1 or i= 2. Then there is some b in A such that 〈y,b〉 ∈ C for all y ∈ b.

Proof. Suppose that π2 : C→ A is not one-to-one. Then there are 〈a1,b〉, 〈a2,b〉 ∈ C such
that a1 �= a2. Let n be a natural number such that 2n ≥ |b|. Let f : An → A be a function
which satisfies the following conditions.

(i) f (x1, . . . ,xn)= x1 if 〈xi,xj〉 /∈ 1A for some i < j.
(ii) f (an)⊆ a for each a∈ A.

(iii) f ({a1,a2}n)= b.
f is 1A compatible. Let t(x1, . . . ,xn,cu1 , . . . ,cum) be a polynomial representing f on classes.
For 1≤ i≤m, let bi ∈ A such that 〈ui,bi〉 ∈ C.

Let b′ := t(b, . . . ,b,b1, . . . ,bm); if y ∈ b, then there are d1, . . . ,dn ∈ {a1,a2} such that
y = f (d1, . . . ,dn). So y = t(d1, . . . ,dn,u1, . . . ,um); and

〈
y,b′

〉= 〈t(d1, . . . ,dn,u1, . . . ,um
)
, t
(
b, . . . ,b,b1, . . . ,bm

)〉

= tA(n+m)(〈
d1,b

〉
, . . . ,

〈
dn,b

〉
,
〈
u1,b1

〉
, . . . ,

〈
um,bm

〉)∈ C.
(2.1)

So, b′ = b and 〈y,b′〉 ∈ C for all y ∈ b. �
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Lemma 2.5. If A is �-functionally complete and minimal, then every subuniverse of 1A

either is the graph of an automorphism of A or contains	A properly.

Proof. Let C be a subuniverse of 1A. Since A is minimal, C is a subdirect product of A2.
Suppose that C is the graph of a permutation α of A.
Let f be an n-ary operation of A; then 〈a1,α(a1)〉, . . . ,〈an,α(an)〉 ∈ C implies that

〈 f (a1, . . . ,an), f (α(a1), . . . ,α(an))〉 ∈ C, thus f (α(a1), . . . ,α(an)) = α( f (a1, . . . ,an)). Also,
let r be an m-ary relation of A; since C is a subuniverse of 1A, for any elements 〈a1,
α(a1)〉, . . . ,〈am,α(am)〉∈C, (a1, . . . ,am)∈ r if and only if (α(a1), . . . ,α(am))∈ r. Therefore
α is an automorphism of A.

If C is not the graph of a permutation of A, it contains two elements 〈a1,b〉 and 〈a2,b〉
with a1 �= a2, or two elements 〈a,b1〉 and 〈a,b2〉 with b1 �= b2. Then from Lemma 2.4,
there is some b such that b×{b} ⊆ C; so 〈b,b〉 ∈ C. Since A has no proper subuniverse,
	A is contained in C. �

Theorem 2.6. If A is �-functionally complete and minimal, then there is a unary term t
such that for each 〈a,b〉 ∈ t(1A), there is an automorphism σ of A such that σ(a)= b.

Proof. Let B = {|t(A)|; t an unary term}; then B ⊆ N∗. Let n0 =min(B) and let t0 be a
unary term with |t0(A)| = n0. Let 〈a,b〉 ∈ t0(1A); then C = Sg(〈a,b〉) is a subuniverse of
1A. From Lemma 2.5, C is the graph of an automorphism of A or 	A is a proper subset
of C.

If 	A � C, then there is a unary term t1 such that t1(a)= t1(b); thus |t1t0(A)| < n0, a
contradiction. Therefore C is the graph of an automorphism σ of A, and σ(a)= b. �

Corollary 2.7. If A is �-functionally complete and minimal, and there is a unary term
t and a ∈ A such that t(A) ⊆ a; then there is a unary term t0 such that for all b,c ∈ t0(A),
there is an automorphism σ of A such that σ(b)= c.

Proof. Let B := {|t(A)|; t a unary term and t(A)⊆ a}; then the result follows by using the
same argument as in the proof of Theorem 2.6. �

3. Interpolation of Pixley functions

In this section, we examine some links between �-functional completeness and term
interpolation of 1A compatible Pixley functions.

Theorem 3.1. If A is�-functionally complete and minimal, then for each a∈ A, there is a
1A compatible Pixley function which is representable by a term on a.

Proof. Let d ∈ A be fixed, and let p be the ternary function defined by

p(a,b,c)=




a if
(
a= b = c and c ∈ {a,b}) or (a �= b = c),

c if (a= b = c and a= b
)

or
(
a∈ {b,c} and b �= c

)
,

b elsewhere.

(3.1)

p is a 1A compatible Pixley function. So p is representable by a polynomial p0(x, y,z) :=
t(x, y,z,ca1 , . . . ,cam) on classes. Let t0 be the unary term of Theorem 2.6. The subuniverse
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of A generated by e = t0(d) is A. There are m unary terms t1, . . . , tm such that a1 =
t1(e), . . . ,am = tm(e). So p0(x, y,z)= t(x, y,z, t1(e), . . . , tm(e)).

The term s(x, y,z,w) := t(x, y,z, t1(w), . . . , tm(w)) is a 4-ary term and p(x, y,z) =
s(x, y,z,e) on classes. Consider the term m(x, y,z) := s(x, y,z, t0(x)) and b,c ∈ d; then
〈t0(b),e〉 ∈ t0(1A); from Theorem 2.6 there is an automorphism σ of A such that t0(b)=
σ(e). Then |σ(b)| = |σ(b)|; so,

m(b,b,c)= s
(
b,b,c, t0(b)

)= s
(
b,b,c,σ(e)

)= σs
(
σ−1b,σ−1b,σ−1c,e

)
; (3.2)

that is

m(b,b,c)= σ p
(
σ−1b,σ−1b,σ−1c

)= σσ−1(c)= c. (3.3)

Similarly, m(b,c,b) = b and m(b,c,c) = b. So m is a ternary term which is Pixley’s on
d. �

Corollary 3.2. If A is �-functionally complete and minimal, and there is a unary term
t(x) and a∈ A such that t(A)⊆ a, then A has a 1A compatible Pixley function which is term
representable on classes.

The proof is similar to the proof of Theorem 3.1, using the unary term t0 of Corollary
2.7.

A first-order structure A is�-arithmetical if Con�(A) is arithmetical.
Let K be a class of first-order structures, and consider the following classes.

(i) H∗(K) is the class of�-quotients of structures in K .
(ii) S(K) is the class of substructures of structures in K .

(iii) P(K) is the class of products of structures in K .
(iv) A�-variety is a class of structures preserved by H∗, S, and P. So H∗SP(K) is the

�-variety generated by K .
It is proved in [7] that a �-variety � is �-arithmetical if and only if there is a ternary
term q(x, y,z) such that for any A in � and a,b ∈A, 〈a,b〉 ∈ 1A implies that qA(a,b,a)=
qA(b,b,a)= qA(a,b,b)= a.

This result says that there is a term which is Pixley’s on 1A classes for each A in �. The
remark below gives some criteria for a�-variety generated by a�-functionally complete
structure to be�-arithmetical.

Remark 3.3. Suppose that A is �-functionally complete, minimal, and there is a unary
term t and a∈A such that t(A)⊆ a.

If for each B∈H∗SP(A), the ternary term m(x, y,z) of Corollary 3.2 is a Pixley func-
tion on 1B classes, then H∗SP(A) is �-arithmetical; in particular, if 1B ⊆ (1A)I for each
non empty set I and each B⊆ AI .

Theorem 3.4. If A is �-functionally complete and minimal, and there is a unary term t
and a∈ A such that t(A)⊆ a, then A is�-quasiprimal.
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Proof. Let q : A3 → A be the function defined by

q(a,b,c)=


a if a= b= c, a �= b,

c if not.
(3.4)

q is 1A compatible. So q is representable on classes by a polynomial t(x, y,z,cb1 , . . . ,cbk ).
Let t0 be the unary term of Corollary 2.7 and e ∈ t0(A); then Sg(e)=A. There are k unary
terms t1, . . . , tk such that b1 = t1(e), . . . ,bk = tk(e). So q(x, y,z) = t(x, y,z, t1(e), . . . , tk(e))
on classes. Consider the term m′(x, y,z) := t(x, y,z, t1(t0(x)), . . . , tk(t0(x))) and a,b,c ∈ A
such that a= b= c. Then there is an automorphism σ of A such that t0(a)= σ(e).

If a �= b, then m′(a,b,c) = t(a,b,c, t1(t0(a)), . . . , tk(t0(a))), that is, m′(a,b,c) =
σq(σ−1a,σ−1b,σ−1c)= σσ−1(a)= a.

Similarly, if a= b, then m′(a,b,c)= σq(σ−1a,σ−1b,σ−1c)= σσ−1(c)= c.
So m′(x, y,z) represents the discriminator function on classes; and A is�-quasiprimal.

�

Theorem 3.5. If A is �-functionally complete, minimal, and there is a unary term t such
that |t(A)| = 1, then A is�-primal.

Proof. Using Theorem 2.3, we will show that any subuniverse of Am contains 	A(m).
Let t(A)= {a}; we have Sg(a)= A. Let C be a subuniverse of Am and u∈ C; 〈a, . . . ,a〉 =
tAm

(u)∈ C. So	A(m)= Sg(〈a, . . . ,a〉)⊆ C because A is minimal. �

4. Some examples of�-functionally complete structure

We begin with a version of a Baker-Pixley lemma (see [1, Section IV-10]) suitable for our
purpose.

Lemma 4.1. Let A be a finite first-order structure such that there is a majority function which
is term representable on classes and let f : An→ A be an n-ary function, n≥ 1.

If for each nonzero natural number m ≤ |A/1A| + 1, and any elements a1, . . . ,am in⋃
a∈A an, B = Sg(〈a1(1), . . . ,am(1)〉, . . . ,〈a1(n), . . . ,am(n)〉) is preserved by f , then there is

a term p(x1, . . . ,xn) representing f on classes.

The proof is similar to the proof of the original lemma in [1].

Example 4.2. Let Z= (Z;+,−,0;≤) be the ordered group of integers. Let θ be an equiva-
lence relation on Z; θ is a congruence if and only if there is a natural number n such that
〈a,b〉 ∈ θ if and only if a− b ∈ nZ.

Claim (i). We have 1Z =	Z.

Proof. Let θ be an equivalence relation on Z such that θ �= 	Z. Then there is some 〈a,b〉 ∈
θ such that a �= b. Thus a < b or b < a. By symmetry, we can consider only the first case;
since 〈a,b〉,〈b,a〉 ∈ θ, a ≤ b and b � a, θ is not a �-congruence. So 	Z is the only �-
congruence on Z. �

Let A := Z/2Z= {0,1} and A= (A;+,−,0;ρ), where ρ is the binary relation defined by
ρ := {〈0,0〉,〈0,1〉,〈1,1〉}; then it is easy to see that 1A =	A.
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Claim (ii). A is�-functionally complete.

Proof. Let h be an n-ary function on {0,1}, n≥ 1.
If h(0, . . . ,0) = 0 and h(1, . . . ,1) = 0, then h is representable on classes by the polyno-

mial c0.
If h(0, . . . ,0)= 0 and h(1, . . . ,1)= 1, then h is representable on classes by the first pro-

jection.
If h(0, . . . ,0) = 1 and h(1, . . . ,1) = 0, then h is representable on classes by the polyno-

mial t(x1, . . . ,xn) := x1 + c1.
If h(0, . . . ,0) = 1 and h(1, . . . ,1) = 1, then h is representable on classes by the polyno-

mial c1.
Therefore h is polynomially representable on classes. �

Since {0} is a subuniverse the A, A is not�-primal.
The function m defined on A by

m(a,b,c)=




a if a= b or a= c,

b if b = c,

c elsewhere

(4.1)

is not a polynomial function of �= (A;+,−,0). So � is not functionally complete.

Example 4.3. Consider the set A = {a,b,c} and the operations f , g on A defined as fol-
lows:

f (x, y,z,u)=




d(x, y,z) if u= a and(
(x, y,z ∈ {b,c}) or (x = a �= y) or (y = a �= x)

)
,

a if not.

(4.2)

g(a)= a, g(b)= c, and g(c)= b.
Consider the structure A = (A; f ,g,a;r), where r = {〈a,b〉,〈a,c〉,〈b,a〉,〈c,a〉}. It is

easy to see that Con(A)={	A,θ,∇A}, where θ=	A∪{〈b,c〉,〈c,b〉}. Since 〈a,a〉,〈b,a〉 ∈
∇A, 〈a,b〉 ∈ r and 〈a,a〉 /∈ r, ∇A is not a �-congruence. We can easily verify that θ is a
�-congruence; thus 1A = θ, and |A/θ| = 2.

We prove that AA is�-primal.
We have Con(AA)= Con(A); so 1AA = θ. The term f (x, y,z,ca) represents the discrim-

inator function on classes. Let h be an n-ary function on A,n≥ 1, which preserves θ; using
Lemma 4.1, we will prove that for each nonzero natural number m≤ 3, for all elements
a1, . . . ,am in

⋃
a∈A an, h preserves the subuniverse B = Sg(〈a1(1), . . . ,am(1)〉, . . . ,〈a1(n), . . . ,

am(n)〉) of (AA)m.
(i) If m= 1, then B =A (AA is minimal); so h preserves B.
(ii) If m= 2, then the following hold.
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If B is not a subset of θ, then there is 〈x, y〉 ∈ B such that 〈x, y〉 /∈ θ; since g preserves
B, we have {〈a,b〉,〈a,c〉} ⊆ B or {〈b,a〉,〈c,a〉} ⊆ B. By symmetry, we can consider only
the first case.

Since 〈b,c〉 = f (〈b,b〉,〈a,b〉,〈a,c〉,〈a,a〉) ∈ B, 〈c,b〉 = g(〈b,c〉) ∈ B, and 〈b,a〉 =
f (〈b,b〉,〈a,b〉,〈a,a〉,〈a,a〉)∈ B, so 〈c,a〉 = g(〈b,a〉)∈ B; therefore B =A2.

If 	A � B ⊆ θ, then there is 〈x, y〉 ∈ B such that x �= y; so 〈x, y〉 = 〈b,c〉 or 〈x, y〉 =
〈c,b〉. Since 〈b,c〉 ∈ B if and only if 〈c,b〉 ∈ B, we have B = θ. Therefore, B is one of the
subuniverses	A, θ, and∇A. Thus h preserves B.

(iii) If m= 3, for 1≤ i≤ 3, we denote by ‖ai‖ the set {ai(1), . . . ,ai(n)}.
If ‖a1‖ = {a}, ‖a2‖ = {a}, and ‖a3‖ = {a}, B =	A(3) and h preserves B.
If ‖a1‖={a}, ‖a2‖={a}, and ‖a3‖ = {b}, then 〈a,a,b〉 ∈ B; so 〈a,a,c〉 = g(〈a,a,b〉)∈

B, and 〈b,b,a〉 = f (〈b,b,b〉,〈a,a,b〉,〈a,a,a〉,〈a,a,a〉) ∈ B; moreover, 〈c,c,a〉 =
g(〈b,b,a〉), 〈b,b,c〉 = f (〈b,b,b〉,〈a,a,b〉,〈a,a,c〉,〈a,a,a〉), and 〈c,c,b〉 = g(〈b,b,c〉) are
in B; thus B =	A×A and h preserves B.

If ‖a1‖ = {a}, ‖a2‖ = {a}, and ‖a3‖ = {c}, then B =	A×A.
If ‖a1‖ = {a}, ‖a2‖ = {a}, and ‖a3‖ = {b,c}, then B =	A×A.
If ‖a1‖={a}, ‖a2‖={b}, and ‖a3‖={c}, then 〈a,b,c〉 ∈ B, and 〈a,c,b〉 = g(〈a,b,c〉)∈

B, 〈b,a,a〉 = f (〈b,b,b〉,〈a,b,c〉,〈a,a,a〉,〈a,a,a〉) ∈ B, and 〈c,a,a〉 = g(〈b,a,a〉) ∈ B;
〈a,b,b〉 = f (〈b,b,b〉,〈b,a,a〉,〈a,a,a〉,〈a,a,a〉)∈ B, and 〈a,c,c〉 ∈ B; 〈b,c,c〉= f (〈b,b,b〉,
〈a,b,b〉,〈a,c,c〉,〈a,a,a〉) ∈ B, and 〈c,b,b〉 ∈ B; 〈b,c,b〉 = f (〈b,b,b〉,〈a,b,c〉,〈b,c,c〉,
〈a,a,a〉) ∈ B, and 〈c,b,c〉 ∈ B; 〈b,b,c〉 = f (〈b,b,b〉,〈a,b,b〉,〈c,b,c〉,〈a,a,a〉) ∈ B, and
〈c,c,b〉 ∈ B.

Thus B = {(x, y,z)∈ A3;〈y,z〉 ∈ θ}. So h preserves B.
Let ε be a permutation of {1,2,3}; the function αε : A3 → A3 defined by αε(x1,x2,x3)=

(xε(1),xε(2),xε(3)) is an automorphism of A3.
Therefore the subuniverseB is one of the elements of the set E, where E=⋃{αε({	A(3),

	A ×A, A× θ}); ε a permutation of {1,2,3}}. Thus h preserves B. So h is term repre-
sentable on classes and AA is�-primal.

The set B := {〈a,a〉,〈a,b〉,〈a,c〉} is a subuniverse of A2; thus A is not�-primal.
We prove that D := {〈a,a,b〉,〈b,c,a〉,〈a,a,c〉,〈c,b,a〉,〈a,a,a〉} is a subuniverse of A3.
If x ∈ {〈a,a,b〉,〈a,a,c〉,〈a,a,a〉} and y, u, v are in D, then f (x, y,u,v) ∈ {〈a,a,b〉,

〈a,a,c〉,〈a,a,a〉} ⊆D.
If x, v are in {〈b,c,a〉,〈c,b,a〉} and y, u are in D, then f (x, y,u,v)∈ {〈a,a,b〉,〈a,a,c〉,

〈a,a,a〉} ⊆D.
If x = 〈b,c,a〉, y ∈ {〈a,a,b〉,〈a,a,c〉}, u∈D, and v is an element of {〈a,a,b〉,〈a,a,c〉,

〈a,a,a〉}, then f (x, y,u,v)= 〈b,c,a〉 ∈D.
If x = 〈b,c,a〉, y = 〈b,c,a〉, u ∈ {〈b,c,a〉,〈c,b,a〉}, and v ∈ {〈a,a,b〉,〈a,a,c〉,

〈a,a,a〉}, then f (x, y,u,v)∈ {〈b,c,a〉,〈c,b,a〉} ⊆D.
If x = 〈b,c,a〉, y = 〈c,b,a〉, and u,v ∈ {〈a,a,b〉,〈a,a,c〉,〈a,a,a〉t}, then f (x, y,u,v)∈

{〈a,a,b〉,〈a,a,c〉,〈a,a,a〉} ⊆D.
If x = 〈b,c,a〉, y = 〈c,b,a〉, u∈ {〈b,c,a〉,〈c,b,a〉}, and v ∈ {〈a,a,b〉,〈a,a,c〉,〈a,a,a〉},

then f (x, y,u,v)= 〈b,c,a〉 ∈D.
We can also show that if x = 〈c,b,a〉 and y,u,v ∈ D, then f (x, y,u,v)∈ D. Therefore

D is a subuniverse of A3.
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The function h : A2 → A defined by

h(x, y)=




y if x = y,

b if (x = a and y = b) or (x = c and y = a),

c elsewhere

(4.3)

is θ compatible. The subuniverses of A2 are	A, C = {〈b,c〉,〈a,a〉,〈c,b〉}, θ, {a}×A, A×
{a} and A2; so h preserves the subuniverses of A2. Since 〈b,c,c〉 = h(〈a,a,b〉,〈b,c,a〉) /∈
D, using [1, Lemma IV-10.4], we see that there is no majority term for A.

The algebra A = (A; f ,g,a) is not primal since {a} is a subuniverse of A. Con(A) =
{	A,θ,∇A}, thus A is not quasiprimal and is not functionally complete.
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