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Equivalent conditions are obtained for weak convergence of iterates of positive contrac-
tions in the L1-spaces for general von Neumann algebra and general JBW algebras, as well
as for Segal-Dixmier Lp-spaces (1≤ p <∞) affiliated to semifinite von Neumann algebras
and semifinite JBW algebras without direct summands of type I2.

1. Introduction and preliminaries

This paper is devoted to a presentation of some results concerning ergodic-type prop-
erties of weak convergence of iterates of operators acting in L1-space for general von
Neumann algebras and JBW algebras, as well as Segal-Dixmier Lp-spaces (1≤ p <∞) of
operators affiliated with semifinite von Neumann algebras and semifinite JBW algebras.

The first results in the field of noncommutative ergodic theory were obtained inde-
pendently by Sinaĭ and Ansělevič [21] and Lance [15]. Developments of the subject are
reflected in the monographs of Jajte [13] and Krengel [14] (see also [8, 9, 10, 18]).

We will use facts and the terminology from the general theory of von Neumann alge-
bras (see [5, 7, 17, 19, 22]), the general theory of Jordan and real operator algebras (see
[2, 3, 11, 16]), and the theory of noncommutative integration (see [20, 23, 24]).

Let M be a von Neumann algebra, acting on a separable Hilbert space H , M∗ is a
predual space of M, which always exists according to the Sakai theorem [19]. It is well
known that M∗ could be identified with L1-space for M.

Spaces L1 and L2 of the operators affiliated with the semifinite von Neumann algebra
M with semifinite faithful trace τ were introduced by Segal (see [20]). This result was
extended to Lp-space of operators affiliated with von Neumann algebras M, τ, and in-
tegrated with pth power by Dixmier (see [6]). For an alternative exposition of building
Lp based on Grothendieck’s idea of using rearrangements of functions, see also [24]. The
theory of Lp-spaces was extended further to the von Neumann algebras with faithful nor-
mal weight ρ. However, these spaces lack some of the properties, for example, in general,
these spaces do not intersect.

Recall some standard terminology (see [8, 9, 10, 14]).
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Definition 1.1. A linear mapping T from M∗ in itself is called a contraction if its norm is
not greater than one.

Definition 1.2. A contraction T is said to be positive if

TM∗+ ⊂M∗+. (1.1)

We will consider the two topologies on the space M∗: the weak topology, or the σ(M∗,
M) topology, and the strong topology of the M∗-space norm convergence.

Definition 1.3. A matrix (an,i), i,n= 1,2, . . . , of real numbers is called uniformly regular if

sup
n

∞∑
i=1

∣∣an,i
∣∣≤ C <∞; lim

n→∞sup
i

∣∣an,i
∣∣= 0; lim

n→∞
∑
i

an,i = 1. (1.2)

2. Main result: the case of quantum L1-spaces

2.1. The case of noncommutative L1-spaces. The following theorem is valid.

Theorem 2.1. The following conditions for a positive contraction T in the predual space of
a complex von Neumann algebras M are equivalent.

(i) The sequence {Ti}i=1,2,... converges weakly.
(ii) For each strictly increasing sequence of natural numbers {ki}i=1,2,...,

n−1
∑
i<n

Tki (2.1)

converges strongly.
(iii) For any uniformly regular matrix (an,i), the sequence {An(T)}n=1,2,...,

An(T)=
∑
i

an,iT
i, (2.2)

converges strongly.

Proof of Theorem 2.1. We first prove the following lemma.

Lemma 2.2. Let there exist a uniformly regular matrix (an,i) such that for each strictly in-
creasing sequence {ki}i=1,2,... of natural numbers,

Bn =
∑
i

an,iT
ki (2.3)

converges strongly. Then the sequence {Ti}i=1,2,... converges weakly.

Proof. Let (an,i) be a matrix with the aforementioned properties. Then the limit Bn is not
dependant upon the choice of the sequence {ki}i=1,2,.... In fact, let {ki}i=1,2,... and {li}i=1,2,...

be the sequences for which the limits Bn are different. This means that for some x ∈M∗,

∑
i

an,iT
kix −→ x1,

∑
i

an,iT
lix −→ x2, (2.4)
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for n→∞. For a matrix (an,i), we build increasing sequences {i j} j=1,2,... and {nj} j=1,2,...,
such that

lim
j→∞

( ∑
i<i j−1

∣∣anj ,i
∣∣+

∑
i>i j

∣∣anj ,i
∣∣)= 0. (2.5)

Let

mi = ki for i∈ [i2 j−1, i2 j
)
, mi = li for i∈ [i2 j , i2 j+1

)
, j = 1,2, . . . . (2.6)

Then

lim
j

∥∥∥∥∑
i

an2 j+1,iT
mix− x1

∥∥∥∥= 0; lim
j

∥∥∥∥∑
i

an2 j ,iT
mix− x2

∥∥∥∥= 0, (2.7)

which contradict (2.3), and therefore x1 = x2. Let now y ∈M such that

(
Tnx− x1, y

)−→ 0, (2.8)

when n→∞. We choose a subsequence {ki} such that

(
Tkix− x1, y

)−→ γ �= 0, (2.9)

where γ is a real number. Then, from the uniform regularity of the matrix (an,i), it follows
that

lim
n

(∑
i

an,iT
kix− x1, y

)
= γ, (2.10)

which contradicts the choice of the matrix (an,i). �

The implication (iii)⇒(ii) is trivial because the matrix (an,i),

an,i = 1
n

∑
i<n

δj,ki , (2.11)

is uniformly regular. Applying Lemma 2.2 to the matrix

an,i = 1
n

, (2.12)

i≤ n and an,i = 0 for i > n, we get the implication (ii)⇒(i).
To prove the implication (i)⇒(iii), we would need the following lemma.

Lemma 2.3. Let Q be a contraction in the Hilbert space H . Then the weak convergence of
Qnx in H , where x ∈H , implies the strong convergence of

∑
i

an,iQ
ix (2.13)

for any uniformly regular matrix (an,i).
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Proof. If the weak limit Qnx exists and is equal to x1, then

Qx1 =Q
(

lim
n→∞Q

nx
)
= x1, (2.14)

where the limit is considered in the weak topology, that is, x1 is Q-invariant. Replacing x
on x− x1 (if necessary), we may suppose that Qnx converges weakly to 0, and hence

(
Qnx,x

)−→ 0. (2.15)

We are going to show that

∑
n

ai,nQ
nx

‖·‖−−→ 0, (2.16)

where (ai,n) is uniformly regular matrix. One can see that

∥∥∥∥∥
∑
i

aN ,iQ
ix

∥∥∥∥∥
2

≤
∑
i

∑
j

aN ,iaN , j
(
Qix,Qjx

)≤∑
i

∑
j

∣∣aN ,iaN , j
(
Qix,Qjx

)∣∣. (2.17)

We fix ε > 0. Because Q is a contraction, the limit ‖Qnx‖ does exist. Now, we can find
K > 0, such that for k > K and j ≥ 0,

∥∥Qkx
∥∥−∥∥Qk+ jx

∥∥≤ ε2,
∣∣(Qkx,x

)∣∣≤ ε. (2.18)

Then,

∣∣(Qkx,x
)− (Qk+ jx,Qjx

)∣∣
= ∣∣(Qkx,x

)− (Q∗ jQk+ jx,x
)∣∣

≤ ∥∥Qkx−Q∗ jQk+ jx
∥∥ · ‖x‖ = (∥∥Qkx−Q∗ jQk+ j

∥∥2)1/2 · ‖x‖
= (∥∥Qkx

∥∥2− 2
∥∥Qk+ jx

∥∥2
+
∥∥Q∗ jQk+ jx

∥∥2)1/2 · ‖x‖
≤ (∥∥Qkx

∥∥2−∥∥Qk+ jx
∥∥2) · ‖x‖ ≤ ε · ‖x‖,

(2.19)

and therefore

∣∣(Qk+ jx,Qjx
)∣∣≤ ε · (1 +‖x‖) (2.20)

for all k > K and j ≥ 0, or for |i− j| ≥ k, the inequality

∣∣(Qix,Qjx
)∣∣≤ ε · (1 +‖x‖) (2.21)

is valid. We will fix η > 0, and let N be a natural number such that

max
i

∣∣an,i
∣∣ < η, (2.22)
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for n≥N . Then the expression (1) for n≥N could be estimated in the following way:
∑
i

∑
j

∣∣aN ,iaN , j
(
Qix,Qjx

)∣∣
=

∑
|i− j|≤k

∣∣an,ian, j
(
Qix,Qjx

)∣∣+
∑

|i− j|>k

∣∣an,ian, j
(
Qix,Qjx

)∣∣
≤
∑
i

∣∣an,i
∣∣ ·η · ‖x‖2 · (2k− 1) +

∑
i

∑
j

∣∣an,ian, j
∣∣ · ε · (1 +‖x‖)

≤ C ·η · ‖x‖2 · (2k− 1) +C2 · ε · (1 +‖x‖).

(2.23)

From the arbitrarity of the values of ε and η, it follows that the strong convergence is
present and the lemma is proven. �

We prove the implication (i)⇒(iii). Let x ∈M∗+ and the sequence {Tix}i=1,2,... con-
verges weakly. Without the loss of generality, we can consider ‖x‖ ≤ 1, and let

x = lim
n→∞T

nx, (2.24)

where the limit is understood in the weak sense. We consider

y =
∞∑
n=0

2−nTnx. (2.25)

The series that defines y is convergent in the norm of the space M∗. From the positivity
of x and the properties of the operator T , it follows that

Ty ≤ 2y, (2.26)

and, therefore, for all k = 1,2, . . . ,

s
(
Tk y

)≤ s(y), (2.27)

where we denote by s(z) the support of the normal functional z.

Lemma 2.4. Let u∈M∗+ and s(u)≤ s(y). Then s(u)≤ s(x), where

u= lim
n→∞T

nu. (2.28)

Proof. In fact, We fix ε > 0. From the density of the set

Ly =
{
w ∈M∗+,w ≤ λy, for some λ > 0

}
(2.29)

in the set

S= {w ∈M∗+,s(w)≤ s(y)
}

(2.30)

in the norm of the space M∗, it follows that there are λ > 0 and w ∈ Ly such that

‖w−u‖ ≤ ε, w ≤ λy. (2.31)
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Let

w = lim
n→∞T

nw. (2.32)

Then

w
(

1−s(x)
)= lim

n→∞
(
Tn(w)

)
(1−s(x)

)
≤ λ · lim

n→∞
(
Tny

)
(1−s(x)

)

≤ λ · lim
n→∞

( ∞∑
k=0

2−k · (Tn+kx
)(

1−s(x)
))

= λ ·
∞∑
k=0

2−k lim
n→∞

(
Tn+kx

)(
1−s(x)

)= 0.

(2.33)

Because the operator T does not increase the norm of the functionals from M∗, we get
that

u
(

1−s(x)
)= lim

n→∞
(
Tnu

)(
1−s(x)

)≤ lim
n→∞

(
Tnw

)(
1−s(x)

)
+ lim

n→∞
∥∥Tn(w−u)

∥∥≤ ε.

(2.34)

The needed inequality follows from the arbitrarity of ε. �

We introduce the following notion. For µ∈M∗, we will denote by µ ·E, where E is a
projection from the algebra M, the functional

(µ ·E)(A)= µ(EAE), (2.35)

where A∈M.
We fix ε > 0. We will find a number N , such that

(
Tnx

)(
1−s(x)

)
< ε2 (2.36)

for n > N .
Then,
∥∥TNx · s(x)−TNx

∥∥
= sup

A∈M‖A‖∞≤1

∣∣(TNx
)(

(1−s(x)
)
A(1−s(x)

))

+
(
TNx

)((
s(x)

)
A
(

1−s(x)
))

+
(
TNx

)((
1−s(x)

)
A
(
s(x)

))∣∣
≤ ε · (ε+ 2‖x‖1/2),

(2.37)

because

∣∣µ(AB)
∣∣2 ≤ µ

(
A∗A

) ·µ(B∗B), (2.38)

where µ∈M∗+ and A,B ∈M.
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Let w ∈ Ly be such that

w ≤ λx (2.39)

for some λ > 0 and

∥∥TNx · s(x)−w
∥∥≤ ε. (2.40)

Then, for n > N , the following is valid:

∥∥Tnx−Tn−Nw
∥∥≤ ∥∥Tn−N(TNx−TNx · s(x)

)∥∥+
∥∥Tn−N(TNx · s(x)−w

)∥∥≤ 4 · ε.
(2.41)

By taking the weak limit in the inequality (2.37) and because the unit ball of M∗ is
closed weakly, we will get

‖x−w‖ ≤ 4 · ε, (2.42)

where

w = lim
n→∞T

nw. (2.43)

We now consider the algebra Ms(x). The functional x is faithful on the algebra Ms(x). We
will consider the representation πx of the algebra Ms(x) constructed using the functional
x [7]. Because the functional x is faithful, we can conclude that the representation πx is
faithful on the algebra Ms(x), and therefore πx is an isomorphism of the algebra Ms(x) and
some algebra A. The algebra A is a von Neumann algebra, and its preconjugate space A∗
is isomorphic to the space M∗ · s(x) ([19]). We note now that

TM∗ · s(x)⊂M∗ · s(x). (2.44)

In fact,

TLy ⊂ Ly , (2.45)

and therefore, by taking the norm closure, we get

TS⊂ S; (2.46)

by taking now the linear span, we get

TM∗ · s(x)⊂M∗ · s(x). (2.47)

We denote by T the isomorphic image of the operator T , acting on the space A∗. Let

u∈A∗+, u≤ λx, (2.48)
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for some λ > 0. Then there exists the operator B ∈ A′, where A′ is a commutant of A,
such that

(ABΩ,Ω)= u(A) (2.49)

for all A∈A. Note, that from Lemma 2.3,

(
Tu
)
(A)= u

((
T
)∗
A
)= (((T)∗A)BΩ,Ω

)= (A((T∗)′B)Ω,Ω
)
. (2.50)

Also, from

TA∗+ ⊂A∗+, ‖Tu‖ ≤ ‖u‖, T x = x, (2.51)

it follows that

(
T
)∗

A+;
(
T
∗)

1≤ 1,
∥∥(T)∗A∥∥∞ ≤ ∥∥A∥∥∞, (2.52)

for all A∈A. Based on the lemma, we now conclude that

∥∥(T∗B)∥∥∞ ≤ ‖B‖∞; T
∗′

A′+ ⊂A′+; T
∗′

1≤ 1, (2.53)

for all B ∈A′.
The space A′sa is a pre-Hilbert space of the selfadjoint operators from A′ with the scalar

product

(B,C)x = (CBΩ,Ω), (2.54)

and using the Kadison inequality [5], we have

((
T
∗′
B
)(
T
∗′
B
)
Ω,Ω

)≤ (T∗′(B2)Ω,Ω
)≤ (BΩ,BΩ), (2.55)

that is, the operator T
∗′

is a contraction in the pre-Hilbert space (A′sa, (·,·)x).
We will identify M∗ · s(x) and A∗. Because w ∈ L, that is,

w ≤ λx (2.56)

for some λ > 0, then

w ≤ λx (2.57)

as well. Let

w(A)= (BAΩ,Ω), w(A)= (BAΩ,Ω
)
, (2.58)

for all A∈A, where B, B ∈A′.
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Let now (an,i) be a uniformly regular matrix. Using Lemma 2.3, we will find k ∈N so
that∥∥∥∥∥

∑
i

a′k,iT
iw−w

∥∥∥∥∥
= sup

A∈A‖A‖∞=1

∣∣∣∣∣
( ∞∑

i=1

a′k,i

(
T
∗′)i(

B−B
)
AΩ,Ω

)∣∣∣∣∣

≤
( ∞∑

i=1

a′k,i

(
T
∗′)i(

B−B
)
Ω,

∞∑
i=1

a′k,i

(
T
∗′)i(

B−B
)
Ω

)1/2

· sup
A∈A‖A‖∞≤1

(AΩ,AΩ)1/2

≤ (x(1)
)1/2 ·

∥∥∥∥∥
∞∑
i=1

a′k,i

(
T
∗′)i

(B−B)

∥∥∥∥∥
(·,·)x

< ε

(2.59)

for k > K , where by (a′n,i), we will denote a matrix with the elements

a′n,i =
(∑

i>N

an, j

)−1

an, j+N . (2.60)

It is easy to see that the matrix (a′n,i) will be uniformly regular as well.
Then, for a big enough k > K , we will have

∥∥∥∥∥
∑
i

ak,iT
ix− x

∥∥∥∥∥≤
∑
i≤N

∣∣ak,i
∣∣∥∥Tix− x

∥∥+
∑
i>N

∣∣ak,i
∣∣∥∥Tix−Ti−Nw

∥∥

+
∑
i>N

∣∣ak,i
∣∣
∣∣∣∣∣1−

(∑
i>N

ak,i

)−1∣∣∣∣∣
∥∥Ti−Nw

∥∥

+

∥∥∥∥∥
∞∑
j=1

ak, j+N ·
(∑

i>N

ak,i

)−1

T jw−w

∥∥∥∥∥
+

∥∥∥∥∥
(∑

i≤N
ak,i

)
·w
∥∥∥∥∥+

∣∣∣∣∣
∑
i>N

ak,i

∣∣∣∣∣‖w− x‖

≤
∑
i≤N

2 · ε

N
+
∑
i>N

∣∣ak,i
∣∣ · 4ε+

∑
i>N

∣∣ak,i
∣∣(1− (1 + ε)−1) · 2

+
∑
i≤N

2 · ε

N
+ (1 + ε) · 4ε

≤ 2ε+ (1 + ε) · 4ε+ ε · 2 · (1 + ε) + ε+ 2ε+ (1 + ε) · 4ε≤ 25ε.

(2.61)

The arbitrarity of ε proves the needed statement. The proof of the theorem is now
completed. �

2.2. The case of L1-spaces for JBW algebras. The L1-spaces for semifinite JBW algebras
were considered by [4] (see also [1, 12]), where it has been proven that they do coincide
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with predual spaces. A semifinite JBW algebra A is always represented as

A=Asp �Aex, (2.62)

where Asp is isometrically isomorphic to operator JW algebra, and Aex is isometrically
isomorphic to the space C(X ,M8

3 ) of all continuous mappings from a Hyperstonean com-
pact topological space X onto the exceptional Jordan algebra M8

3 (see [11]). In this case,
when A does not have direct summands of type I2, it is going to be a selfadjoint part of a
real von Neumann algebra R(Asp), whose complexification

R
(
Asp

)
� iR

(
Asp

)=M, (2.63)

where M is the enveloping von Neumann algebra of Asp, and the predual space of A, and
the space

A∗ =
(
Asp

)
∗�

(
Aex

)
∗, (2.64)

where (Asp)∗ is the predual space of Asp, and (Aex)∗ is the predual space of Aex (see,
e.g., [2, 11]). The main result for the summand Aex follows immediately from the result
for C(X), and the fact that the algebra M8

3 is finite dimentional. So, without the loss of
generality, we are interested in the operator case only. But in the operator case, the space
(Asp)∗ is a selfadjoint part of R∗ = (R(Asp))∗, and

M∗ = R∗� iR∗ (2.65)

(see [2, 16] for details). So, the main result for R∗ thus follows from the complex case by
restriction of scalars, and we obtain the main result for L1-spaces affiliated to semifinite
JBW algebras without direct type I2 summand.

3. Main result: the case of quantum Lp-spaces (1 < p <∞)

In the case of a noncommutative Lp-space for a semifinite von Neumann algebra, the
main result is discussed in [25].

We will discuss here the nonassociative case.
In this section, A denotes a semifinite JBW algebra without direct summands of type

I2, with a faithful normal trace τ. By Lp, we denote the space of operators affiliated to A,
and integrated with pth power (p > 1, see, e.g., [1, 2, 12]). Space Lq (here q = p/(p− 1))
is a dual as Banach space to Lp (see [1, 12]). The following theorem is valid.

Theorem 3.1. The following conditions for a positive contraction T in the Lp are equivalent.
(i) The sequence {Tix}i=1,2,... converges in σ(Lp,Lq) topology for x ∈ Lp.
(ii) For each strictly increasing sequence of natural numbers {ki}i=1,2,...,

n−1
∑
i<n

Tkix (3.1)

converges in norm of Lp for all x ∈ Lp.



Genady Ya. Grabarnik et al. 2317

(iii) For any uniformly regular matrix (an,i), the sequence {An(T)x}n=1,2,...,

An(T)x =
∑
i

an,iT
ix, (3.2)

converges in norm of Lp for all x ∈ Lp.

For the sake of completeness, we give the following definitions (see, e.g., [25]) and
sketch of the proof. Let φ be a gauge function

φ :R+ �−→R+, (3.3)

with

φ(0)= 0, lim
t→∞φ(t)=∞. (3.4)

Hahn-Banach theorem implies for strictly convex Banach spaces E with conjugate E′ that
there exists a duality map

Φ : E �−→ E′, (3.5)

associated with φ such that
〈
x,Φ(x)

〉= ‖x‖‖Φ(x)‖,
∥∥Φ(x)

∥∥= φ(x). (3.6)

Definition 3.2. Map Φ is said to satisfy property (S) uniformly if for every ε > 0, there
exists δ(ε) > 0, such that for any x, y ∈ E,

∣∣〈x,Φ(y)
〉∣∣ < δ(ε) (3.7)

implies that
∣∣〈y,Φ(x)

〉∣∣ < ε. (3.8)

Proof. From [12, Section 4], it follows that the duality map defined as

Φ(a)= s|a|p−1, (3.9)

for

a= s|a| ∈A (3.10)

(where a = s|a| is a polar decomposition of element a) satisfies the property (S) uni-
formly. Hence, the statement of the theorem follows from [25, Theorem 3.1]. �
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