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We study some qualitative behavior of solutions of some max-type difference equations
with periodic coefficients. Some new results of the periodicity character of solutions of
that type of difference equations will be established.

1. Introduction

Recently there has been a lot of interest in studying the global attractivity, the bounded-
ness character, and the periodicity nature of nonlinear difference equations. In [5, 6, 8]
some global convergence results were established which can be applied to nonlinear dif-
ference equations in proving that every solution of these equations converges to a periodic
solution (which need not necessarily be stable). The periodic nature of nonlinear differ-
ence equations of the max type has been investigated by many authors. See for example
[1, 2, 3, 4].

Our main objective in this paper is to extend the study of boundedness and periodicity
to solutions of some max-type difference equations. We deal with the following difference
equation:

xn+1 =max
{

1
xn

,
An

xn−1

}
, n= 0,1, . . . , (1.1)

where {An}∞n=0 = {. . . ,α,β,α,β, . . .} is a periodic sequence of positive numbers of period
two with β > α > 1. The case where {An}∞n=0 is a periodic sequence of positive numbers of
period three and An ∈ (0,1] was investigated in [4].

2. Invariant interval and boundedness

In this section, we show that every solution of (1.1) is bounded and persists.
The following lemmas are quite important results in their own; however these lemmas

will be used in the subsequent discussion.

Lemma 2.1. Every positive solution of (1.1) is bounded and persists.
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Proof. Let {xn}∞n=−1 be a solution of (1.1). It follows from (1.1) for an integer number
N ≥ 0 that

xn+1xn ≥ 1, xn+1xn−1 ≥ α > 1 ∀n≥N. (2.1)

Thus

min
{
xn+1xn,xn+1xn−1

}≥ 1 (2.2)

or

xn+1 min
{
xn,xn−1

}≥ 1 ∀n≥N. (2.3)

That is, there exists a positive real number m such that

xn ≥m ∀n≥N. (2.4)

Thus from (1.1), we see that

xn+1 =max
{

1
xn

,
An

xn−1

}

≤max
{

1
m

,
An

m

}
=M.

(2.5)

Hence

xn ≤M ∀n≥N. (2.6)

Thus from inequalities (2.4) and (2.6) we get

0 <m≤ xn ≤M <∞ ∀n≥N. (2.7)

Therefore every solution of (1.1) is bounded and persists. �

Lemma 2.2. Assume that {xn}∞n=−1 is a positive solution of (1.1). Suppose there exists N ≥ 0
such that

xN−1,xN ∈
[

1√
α

,β
√
α

]
for some N ≥ 0. (2.8)

Then

xn ∈
[√

α

β
,β
√
α

]
∀n≥N. (2.9)

Proof. Observe from (1.1) that

xN+1 =max
{

1
xN

,
AN

xN−1

}
≥max

{
1

β
√
α

,
α

β
√
α

}
=
√
α

β
,

xN+1 ≤max
{√

α,α
√
α
}= α

√
α < β

√
α.

(2.10)
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Then
√
α

β
≤ xN+1 < β

√
α. (2.11)

Again

xN+2 =max
{

1
xN+1

,
AN+1

xN

}
≥max

{
1

β
√
α

,
β

β
√
α

}
= 1√

α
,

xN+2 ≤max
{

β√
α

,β
√
α
}
= β

√
α.

(2.12)

Then

1√
α
≤ xN+2 ≤ β

√
α. (2.13)

Also we see from (1.1) that

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
≥max

{
1

β
√
α

,
α

α
√
α

}
= 1√

α
,

xN+3 ≤max
{√

β,β
√
α
}
= β

√
α.

(2.14)

Then

1√
α
≤ xN+3 ≤ β

√
α. (2.15)

Thus following the above procedure we have

xn ∈
[√

α

β
,β
√
α
]

∀n≥N. (2.16)

The proof is complete. �

Lemma 2.3. Every solution of (1.1) which is bounded below by 1/
√
α lies in the interval

[1/
√
α,β
√
α].

Proof. Let {xn}∞n=−1 be a positive solution of (1.1) and there exists N ≥ 0 such that

xn−1 ≥ 1√
α

∀n≥N. (2.17)

It follows from (1.1) that

xN+1 =max
{

1
xN

,
AN

xN−1

}
≤max

{√
α,
√
αAN

}≤ β
√
α. (2.18)

Similarly, we see that

xN+2 =max
{

1
xN+1

,
AN+1

xN

}
≤max

{√
α,
√
αAN+1

}≤ β
√
α. (2.19)

The rest of the proof follows by Lemma 2.2. �
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3. The main result

In this section, we study the periodicity character of solutions of (1.1).
In the following we study the existence of periodic solutions of (1.1) with period four.

Theorem 3.1. Assume that {xn}∞n=−1 is a positive solution of (1.1) with

1√
α
< xN−1, xN <

√
β. (3.1)

Then {xn}∞n=−1 is a four-cycle solution of (1.1).

Proof. Let {xn}∞n=−1 be a positive solution of (1.1). Suppose there exists N ≥ 0 such
that

1√
α
< xN−1, xN <

√
β. (3.2)

Assume that

xN−1 = p, xN = q. (3.3)

Observe from (1.1) that

xN+1 =max
{

1
xN

,
AN

xN−1

}
. (3.4)

We consider the following two cases.
(1) xN+1 = 1/xN = 1/q. In this case 1/xN > α/xN−1, (the case 1/xN > β/xN−1 can be

treated similarly) and we see that

xN+2 =max
{

1
xN+1

,
AN+1

xN

}
=max

{
q,
β

q

}
= β

q
,

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
=max

{
q

β
,αq
}
= αq,

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
1
αq

,q
}
= q,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
1
q

,
1
q

}
= 1

q
,

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
q,
β

q

}
= β

q
.

(3.5)
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Then clearly the solution becomes in the form

{
. . . ,q,

1
q

,
β

q
,αq,q,

1
q

,
β

q
,αq, . . .

}
. (3.6)

(2) xN+1 = α/xN−1 = α/p. In this case we see that

xN+2 =max
{

1
xN+1

,
AN+1

xN

}
=max

{
p

α
,
β

q

}
= β

q
,

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
=max

{
q

β
, p
}
= p,

(3.7)

where xN−1 > 1/
√
β⇒ βxN−1 >

√
β > xN ,

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
1
p

,q
}
= q,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
1
q

,
α

p

}
= α

p
,

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
p

α
,
β

q

}
= β

q
,

(3.8)

and so the solution becomes in the form
{
. . . , p,q,

α

p
,
β

q
, p,q,

α

p
,
β

q
, . . .
}
. (3.9)

�

The proof is complete.

Theorem 3.2. Every positive solution of (1.1) which is bounded from below by 1/
√
α is

eventually periodic with period four.

Proof. Let {xn}∞n=−1 be a positive solution of (1.1). By Lemma 2.3, we assume

1√
α
< xN−1, xN < β

√
α for some integer N ≥ 2. (3.10)

From (1.1), we see that

xN+1 =max
{

1
xN

,
α

xN−1

}
. (3.11)

We consider the following two cases.
(A1) xN+1 = 1/xN . In this case 1/xN > α/xN−1, and we see that

xN+2 =max
{

1
xN+1

,
AN+1

xN

}
=max

{
xN ,

β

xN

}
. (3.12)

We consider the following two cases.
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(A11) xN+2 = xN . In this case xN > β/xN , and we see that

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
=max

{
1
xN

,αxN

}
= αxN , (3.13)

where xN > 1/
√
α⇒ αxN > 1/xN ,

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
1

αxN
,
β

xN

}
= β

xN
,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
xN
β

,
1
xN

}
= xN

β
,

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
β

xN
,xN

}
= xN ,

xN+7 =max
{

1
xN+6

,
AN+6

xN+5

}
=max

{
1
xN

,
αβ

xN

}
= αβ

xN
,

xN+8 =max
{

1
xN+7

,
AN+7

xN+6

}
=max

{
xN
αβ

,
β

xN

}
= β

xN
,

xN+9 =max
{

1
xN+8

,
AN+8

xN+7

}
=max

{
xN
β

,
xN
β

}
= xN

β
,

xN+10 =max
{

1
xN+9

,
AN+9

xN+8

}
=max

{
β

xN
,xN

}
= xN ,

xN+11 =max
{

1
xN+10

,
AN+10

xN+9

}
=max

{
1
xN

,
αβ

xN

}
= αβ

xN
,

xN+12 =max
{

1
xN+11

,
AN+11

xN+10

}
=max

{
xN
αβ

,
β

xN

}
= β

xN
.

(3.14)

We see that the solution is in the form

{
. . . ,

β

xN
,
xN
β

,xN ,
αβ

xN
,
β

xN
,
xN
β

,xN ,
αβ

xN
, . . .
}
. (3.15)

Therefore {xn}∞n=−1 is a periodic solution with period four.
(A12) xN+2 = β/xN . In this case β/xN > xN , and we see that

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
=max

{
xN
β

,αxN

}
= αxN ,

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
1

αxN
,xN

}
= xN ,

(3.16)
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where xN > 1/
√
α⇒ x2

N > 1/α⇒ xN > 1/αxN ,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
1
xN

,
1
xN

}
= 1

xN
,

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
xN ,

β

xN

}
= β

xN
,

xN+7 =max
{

1
xN+6

,
AN+6

xN+5

}
=max

{
xN
β

,αxN

}
= αxN ,

xN+8 =max
{

1
xN+7

,
AN+7

xN+6

}
=max

{
1

αxN
,xN

}
= xN ,

xN+9 =max
{

1
xN+8

,
AN+8

xN+7

}
=max

{
1
xN

,
1
xN

}
= 1

xN
,

xN+10 =max
{

1
xN+9

,
AN+9

xN+8

}
=max

{
xN ,

β

xN

}
= β

xN
,

xN+11 =max
{

1
xN+10

,
AN+10

xN+9

}
=max

{
xN
β

,αxN

}
= αxN ,

xN+12 =max
{

1
xN+11

,
AN+11

xN+10

}
=max

{
1

αxN
,xN

}
= xN .

(3.17)

Therefore {xn}∞n=−1 is a periodic solution with period four as follows:

{
. . . ,xN ,

1
xN

,
β

xN
,αxN ,xN ,

1
xN

,
β

xN
,αxN , . . .

}
. (3.18)

(A2) xN+1 = α/xN−1. In this case α/xN−1 > 1/xN , and we see that

xN+2 =max
{

1
xN+1

,
AN+1

xN

}
=max

{
xN−1

α
,
β

xN

}
. (3.19)

We consider the following two cases.
(A21) xN+2 = xN−1/α. In this case xN−1/α > β/xN , and we see that

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
=max

{
α

xN−1
,xN−1

}
= xN−1, (3.20)

where β
√
αxN−1 > xN−1xN > αβ⇒ xN−1 >

√
α,

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
1

xN−1
,
αβ

xN−1

}
= αβ

xN−1
,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
xN−1

αβ
,

α

xN−1

}
= xN−1

αβ
.

(3.21)

We consider the following two cases.
(A211) xN+5 = xN−1/αβ. In this case xN−1/αβ > α/xN−1, and we see that

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
αβ

xN−1
,
xN−1

α

}
= xN−1

α
, (3.22)
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where xN−1/αβ > α/xN−1 ⇒ xN−1/α > αβ/xN−1,

xN+7 =max
{

1
xN+6

,
AN+6

xN+5

}
=max

{
α

xN−1
,
α2β

xN−1

}
= α2β

xN−1
,

xN+8 =max
{

1
xN+7

,
AN+7

xN+6

}
=max

{
xN−1

α2β
,
αβ

xN−1

}
= αβ

xN−1
,

(3.23)

where xN−1 < β
√
α⇒ x2

N−1 < β2α < β2α3 ⇒ αβ/xN−1 > xN−1/α2β,

xN+9 =max
{

1
xN+8

,
AN+8

xN+7

}
=max

{
xN−1

αβ
,
xN−1

αβ

}
= xN−1

αβ
,

xN+10 =max
{

1
xN+9

,
AN+9

xN+8

}
=max

{
αβ

xN−1
,
xN−1

α

}
= xN−1

α
,

xN+11 =max
{

1
xN+10

,
AN+10

xN+9

}
=max

{
α

xN−1
,
α2β

xN−1

}
= α2β

xN−1
,

xN+12 =max
{

1
xN+11

,
AN+11

xN+10

}
=max

{
xN−1

α2β
,
αβ

xN−1

}
= αβ

xN−1
.

(3.24)

Therefore the solution can be written as

{
. . . ,

αβ

xN−1
,
xN−1

αβ
,
xN−1

α
,
α2β

xN−1
,
αβ

xN−1
,
xN−1

αβ
,
xN−1

α
,
α2β

xN−1
, . . .
}
. (3.25)

Then {xn}∞n=−1 is a periodic solution with period four.
We consider the following two cases.
(A212) xN+5 = α/xN−1. In this case α/xN−1 > xN−1/αβ, and we see that

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
xN−1

α
,
xN−1

α

}
= xN−1

α
,

xN+7 =max
{

1
xN+6

,
AN+6

xN+5

}
=max

{
α

xN−1
,xN−1

}
= xN−1,

xN+8 =max
{

1
xN+7

,
AN+7

xN+6

}
=max

{
1

xN−1
,
αβ

xN−1

}
= αβ

xN−1
,

xN+9 =max
{

1
xN+8

,
AN+8

xN+7

}
=max

{
xN−1

αβ
,

α

xN−1

}
= α

xN−1
,

xN+10 =max
{

1
xN+9

,
AN+9

xN+8

}
=max

{
xN−1

α
,
xN−1

α

}
= xN−1

α
,

xN+11 =max
{

1
xN+10

,
AN+10

xN+9

}
=max

{
α

xN−1
,xN−1

}
= xN−1,

xN+12 =max
{

1
xN+11

,
AN+11

xN+10

}
=max

{
1

xN−1
,
αβ

xN−1

}
= αβ

xN−1
.

(3.26)
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It is also easy to see that the solution takes the form

{
. . . ,

α

xN−1
,
xN−1

α
,xN−1,

αβ

xN−1
,

α

xN−1
,
xN−1

α
,xN−1,

αβ

xN−1
, . . .
}

, (3.27)

which is periodic with period four.
(A22) xN+2 = β/xN . In this case β/xN > xN−1/α, and we see that

xN+3 =max
{

1
xN+2

,
AN+2

xN+1

}
=max

{
xN
β

,xN−1

}
. (3.28)

We consider the following two cases.
(A221) xN+3 = xN−1. In this case xN−1 > xN/β, and we see that

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
1

xN−1
,xN

}
= xN ,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
1
xN

,
α

xN−1

}
= α

xN−1
,

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
xN−1

α
,
β

xN

}
= β

xN
,

xN+7 =max
{

1
xN+6

,
AN+6

xN+5

}
=max

{
xN
β

,xN−1

}
= xN−1,

xN+8 =max
{

1
xN+7

,
AN+7

xN+6

}
=max

{
1

xN−1
,xN

}
= xN ,

xN+9 =max
{

1
xN+8

,
AN+8

xN+7

}
=max

{
1
xN

,
α

xN−1

}
= α

xN−1
,

xN+10 =max
{

1
xN+9

,
AN+9

xN+8

}
=max

{
xN−1

α
,
β

xN

}
= β

xN
,

xN+11 =max
{

1
xN+10

,
AN+10

xN+9

}
=max

{
xN
β

,xN−1

}
= xN−1,

xN+12 =max
{

1
xN+11

,
AN+11

xN+10

}
=max

{
1

xN−1
,xN

}
= xN .

(3.29)

One can easily see that the solution will be in the form

{
. . . ,xN−1,xN ,

α

xN−1
,
β

xN
,xN−1,xN ,

α

xN−1
,
β

xN
, . . .
}

, (3.30)

and so the solution is periodic with period four.
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(A222) xN+3 = xN/β. In this case xN/β > xN−1, and we see that

xN+4 =max
{

1
xN+3

,
AN+3

xN+2

}
=max

{
β

xN
,xN

}
= xN , (3.31)

where xN > βxN−1 > β/
√
α > β/

√
β =

√
β⇒ x2

N > β⇒ xN > β/xN ,

xN+5 =max
{

1
xN+4

,
AN+4

xN+3

}
=max

{
1
xN

,
αβ

xN

}
= αβ

xN
,

xN+6 =max
{

1
xN+5

,
AN+5

xN+4

}
=max

{
xN
αβ

,
β

xN

}
= β

xN
,

(3.32)

where xN < β
√
α,

xN+7 =max
{

1
xN+6

,
AN+6

xN+5

}
=max

{
xN
β

,
xN
β

}
= xN

β
,

xN+8 =max
{

1
xN+7

,
AN+7

xN+6

}
=max

{
β

xN
,xN

}
= xN ,

xN+9 =max
{

1
xN+8

,
AN+8

xN+7

}
=max

{
1
xN

,
αβ

xN

}
= αβ

xN
,

xN+10 =max
{

1
xN+9

,
AN+9

xN+8

}
=max

{
xN
αβ

,
β

xN

}
= β

xN
,

xN+11 =max
{

1
xN+10

,
AN+10

xN+9

}
=max

{
xN
β

,
xN
β

}
= xN

β
,

xN+12 =max
{

1
xN+11

,
AN+11

xN+10

}
=max

{
β

xN
,xN

}
= xN .

(3.33)

Then the solution can be written in the form

{
. . . ,

β

xN
,
xN
β

,xN ,
αβ

xN
,
β

xN
,
xN
β

,xN ,
αβ

xN
, . . .
}

, (3.34)

and so the solution is periodic with period four.
This completes the proof. The proof of Theorem 3.2 is thus completed. �

Lemma 3.3. Assume {xn}∞n=−1 is a positive solution of (1.1) and suppose there exists m≥ 2
such that

xm <
1√
α
< xm+1. (3.35)

Then either {xn}∞n=−1 is eventually periodic solution with period four or

liminf
n→∞ xn ≥ 1√

α
. (3.36)
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Proof. Observe that xm < 1/
√
α and either xm+1 < β

√
α or xm+1 > β

√
α.

(i) Assume that xm+1 < β
√
α. It follows from (1.1) that

xm+2 =max
{

1
xm+1

,
Am+1

xm

}
=max

{
1

xm+1
,
α

xm

}
= α

xm
, (3.37)

where xmxm+1 ≥ 1⇒ xm+1 >
√
α > 1,

xm+3 =max
{

1
xm+2

,
Am+2

xm+1

}
=max

{
xm
α

,
β

xm+1

}
= β

xm+1
, (3.38)

where xmxm+1 < β
√
α/
√
α= β < αβ, and

xm+4 =max
{

1
xm+3

,
Am+3

xm+2

}
=max

{
xm+1

β
,xm

}
. (3.39)

Then either

xm+4 = xm+1

β
or xm+4 = xm (3.40)

and by simple computations the solution becomes either

{
. . . ,

xm+1

β
,xm+1,

αβ

xm+1
,

β

xm+1
,
xm+1

β
,xm+1,

αβ

xm+1
,

β

xm+1
, . . .
}

, (3.41)

or

{
. . . ,xm,xm+1,

α

xm
,

β

xm+1
,xm,xm+1,

α

xm
,

β

xm+1
, . . .
}

, (3.42)

and so in either case {xn}∞n=−1 is a periodic solution with period four.
(ii) Assume that xm+1 > β

√
α. In this case we see from (1.1) that

xm+2 =max
{

1
xm+1

,
Am+1

xm

}
=max

{
1

xm+1
,
α

xm

}
= α

xm
,

xm+3 =max
{

1
xm+2

,
Am+2

xm+1

}
=max

{
xm
α

,
β

xm+1

}
.

(3.43)

We consider the following two cases.
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(B1) xm+3 = xm/α. In this case we see that

xm+4 =max
{

1
xm+3

,
Am+3

xm+2

}
=max

{
α

xm
,xm

}
= α

xm
,

xm+5 =max
{

1
xm+4

,
Am+4

xm+3

}
=max

{
xm
α

,
αβ

xm

}
= αβ

xm
,

xm+6 =max
{

1
xm+5

,
Am+5

xm+4

}
=max

{
xm
αβ

,xm

}
= xm,

xm+7 =max
{

1
xm+6

,
Am+6

xm+5

}
=max

{
1
xm

,
xm
α

}
= 1

xm
,

xm+8 =max
{

1
xm+7

,
Am+7

xm+6

}
=max

{
xm,

α

xm

}
= α

xm
,

xm+9 =max
{

1
xm+8

,
Am+8

xm+7

}
=max

{
xm
α

,βxm

}
= βxm,

xm+10 =max
{

1
xm+9

,
Am+9

xm+8

}
=max

{
1

βxm
,xm

}
.

(3.44)

We consider the following two cases.
(B11) xm+10 = xm. In this case the solution eventually will be periodic with period four

as

{
. . . ,xm,

1
xm

,
α

xm
,βxm,xm,

1
xm

,
α

xm
,βxm, . . .

}
. (3.45)

(B12) xm+10 = 1/βxm. In this case straightforward calculations show that the solution
will be in the form

{
. . . ,

xm
α

,
α

xm
,
αβ

xm
,xm,

1
xm

,
α

xm
,βxm,

1
βxm

,
1
xm

,αβxm, . . .
}
. (3.46)

Thus the subsequence {xm+3i}∞i=0 is increasing and so

lim
i→∞

xn+3i ≥ 1√
α
. (3.47)

(B2) xm+3 = β/xm+1. This can be treated similarly to the case xm+3 = xm/α and the so-
lution is either periodic with period four or lim

i→∞
xn+3i ≥ 1/

√
α.

The proof is complete. �

Remark 3.4. Observe by assumption that xm, xm+1 < 1/
√
α is not possible as can be seen

from (1.1).

Now, we can state the main result in this section.

Theorem 3.5. Every solution of (1.1) is periodic with period four.

Proof. The proof of this theorem follows from Theorem 3.2 and Lemma 3.3. �
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