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Let (un) be a sequence of real numbers and let L be an additive limitable method with
some property. We prove that if the classical control modulo of the oscillatory behavior
of (un) belonging to some class of sequences is a Tauberian condition for L, then con-
vergence or subsequential convergence of (un) out of L is recovered depending on the
conditions on the general control modulo of the oscillatory behavior of different order.

1. Introduction

In this paper, O(1) or o(1) means O(1) as n→∞ or o(1) as n→∞. A classical theorem of
Tauber [12] asserts that an Abel’s limitable sequence u= (un) is convergent if

ω(0)
n (u)= n∆un = o(1). (1.1)

To describe this, we say that (1.1) is a “Tauberian condition” for the Abel limitable meth-
od. Tauber [12] further proved that the weaker condition

σ (1)
n

(
ω(0)(u)

)= 1
n+ 1

n∑

k=0

k∆uk = o(1) (1.2)

is also a Tauberian condition for the Abel limitable method. In [5], Meyer-König and
Tietz gave the result that Tauber’s passage from (1.1) to (1.2) is possible for a very general
class of summability methods.

Theorem 1.1 (Meyer-König and Tietz). If (1.1) is a Tauberian condition for the regular
and additive method L, then (1.2) is also a Tauberian condition for L.

Both (1.1) and (1.2) are special cases of a concept introduced by Landau [3]. The
definitions of slow oscillation given by Landau [3] and later by Schmidt [7] are rather
cumbersome to use in the proofs. For this reason, we use a more suitable definition of
slow oscillation given in [8]. Stanojević [10] proved that conditions (1.1) and (1.2) in
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Tauber’s theorem [12] can be replaced by the more general conditions that

(
ω(0)
n (u)

)∈ S, (1.3)
(
σ (1)
n

(
ω(0)(u)

))∈ S, (1.4)

where S denotes the class of all slowly oscillating sequences introduced in [8]. Stanojević’s
passage from (1.3) to (1.4) is also possible for an additive method L, which need not to
be regular, and satisfies some property.

The main objective of this paper is to obtain convergence or subsequential convergence
of (un) by an additive method L with some property depending on the conditions on
the general control modulo of the oscillatory behavior of different order if the classical
control modulo of the oscillatory behavior of (un) belonging to some class of sequences
is a Tauberian condition for L.

2. Notations and definitions

Throughout this paper, u = (un) is a sequence of real numbers and λn denotes the inte-

ger part of λn. Denote by ω(0)
n (u) = n∆un the classical control modulo of the oscillatory

behavior of (un). For each integer m≥ 1 and for all positive integers n, define recursively

ω(m)
n (u)= ω(m−1)

n (u)− σ (1)
n (ω(m−1)(u)) general control modulo of the oscillatory behavior

of order m. For a sequence u= (un) and for some integer m≥ 0, denote

σ (m)
n (u)=




1
n+ 1

n∑

k=0

σ (m−1)
k (u)= u0 +

n∑

k=1

V (m−1)
k (∆u)

k
for m≥ 1,

un for m= 0,

(2.1)

where

V (m)
n (∆u)=




1
n+ 1

∑n
k=0V

(m−1)
k (∆u) for m≥ 1,

1
n+ 1

n∑

k=0

k∆uk for m= 0,

∆un =


un−un−1 for n≥ 1,

u0 for n= 0,

(2.2)

and σ (m)
n (u)− σ (m+1)

n (u)=V (m)
n (∆u).

The Kronecker identity

un− σ (1)
n (u)=V (0)

n (∆u) (2.3)

is well known and will be used extensively. A sequence (un) is Abel limitable to s if

limx→1−(1− x)
∑∞

n=0unx
n = s and Cesàro limitable to s if limn σ

(1)
n (u) = s. If (un) is L

limitable to s, we write L− limn un = s. A limitation method L is called additive if L−
limn un = s and L− limn vn = t imply that L− limn(un + vn) = s + t. A sequence (un) is
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slowly oscillating [8] if limλ→1+ limn maxn+1≤k≤λn |
∑k

j=n+1∆uj| = 0. Note that every null
sequence is slowly oscillating.

Since σ (1)
n (u)= u0 +

∑n
k=1(V (0)

k (∆u)/k), from identity (2.3), we write (un) as

un =V (0)
n (∆u) +

n∑

k=1

V (0)
k (∆u)

k
+u0. (2.4)

It is shown in [11] that if (un) is slowly oscillating, then (V (0)
n (∆u)) is bounded. There-

fore, the slow oscillation of (un) may be redefined in terms of its generating sequence

(V (0)
n (∆u)). By (2.4), it is clear that a sequence (un) is slowly oscillating if and only if

(V (0)
n (∆u)) is bounded and slowly oscillating [2].
A sequence (un) converges subsequentially [1, 9] if there exists a finite interval I(u)

such that all of the accumulation points of (un) are in I(u) and every point of I(u) is an
accumulation point of I(u). Notice that there are slowly oscillating sequences that do not
converge subsequentially. For instance, the sequence (logn) is clearly slowly oscillating,
but not subsequentially convergent.

3. Lemmas

We need the following lemmas to prove the theorems in the next section.

Lemma 3.1 [9]. Let (un) be Cesàro limitable to s. If (un) is slowly oscillating, then (un)
converges to s.

Proof. For λ > 1, we have

un− σ (1)
n (u)= λn + 1

λn−n

(
σ (1)
λn

(u)− σ (1)
n (u)

)
− 1
λn−n

λn∑

k=n+1

k∑
j=n+1

∆uj . (3.1)

From this identity, we have

lim
n

∣∣un− σ (1)
n (u)

∣∣≤ λ

λ− 1
lim
n

(
σ (1)
λn

(u)− σ (1)
n (u)

)
+ lim

n
max

n+1≤k≤λn

∣∣∣∣∣
k∑

j=n+1

∆uj

∣∣∣∣∣. (3.2)

Noticing that the first term on the right-hand side of (3.2) vanishes, we get limn|un −
σ (1)
n (u)| ≤ limn maxn+1≤k≤λn |

∑k
j=n+1∆uj|. Finally letting λ → 1+, we obtain limn|un −

σ (1)
n (u)| ≤ 0. This completes the proof. �

Lemma 3.2 [1]. Let (un) be a bounded sequence. If ∆un = o(1), then every point of [limnun,
limnun] is an accumulation point of (un).

Proof. Let limnun = l, and limnun = K . If l = K , there is nothing to prove. Assume that
(l,K) is not a singleton, and that x ∈ (l,K) is not an accumulation point of (un). Then,
there exist distinct numbers b and c such that l < b < x < c < K and there exists a pos-
itive integer n1 such that for all n ≥ n1, in [b,c] there is no point of (un). From the
assumption ∆un = o(1), it follows that there is a positive integer n2 such that for all
n ≥ n2, |un − un−1| < c− b. Since l and K are two distinct accumulation points, there is



2494 On a theorem of W. Meyer-König and H. Tietz

a positive integer m > max(n1,n2) such that, um < b. Hence for some n > m, un < b be-
cause there is no point of (un) in [b,c]. Then, un+1 ≤ un + |un+1 − un| < b + c− b = c.
Thus, un+1 < c but un+1 /∈ [b,c]. So un+1 < b. By finite induction on n, for all n >m, un < b.
Hence, limnun = K ≤ b < c < K , which is a contradiction. Consequently, every point of
[limnun, limnun] is an accumulation point of (un). �

4. Tauberian conditions for convergence

Throughout this paper, L will denote an additive limitation method with the following

property: L− limn un = s implies that L− limn σ
(1)
n (u)= s.

Theorem 4.1. If (ω(0)
n (u)) ∈ S is a Tauberian condition for L, then (σ (1)

n (ω(0)(u))) ∈ S is
also a Tauberian condition for L.

Proof. Assume that (ω(0)
n (u)) ∈ S is a Tauberian condition for L. Let the L− limn un = s.

For all nonnegative integers n, σ (1)
n (ω(0)(u)) = n∆σ (1)

n (u). Since L− limn un = s implies

that L− limn σ
(1)
n (u) = s and since (σ (1)

n (ω(0)(u))) ∈ S, we conclude that limn σ
(1)
n (u) =

s. Using identity (2.3), it then follows that (un) ∈ S. Hence from Lemma 3.1, limn un =
s. �

Theorem 4.2. If (ω(0)
n (u)) ∈ S is a Tauberian condition for L, then (ω(1)

n (u)) ∈ S is also a
Tauberian condition for L.

Proof. Assume that (ω(0)
n (u))∈ S is a Tauberian condition for L. Let L− limn un = s. For

all nonnegative integers n, ω(1)
n (u) = n∆V (0)

n (∆u). By identity (2.3) and the additivity of

L, we have L− limnV
(0)
n (∆u)= 0. Together with (ω(1)

n (u))∈ S, we obtain that V (0)
n (∆u)=

o(1). Since (n∆σ (1)
n (u)) = (V (0)

n (∆u)) ∈ S and L− limn σ
(1)
n (u) = s, it follows that (un) is

Cesàro limitable to L− limn un = s. By identity (2.3), we have limn un = s. �

Notice that in Theorem 4.2, the condition (ω(1)
n (u))∈ S can be replaced by (ω(k)

n (u))∈
S for any integer k ≥ 1. Since every null sequence is slowly oscillating, in the above theo-
rems the condition “belonging to S” can be replaced by the condition “belonging to the
class of all null sequences.” Hence, in particular, as an example of Theorem 4.1, we have
the Meyer-König and Tietz theorem.

Theorem 4.3. If (ω(0)
n (u))∈ S is a Tauberian condition for L, then ω(1)

n (u)=O(1) is also a
Tauberian condition for L.

Proof. Assume that (ω(0)
n (u))∈ S is a Tauberian condition for L. Let L− limn un = s. Since

n∆V (0)
n (∆u)=O(1), we have (V (0)

n (∆u)−V (1)
n (∆u))= (n∆V (1)

n (∆u))∈ S.
Since L− limnV

(1)
n (∆u) = 0, it follows that V (1)

n (∆u) = o(1). By Lemma 3.1, we ob-

tain V (0)
n (∆u)= o(1). From the identity n∆σ (1)

n (u)=V (0)
n (∆u), and L− limn σ

(1)
n (u)= s, it

follows that limn σ
(1)
n (u)= s. Hence from (2.3), we have limn un = s. �

The following theorems are proved in a similar manner.

Theorem 4.4. If ω(0)
n (u)=O(1) is a Tauberian condition for L, then ω(1)

n (u)=O(1) is also
a Tauberian condition for L.
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Theorem 4.5. The following statements are equivalent.

(i) ω(0)
n (u)=O(1) is a Tauberian condition for L.

(ii) (ω(0)
n (u))∈ S is a Tauberian condition for L.

5. Tauberian conditions for subsequential convergence

Littlewood [4] proved that

ω(0)
n (u)=O(1) (5.1)

is a Tauberian condition for Abel limitable method. However, Rényi [6] noticed that

σ (1)
n

(
ω(0)(u)

)=O(1) (5.2)

is not a Tauberian condition for Abel limitable method. We only recover convergence
of the (C,1)-mean of the sequence (un) out of the Abel limitability of (un) and (5.2).
Tauber’s passage from (5.1) to (5.2) is also not possible for an additive limitation method
L. Nevertheless, we can retrieve some information about the subsequential behavior of
the sequence (un) by assuming an additional mild condition on (un) with condition (5.2).

In the next theorem, we show that σ (1)
n (ω(0)(u))=O(1) together with an additional con-

dition on (un) yields subsequential convergence of (un) out of L-limitability of (un) if

ω(0)
n (u)=O(1) is a Tauberian condition for L.

Theorem 5.1. If ω(0)
n (u) = O(1) is a Tauberian condition for L, then the conditions

σ (1)
n (ω(0)(u))=O(1) and (∆V (0)

n (∆u))∈ S are Tauberian conditions for subsequential con-
vergence of (un) for L.

Proof. Assume that ω(0)
n (u) = O(1) is a Tauberian condition for L. Let L− limn un = s.

Since n∆σ (1)
n (u) = O(1) and L− limn σ

(1)
n (u) = s, it follows that limn σ

(1)
n (u) = s. Since

V (0)
n (∆u)=O(1), from identity (2.3), (un) is bounded. From σ (1)

n (u)=∑n
k=1(V (0)

k (∆u)/k),

it follows that V (0)
n (∆u)/n = o(1). Since (∆V (0)

n (∆u)) ∈ S, again by Lemma 3.1,

∆V (0)
n (∆u) = o(1). By the identity ∆un − (V (0)

n (∆u)/n) = ∆V (0)
n (∆u), we obtain ∆un =

o(1). Therefore by Lemma 3.2, (un) converges subsequentially. �

We end this section with the following result.

Theorem 5.2. If (ω(0)
n (u)) ∈ S is a Tauberian condition for L, then the conditions

σ (1)
n (ω(0)(u)) = O(1) and (∆V (0)

n (∆u)) ∈ S are Tauberian conditions for the subsequential
convergence of (un) for L.

Proof. Assume that (ω(0)
n (u))∈ S is a Tauberian condition for L. Let L− limn un = s. The

boundedness of (σ (1)
n (ω(0)(u))) implies that (V (1)

n (∆u)) ∈ S. Since n∆σ (2)
n (u) = V (1)

n (∆u)
and L− limn σ

(2)
n (u) = s, by hypotheses, we get limn σ

(2)
n (u) = s. Since V (0)

n (∆u) = O(1),

(σ (1)
n (u))∈ S. By Lemma 3.1, limn σ

(1)
n (u)= s. By identity (2.3), (un) is bounded. The rest

of the proof is as the proof in Theorem 5.1. �
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