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The problem of heat transfer to pulsatile flow of a two-phase fluid-particle system con-
tained in a channel bounded by two infinitely long rigid impervious parallel walls has
been studied in this paper. The solutions for the steady and the fluctuating temperature
distributions are obtained. The rates of heat transfer at the walls are also calculated. The
results are discussed numerically with graphical presentations. It is shown that the pres-
ence of the particles not only diminishes the steady and unsteady temperature fields but
also decreases the reversal of heat flux at the hotter wall irrespective of the influences of
other flow parameters.

1. Introduction

The problems of heat transfer to fluid flow systems in pipes and channels are particularly
important to understand various aspects of transpiration cooling and gaseous diffusion.
The exact solutions of some problems associated with heat transfer in an incompressible
viscous fluid have already been reported by Schlichting [5]. It has been noticed that the
generation of heat due to friction and the variation of pressure gradient usually exert a
large effect on the process of cooling and these factors often make the warmer wall heated
instead of being cooled.

In recent years, considerable attention has been given to the study of the problems
of heat transfer to pulsatile flow of fluids in channels of various cross-sections due to
their increasing applications in the analysis of blood flow and in the flows of other bio-
logical fluids. Radhakrishnamacharya and Maity [3] have made an investigation of heat
transfer to pulsatile flow of a Newtonian viscous fluid in a channel bounded by two in-
finitely long parallel porous walls with a view to its application in the dialysis of blood
in artificial kidneys. This analysis was carried out to determine theoretically the steady
and the fluctuating temperature fields and the rates of heat transfer at the walls. It was
shown that the rate of heat transfer at the injection wall which was maintained at temper-
ature T0 increases with the increase of Eckert number Ec while at the suction wall which
was kept at temperature T1(> T0), heat flows from the fluid to the wall even if T1 > T0.
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On the other hand, a similar problem of heat transfer to pulsatile flow of a viscoelastic
fluid in a channel bounded by two infinitely long impervious rigid parallel walls was stud-
ied by Ghosh and Debnath [1] with a view to its application in the analysis of blood flow
where it is assumed that blood behaves as a viscoelastic fluid in some parts of the vas-
cular channel. This analysis provides theoretical results for the steady and the unsteady
temperature fields and the rates of heat transfer at the walls. The effects of large pressure
gradient and the elastic parameters on the process of heat transfer have been discussed
numerically.

The objective of the present paper is to construct solution of the problem of heat trans-
fer associated with the pulsatile flow of a two-phase fluid-particle system in a channel
bounded by two infinitely long impervious rigid parallel walls seperated by a distance h
with a view to its more realistic application in the analysis of blood flow in arteries. The
analysis is aimed at finding the analytical solutions for the temperature fields for both
the fluid and the particles. The rates of heat transfer at the walls are also calculated. The
results are discussed numerically through graphical representations. It is shown that the
particles have diminishing effects on both the steady and nonsteady temperarture fields
of the fluid and the reversal of heat flux at the hotter wall decreases with the increase of
particles irrespective of the influences of other flow parameters.

2. Mathematical formulation

We consider an unsteady flow of an incompressible viscous fluid with uniformly dis-
tributed small inert spherical particles in a channel bounded by two infinitely long im-
pervious rigid parallel walls at a distance h apart which is driven by the pressure gradient
of the form

−1
ρ

∂p

∂x
= A

(
1 + εeiωt

)
, (2.1)

where A is a known constant, ε is an arbitrarily chosen small positive quantity, and ω is
the frequency.

The flow takes place parallel to the x-axis which is taken along the lower wall at y = 0
and the y-axis is normal to the wall. The lower wall at y = 0 and the upper wall at y = h are
maintained at constant temperature T0 and T1(T1 > T0), respectively. Following Saffman
[4] and Marble [2] the equations governing the motion of the fluid and the particles are
given by

∂u

∂t
=−1

ρ

∂p

∂x
+ ν

∂2u

∂y2
+

k

τu

(
up−u

)
, (2.2)

∂up

∂t
= 1

τu

(
u−up

)
, (2.3)

where u and up are respectively the fluid velocity and the particle velocity in the x di-
rection. τu is the velocity relaxation time of the particles which represents the time scale
on which the particle velocity adjusts to changes in the surrounding fluid velocity and
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k = ρp/ρ represents the ratio of mass density of the particles and the fluid density is usu-
ally termed as mass concentration of the particles.

The energy equations for the respective phases may be written as

∂T

∂t
= k

τT

(
Tp−T

)
+

χ

ρCp

∂2T

∂y2
+

µ

ρCp

(
∂u

∂y

)2

+
k

Cpτu

(
up−u

)2
, (2.4)

∂Tp

∂t
= 1

τT

(
T −Tp

)
, (2.5)

where Cp, χ, µ are respectively the specific heat, the thermal conductivity, and the co-
efficient of dynamic viscosity. T and Tp are the temperature fields respectively for the
fluid and the particle phases. τT is the thermal relaxation time of the particles similar in
meaning to that of τu.

Equations (2.2) to (2.5) are to be solved subject to the conditions

u= 0, T = T0 at y = 0,

u= 0, T = T1 at y = h, T1 > T0.
(2.6)

We now consider the following dimensionless flow variables and the flow parameters

u∗,u∗p =
u,up

Ah2/ν
, z = y

h
, t∗ = tν

h2
, σ = ωh2

ν
,

(
λ1,λ2

)= (τu,τT)ν

h2
, θ = T −T0

T1−T0
, Pr =

µCp

χ
, Ec = A2h4

ν2Cp(T1−T0)
,

(2.7)

where ν= µ/ρ is the coefficient of kinematic viscosity, Pr is Prandtl number, and Ec is the
Eckert number.

Introducing the nondimensional quantities given in (2.7) in the equations (2.2) to
(2.5) together with (2.1), we get

∂u∗

∂t∗
= 1 + εeiσt

∗
+
∂2u∗

∂z2
+

k

λ1

(
u∗p −u∗

)
, (2.8)

∂u∗p
∂t∗

= 1
λ1

(
u∗ −u∗p

)
, (2.9)

∂θ

∂t∗
= k

λ2

(
θp− θ

)
+

1
Pr

∂2θ

∂z2
+Ec

(
∂u∗

∂z

)2

+
kEc
λ1

(
u∗p −u∗

)2
, (2.10)

∂θp
∂t∗

= 1
λ2

(
θ− θp

)
. (2.11)
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These equations are to be solved subject to the conditions

u∗ = 0 at z = 0,1, (2.12)

θ = 0 at z = 0,

= 1 at z = 1.
(2.13)

3. Solution for the velocity field

We assume

u∗ = u0 + εu1e
iσt∗ ,

u∗p = up0 + εup1e
iσt∗ .

(3.1)

Introducing (3.1) in (2.8) and (2.9) and solving them with the help of (2.12), we get

u0 = up0 = 1
2
z(1− z), (3.2)

u1 =
(
1 + iσλ1

)
up1 = 1

M2

[
1− sinhM(1− z) + sinhMz

sinhM

]
, (3.3)

where

M2 = iσ
(
1 + k+ iσλ1

)
1 + iσλ1

. (3.4)

Thus (3.1) together with (3.2) and (3.3) constitute the solution for the velocity field u∗

and u∗p of the fluid and the particles, respectively. The shear stress at the walls is given by

τ∗0 =
τ0

ρA
=
(
∂u∗

∂z

)
z=0
= 1

2
+ ε
∣∣M0

∣∣ei(σt∗+α0),

τ∗1 =
τ1

ρA
=
(
∂u∗

∂z

)
z=1
=−1

2
− ε∣∣M0

∣∣ei(σt∗+α0),

(3.5)

where

M0 = 1
M

tanh
M

2
, (3.6)

∣∣M0
∣∣= [ coshmr − cosmi(

m2
r +m2

i

)(
coshmr + cosmi

)]1/2

, (3.7)

α0 = tan−1
(
mr sinmi−mi sinhmr

mr sinhmr +mi sinmi

)
, (3.8)

M = (mr ,mi
)= [ σ

2
(
1 + σ2λ2

1

){[k2σ2λ2
1 +
(
1 + k+ σ2λ2

1

)2
]1/2± kσλ1

}]1/2

. (3.9)
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Since mr , mi are both positive and α0 is negative, it is evident from (3.7) and (3.8) that
the presence of particles decreases both the magnitude of the skin friction fluctuation and
the phase lag at the walls.

4. Solution for the temperature field

Since u∗, u∗p in (3.1) are real, u∗, u∗p can be written in more convenient form as

u∗ = u0 +
ε
2

[
u1e

iσt∗ + ū1e
−iσt∗], (4.1)

u∗p = up0 +
ε
2

[
up1e

iσt∗ + ūp1e
−iσt∗]. (4.2)

This leads us to assume the temperature field as

θ = θ0 +
ε
2

[
θ1e

iσt∗ + θ̄1e
−iσt∗]+

ε2

2

[
θ2e

2iσt∗ + θ̄2e
−2iσt∗], (4.3)

θp = θp0 +
ε
2

[
θp1e

iσt∗ + θ̄p1e
−iσt∗]+

ε2

2

[
θp2e

2iσt∗ + θ̄p2e
−2iσt∗]. (4.4)

Introducing (4.1) to (4.4) in equations (2.10) and (2.11) and equating terms independent
of t and the coefficients of eiσt

∗
and e2iσt∗ , we obtain the following set of equations for the

determination of θ0, θ1, θ2 and θp0, θp1, θp2. These equations with appropiate boundary
conditions are

∂2θ0

∂z2
=−EcPr

[(
∂u0

∂z

)2

+
ε2

2

{
∂u1

∂z

∂ū1

∂z
+

kσ2λ1

1 + σ2λ2
1
u1ū1

}]
, (4.5)

θp0 = θ0, θ0 = (0,1) at z = (0,1), (4.6)

∂2θ1

∂z2
−PrN

2
1θ1 =−2EcPr

∂u0

∂z

∂u1

∂z
, (4.7)

θp1 = θ1

1 + iσλ2
, θ1 = (0,0) at z = (0,1), (4.8)

N2
1 =

iσ
(
1 + k+ iσλ2

)
1 + iσλ2

,

∂2θ2

∂z2
− 2PrN2

2θ2 =−EcPr
2

[(
∂u1

∂z

)2

− kσ2λ1(
1 + iσλ1

)2 u
2
1

]
,

(4.9)

θp2 = θ2

1 + 2iσλ2
, θ2 = (0,0) at z = (0,1), (4.10)

N2
2 =

iσ
(
1 + k+ 2iσλ2

)
1 + 2iσλ2

. (4.11)
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Solving (4.5) with (4.6), the steady temperature field for the fluid and the particles are
given by

θ0(z)= C+Dz− EcPr
24

(
3z2− 4z3 + 2z4)

− EcPrε2

8s1s2s
2
3

[
m2

i cosh2mr(1− z)−m2
r cos2mi(1− z)

+ 2m2
r coshmr cosmi(1− 2z)− 2m2

i cosmi coshmr(1− 2z)

+m2
i cosh2mrz−m2

r cos2miz
]

− EcPrkσ2λ1ε2

2
(
1 + σ2λ2

1

) [ z2

2s2
1
− 2s4

s4
1s2

{
coshmr(2− z)cosmiz− coshmrzcosmi(2− z)

+ coshmr(1 + z)cosmi(1− z)

− coshmr(1− z)cosmi(1 + z)
}

+
4S3

s4
1s2

{
sinmiz sinhmr(2− z)− sinhmrz sinmi(2− z)

+ sinhmr(1 + z)sinmi(1− z)

− sinhmr(1− z)sinmi(1 + z)
}

+
1

4s2
1s2s

2
3

{
m2

i cosh2mr(1− z) +m2
r cos2mi(1− z)

− 2m2
r coshmr cosmi(1− 2z) +m2

i cosh2mrz

− 2m2
i coshmr(1− 2z)cosmi +m2

r cos2miz
}]

,

(4.12)

where

θp0(z)= θ0(z),

C = EcPrε2

8s1s2s
2
3

[
m2

i cosh2mr −m2
r cos2mi + 2s4 coshmr cosmi− s4

]

− EcPrkσ2λ1ε2

2
(
1 + λ2

1σ2
) [2s4

s4
1
− 1

4s2
1s2s

2
3

(
m2

i cosh2mr +m2
r cos2mi

− 2s1 coshmr cosmi + s1
)]

,

D = 1 +
EcPr
24

+
EcPrkσ2λ1ε2

4s2
1

(
1 + σ2λ2

1

) ,

s1 =m2
r +m2

i s2 = cosh2mr − cos2mi s3 =mrmi, s4 =m2
r −m2

i .

(4.13)
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In particular, when k = 0, the steady temperature for clean fluid becomes

θ0c = z+
EcPr
24

(
1− 3z+ 4z2− 2z3)z

+
EcPrε2

8σ

[
1− cosh

√
σ/2(1− 2z) + cos

√
σ/2(1− 2z)

cos
√
σ/2 + cosh

√
σ/2

]
.

(4.14)

The result (4.12) shows that unlike the steady velocity field, the steady temperature field
is greatly influenced by both the particles and the pressure gradient fluctuations in the
fluid.

From (4.7) to (4.10), the unsteady temperature fluctuations are given by

θ1(z)= L(z)− L(0)
sinhM

[
sinhM(1− z) + sinhMz

] (
Pr �= 1

)
(4.15)

= Ec(1− coshM)sinhMz

2M3(sinhM)2
− zEc

2M3

[
coshM(1− z)− coshMz

sinhM

]

+
Ec(z− z2)

2M2 sinhM

[
sinhM(1− z) + sinhMz

] (
Pr = 1

)
,

(4.16)

θ2(z)= 1
sinh

√
2PrN2

[
R(0)sinh

√
2PrN2(1− z) +R(1)sinh

√
2PrN2z

]
−R(z), (4.17)

where

L(z)= EcPr
M2−PrN

2
1

[
1

sinh
√
PrN1

(
coshM− 1
M sinhM

− 4
M2−PrN

2
1

)

×
(

sinh
√
PrN1z+ sinh

√
PrN1(1− z)

)

+
1− 2z

M sinhM

{
coshMz− coshM(1− z)

}]
,

L(0)= L(1)=− 4EcPr(
M2−PrN

2
1

)2 ,

R(z)= EcPr
4M2 cosh2(M/2)

[
coshM(1− 2z)
4M2− 2PrN2

2
+

1
2PrN2

2

]

+
EcPrδ2

2M4

[
1

2PrN2
2

(
1 +

1

2cosh2(M/2)

)
+

2
M2− 2PrN2

2

× cosh(1/2)M(1− 2z)
cosh(M/2)

− coshM(1− 2z)

4cosh2(M/2)
(
2M2−PrN

2
2

)
]

,
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R(0)= R(1)= EcPr
4M2 cosh2(M/2)

[
coshM

4M2− 2PrN2
2

+
1

2PrN2
2

]

+
EcPrδ2

2M4

[
1

2PrN2
2

(
1 +

1

cosh2(M/2)

)
+

2
M2− 2PrN2

2

− coshM

4cosh2(M/2)
(
2M2−PrN

2
2

)
]

,

δ2 = kσ2λ1

(1 + iσλ1)2
.

(4.18)

In the limit k→ 0, M2 =N2
1 =N2

2 = iσ . So the results for θ1 and θ2 can be derived easily
for the case of clean fluid. The corresponding results for the temperature fluctuations of
the particles are

θp1 = θ1

1 + iσλ2
, θp2 = θ2

1 + 2iσλ2
. (4.19)

5. Rate of heat transfer

The rate of heat transfer per unit area at the plate z = 0 is given by

Q0 =
(
∂θ

∂z

)
z=0
=
(
∂θ0

∂z

)
z=0

+ εeiσt
(
∂θ1

∂z

)
z=0

+ ε2e2iσt
(
∂θ2

∂z

)
z=0

= (θ′0)z=0 + ε
∣∣D0

∣∣cos
(
σt+α0

)
+ ε2

∣∣D1
∣∣cos

(
2σt+α1

)
,

(5.1)

where(
∂θ0

∂z

)
z=0
= 1 +

EcPr
24

+
EcPrε2

4s1
(

coshmr + cosmi
)( sinhmr

mr
− sinmi

mi

)

+
EcPrkσ2λ1ε2

4s2
1

(
1 + σ2λ2

1

)[1− mi
(
3m2

r −m2
i

)
sinhmr −mr

(
m2

r − 3m2
i

)
sinmi

s1s3
(

coshmr + cosmi
) ]

,

(
∂θ1

∂z

)
z=0
= EcPr

M2−PrN
2
1

[ √
PrN1

sinh
√
PrN1

(
coshM− 1
M sinhM

− 4
M2−PrN

2
1

)

×
(

1− cosh
√
PrN1

)
− 2(1− coshM)

M sinhM

+
4M(1− coshM)(
M2−PrN

2
1

)
sinhM

+ 1
]

, Pr �= 1,

(
∂θ2

∂z

)
z=0
=

√
2PrN2

sinh
√

2PrN2

{
R(1)−R(0)cosh

√
2PrN2

}

+
3EcPrδ2

2M
(
2M2−PrN

2
2

)(
M2− 2PrN2

2

) sinh(M/2)
cosh(M/2)

+
EcPr

2M
(
2M2−PrN

2
2

) sinh(M/2)
cosh(M/2)

,

(5.2)
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where

D0 =D0r + iD0i, tanα0 = D0i

D0r
,

D1 =D1r + iD1i, tanα1 = D1i

D1r
.

(5.3)

The expression for (∂θ0/∂z)z=0 shows that the presence of particles (k �= 0) increases or
decreases the rate of heat transfer in the steady state condition at the lower wall if the
quantity within the third bracket is positive or negative. On the other hand, in absence of
particles (k = 0), the rate of heat transfer in the steady situation at the lower wall becomes

Q0c = 1 +
EcPr
24

+
EcPrε2

(2σ)3/2
F(σ) (5.4)

which is always positive where F(σ)= (sinh
√
σ/2− sin

√
σ/2)/(cosh

√
σ/2 + cos

√
σ/2).

Similarly, the rate of heat transfer per unit area at the upper wall z = 1 is given by

Q1 =
(
∂θ

∂z

)
z=1
=
(
∂θ0

∂z

)
z=1

+ εeiσt
(
∂θ1

∂z

)
z=1

+ ε2e2iσt
(
∂θ2

∂z

)
z=1

= 1− EcPr
24

− EcPrε2

4s1
(

coshmr + cosmi
)[ sinhmr

mr
− sinmi

mi

]

− EcPrkσ2λ1ε2

4s2
1

(
1 + σ2

) [1− mi
(
3m2

r −m2
i

)
sinhmr −mr

(
m2

r − 3m2
i

)
sinmi

s1s3
(

coshmr + cosmi
) ]

− εeiσt EcPr
M2−PrN

2
1

[ √
PrN1

sinh
√
PrN1

(
coshM− 1
M sinhM

− 4
M2−PrN

2
1

)

× (1− cosh
√
PrN1

)
+

4M(1− coshM)(
M2−PrN

2
1

)
sinhM

− 2(1− coshM)
M sinhM

+ 1
]

− ε2e2iσt
[ √

2PrN2

sinh
√

2PrN2

{
R(1)−R(0)cosh

√
2PrN2

}

− EcPrδ2

M3
tanh

M

2

{
1

2
(
2M2−PrN

2
2

) − 1
M2− 2PrN2

2

}

+
EcPr
2M

tanh
M

2
1(

2M2−PrN
2
2

)]

= (θ′0)z=1− ε
∣∣D0

∣∣cos
(
σt+α0

)− ε2
∣∣D1

∣∣cos
(
2σt+α1

)
.

(5.5)
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Figure 6.1. Steady temperature profiles in a two-phase fluid.

The rate of heat transfer per unit area for the clean fluid at the upper wall z = 1 is given
by

Q1c = 1− EcPr
24

− EcPrε2

(2σ)3/2
F(σ). (5.6)

6. Numerical results and discussions

For the problem under investigation, θ0 represents the steady temperature distribution
in the two-phase fluid-particle system. The expression for θ0 contains one linear term
corresponding to the fluid at rest, a biquadratic term which arises due to viscous friction
and a term involving ε2 which corresponds to the mean heating of the fluid due to dissi-
pation of energy caused by the pressure gradient fluctuations. It is interesting to note that
the effect of the particles modifies the mean heating of the fluid only when the pressure
gradient fluctuates. Hence the expression for θ0 is not the same for both viscous and par-
ticulate fluids. The temperature profiles corresponding to θ0 are shown in Figure 6.1 for
various values of EcPr , k, and ε. The graphical representation clearly indicates that the
value of θ0 increases with both EcPr and ε but decreases with the increase of particle con-
centration (k). Moreover, in all cases, the maximum value of θ0 occurs near the boundary
layer of the hotter wall.

Regarding the rate of heat transfer in the steady-state condition, the reversal of heat
flux from the fluid to the hotter wall takes place when EcPr exceeds a critical value de-
pending on ε and k which in turn makes the hotter wall more hot. For example, when
ε = 0, k = 0, heat flows from the fluid to the hotter wall when EcPr > 24. This case
corresponds to the heat transfer in a clean fluid under constant pressure gradient when
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Table 6.1. Critical values of EcPr for the reversal of heat flux at the hotter wall when σ = 10, λ1 = 0.1.

k/ε 0 0.5 1.0

0 24 22.5 19.1

0.1 24 22.5 19.1

0.6 24 22.6 19.2

0.7 24 22.6 19.3

1.0 24 22.7 19.5

the walls are maintained at constant temperatures T0 and T1(> T0). On the other hand,
for ε = 0.5 and k = 0.1, the reversal of heat flux at the hotter wall takes place when
EcPr > 22.5 which is further enhanced with the increase of k. Alternately, when ε = 1.0
and k = 0.1, the reversal of heat flux from fluid to the hotter wall takes place when
EcPr > 19.1. All these results are shown in Table 6.1, and on the basis of these results we
conclude that the critical value of EcPr responsible for the reversal of heat flux from the
fluid to the hotter wall diminishes with the increase of ε and increases with the increase
of particle concentration in the fluid. In fact, the value of EcPr provides a measure of the
amount of heat generated due to friction, which, in the present case, increases with the in-
crease of the pressure gradient. As a result, if the temperature difference between the walls
is fixed, heat flows from the hotter wall to the fluid as long as the pressure gradient does
not exceed a certain value depending on the amount of fluctuations and the presence of
the particles. This phenomenon is important for cooling at high pressure gradient. How-
ever, if instead of pressure gradient, the motion of the fluid is produced otherwise, such as
in the case of steady Couette flow of viscous or two-phase fluids under a constant pressure
gradient, the critical value of EcPr for the reversal of heat flux at the hotter wall is found
as 2. Such a reversal of heat flux occurs only when the motion of the upper (hotter) wall
exceeds certain velocity provided the temperature difference between the walls remains
constant.This phenomenon is also important for cooling at high velocity and is reported
by Schlichting [5]. We therefore conclude that the critical value of EcPr for the reversal of
heat flux at the hotter wall is much higher in the case of cooling at high pressure gradient
compared to its value for cooling at high velocity. The effect of Eckert number Ec on the
steady heat transfer coefficient for various values of pressure gradient fluctuation ε and
the particle concentration k is shown in the Table 6.2.

The instantaneous temperature profiles are plotted in Figures 6.2, 6.3, and 6.4.
Figure 6.2 exhibits the instantaneous temperature profiles for viscous and particulate flu-
ids for different values of σt when k = 0 and 0.3, EcPr = 100, λ1 = 0.1, λ2 = 0.3. It is to be
noted here that the results for k = 0 always represents the case of a viscous fluid irrespec-
tive of the values of λ1 and λ2. Moreover, it is evident from Figure 6.2 that the presence of
particles diminishes the temperature near the walls and increases the same at the central
part of the channel. Figure 6.3 presents the instantaneous temperature profiles in three
cases corresponding to the values of λ1 <=> λ2 when k, EcPr , and σt are fixed while the
Figure 6.4 provides the unsteady temperature profiles for different values of σt when EcPr
is as large as 300. Finally, we notice that the temperature fluctuations increase the rate of
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Table 6.2. Steady heat transfer coefficient (θ′0)z=0 and (θ′0)z=1 for σ = 10, λ1 = 0.1, Pr = 10.

ε k/Ec 1 2 3 5

0.0 0.0 1.41667 1.8333 2.25 3.08333

0.5 1.41667 1.8333 2.25 3.08333(
θ′0
)
z=0 0.5 0.0 1.44274 1.88548 2.32822 3.21370

0.5 1.43765 1.87531 2.31296 3.18827

1.0 0.0 1.52096 2.04192 2.56288 3.60480

0.5 1.50061 2.00123 2.50184 3.50307

0.0 0.0 0.58333 0.16667 −0.25 −1.08333

0.5 0.58333 0.16667 −0.25 −1.08333(
θ′0
)
z=1 0.5 0.0 0.55726 0.11452 −0.32822 −1.21370

0.5 0.56716 0.12534 −0.32415 −1.21042

1.0 0.0 0.47904 −0.04162 −0.56288 −1.60480

0.5 0.48867 −0.03265 −0.56098 −1.60163

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1.0

z

θ

1(a) 1 2(a) 2
3(a) 3

1. σt = 0, k = 0
1(a) σt = 0, k = 0.3

2. σt = Π/4, k = 0
2(a) σt = Π/4, k = 0.3

3. σt = Π/2, k = 0
3(a) σt = Π/2, k = 0.3

1(a)
1 2(a)2 3(a)

3

3(a) 3

1(a) 1 2(a) 2

Figure 6.2. Effect of particle concentration (k) on the unsteady temperature profiles in a two-phase
fluid when EcPr = 100. λ1 = 0.1, λ2 = 0.3.

heat transfer at the colder wall and decrease the same at the hotter wall irrespective of the
influences of other flow parameters. This phenomenon is evident from the results (5.1)
and (5.5).
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Figure 6.3. Effect of velocity relaxation time (λ1) and thermal relaxation time (λ2) on unsteady tem-
perature profiles in a two-phase fluid when σt =Π/2, k = 0.3, EcPr = 100.
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Figure 6.4. Unsteady temperature profiles in two-phase fluid when EcPr = 300, k = 0.3, λ1 = 0.1, λ2 =
0.3.
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