REGULARITIES AND SUBSPECTRA FOR COMMUTATIVE BANACH ALGEBRAS

JOSÉ SAÚL CAMPOS OROZCO AND ANTONI WAWRZYŃCZYK
Received 27 October 2004 and in revised form 7 July 2005

We introduce regularities in commutative Banach algebras in such a way that each regularity defines a joint spectrum on the algebra that satisfies the spectral mapping formula.

1. Introduction

Let B be a complex commutative Banach algebra with unit element denoted by e. The space of linear continuous functionals on B is denoted by B^{\prime}.

We call regularity in B every nontrivial open subset $R \subset B$ which satisfies the following conditions:

$$
\begin{gather*}
a b \in R \quad \text { iff } a \in R, b \in R, \tag{1.1}\\
R=R^{\#}, \quad \text { where } R^{\#}=\left\{b \in B \mid \forall \varphi \in B^{\prime} \varphi(b)=0 \Longrightarrow 0 \in \varphi(R)\right\} . \tag{1.2}
\end{gather*}
$$

The set $G(B)$ of invertible elements of B is the main example of a regularity. As was proved in [4], the set of elements of B which are not topological zero divisors is also a regularity.

In the present paper, we investigate a construction of joint spectra in B by means of regularities in B.

Let $\sigma(a)=\{\mu \in \mathbb{C} \mid a-\mu e \notin G(B)\}$ be the ordinary spectrum in B.
Recall that according to the terminology introduced by Żelazko [6], a subspectrum τ in B is a mapping which associates to every k-tuple $\left(a_{1}, \ldots, a_{k}\right) \in B^{k}$ a nonempty compact set $\tau\left(a_{1}, \ldots, a_{k}\right)$ such that
(a) $\tau\left(a_{1}, \ldots, a_{k}\right) \subset \prod_{i=1}^{k} \sigma\left(a_{i}\right)$,
(b) $\tau\left(p\left(a_{1}, \ldots, a_{k}\right)\right)=p\left(\tau\left(a_{1}, \ldots, a_{k}\right)\right)$ for every polynomial mapping $p=\left(p_{1}, \ldots, p_{m}\right)$: $\mathbb{C}^{k} \rightarrow \mathbb{C}^{m}$.
In Theorem 2.1, we prove that an arbitrary subspectrum τ in B defines a regularity R_{τ} by the formula

$$
\begin{equation*}
R_{\tau}=\{a \in B \mid 0 \notin \tau(a)\} . \tag{1.3}
\end{equation*}
$$

Lemma 2.3 used in the proof of this theorem permits us to obtain an elementary proof of a theorem belonging to Żelazko which provides the complete description of all subspectra in B.

Let $M(B)$ be the space of multiplicative functionals on B as usually identified with the space of maximal ideals in $B . M(B)$ endowed with the Gelfand topology is a compact space. For $a \in B, \varphi \in M(B)$, we denote by $\hat{a}(\varphi)=\varphi(a)$ the Gelfand transform of a.

Theorem of Żelazko [6] states that for every subspectrum τ in B, there is a unique compact subset $K \subset M(B)$ such that

$$
\begin{equation*}
\tau\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \mid \varphi \in K\right\} \tag{1.4}
\end{equation*}
$$

for $\left(a_{1}, \ldots, a_{k}\right) \in B^{k}$.
Our proof emphasizes the role played by the spectral mapping formula (b) while the original elegant proof in [6] involves more advanced methods.

The principal result of the paper is Theorem 4.1 which states that for an arbitrary regularity R the formula

$$
\begin{equation*}
\sigma_{R}=\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{C}^{k} \mid I_{B}\left(a_{1}-\lambda_{1}, \ldots, a_{k}-\lambda_{k}\right) \cap R=\varnothing\right\} \tag{1.5}
\end{equation*}
$$

defines a subspectrum in B. By $I_{B}\left(a_{1}-\lambda_{1}, \ldots, a_{k}-\lambda_{k}\right)$ the ideal generated in B by the elements $a_{1}-\lambda_{1}, \ldots, a_{k}-\lambda_{k}$ is denoted.

It follows that, given an arbitrary subspectrum τ, we can construct the regularity R_{τ} and then the subspectrum $\sigma_{R_{\tau}}$. Both subspectra τ and $\sigma_{R_{\tau}}$, according to Żelazko theorem, are uniquely determined by compact subsets of $M(B)$, say K and K_{1}, respectively.

We show that

$$
\begin{equation*}
K_{1}=\widetilde{K}=\{\varphi \in M(B) \mid \forall a \in B \varphi(a)=0 \Longrightarrow 0 \in \hat{a}(K)\} \tag{1.6}
\end{equation*}
$$

The idea of describing spectra of single elements in a (noncommutative) Banach algebra by means of regularities appears in [1] by Kordula and Müller (see also [2]). The present paper is concerned with the case of a commutative Banach algebra and characterizes those regularities and corresponding spectra which admit an extension to a subspectrum.

2. Regularity corresponding to a subspectrum

Let τ be a subspectrum in a commutative unital Banach algebra B and let $R_{\tau}=\{a \in B \mid$ $0 \notin \tau(a)\}$.

For the completness of the paper, we include the elementary proof of the basic fact in the following theorem.

Theorem 2.1. R_{τ} is a regularity.

Proof. By the property (a) of subspectra, we have $\varnothing \neq \tau(a) \subset \sigma(a)$ for an arbitrary $a \in B$. In particular, $\varnothing \neq \tau(0) \subset \sigma(0)=\{0\}$. Hence $\tau(0)=\{0\}$ and $0 \notin R_{\tau}$.

For $|\mu|>\|a\|$, the element $a-\mu$ is invertible. So $0 \notin \sigma(a-\mu)$ and $0 \notin \tau(a-\mu)$ neither. The set R_{τ} is not empty and not equal to B.

The particular case of the spectral mapping formula (b) is the addition formula

$$
\begin{equation*}
\tau(a+b)=\{\lambda+\mu \mid(\lambda, \mu) \in \tau(a, b)\} \tag{2.1}
\end{equation*}
$$

corresponding to the polynomial $p(x, y)=x+y$.
On the other hand, by (a), we have

$$
\begin{equation*}
\tau(a, b) \subset \sigma(a) \times \sigma(b) \subset \sigma(a) \times D(0,\|b\|) \tag{2.2}
\end{equation*}
$$

If $0 \notin \tau(a)$ and $\|b\|<\min \{|\lambda| \mid \lambda \in \tau(a)\}$, then $0 \notin \tau(a+b)$. The set R_{τ} is open.
We apply the spectral mapping formula in the case of $p(x, y)=x y$. We obtain

$$
\begin{equation*}
\tau(a b)=\{\lambda \mu \mid(\lambda, \mu) \in \tau(a, b)\} . \tag{2.3}
\end{equation*}
$$

Immediately, we conclude that $0 \notin \tau(a b)$ if and only if $0 \notin \tau(a)$ and $0 \notin \tau(b)$.
The set R_{τ} has property (1.1).
The proof of property (1.2) is based on the following two lemmas.
Lemma 2.2. (1) If $\left(\mu_{1}, \ldots, \mu_{k}\right) \in \tau\left(a_{1}, \ldots, a_{k}\right)$ and $b_{1}, \ldots, b_{m} \in B$, then there exist λ_{1}, \ldots, $\lambda_{m} \in \mathbb{C}$ such that

$$
\begin{equation*}
\left(\mu_{1}, \ldots, \mu_{k}, \lambda_{1}, \ldots, \lambda_{m}\right) \in \tau\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m}\right) \tag{2.4}
\end{equation*}
$$

(2) If $(0, \ldots, 0) \in \tau\left(a_{1}, \ldots, a_{k}\right)$ and $b_{1}^{i}, \ldots, b_{k}^{i} \in B, 1 \leq i \leq m$, then

$$
\begin{equation*}
(0, \ldots, 0) \in \tau\left(\sum_{j=1}^{k} a_{j} b_{j}^{1}, \ldots, \sum_{j=1}^{k} a_{j} b_{j}^{m}\right) \tag{2.5}
\end{equation*}
$$

Proof. (1) The spectral mapping property (b) applied to the polynomial $p\left(x_{1}, \ldots, x_{k}\right.$, $\left.y_{1}, \ldots, y_{m}\right)=\left(x_{1}, \ldots, x_{k}\right)$ gives us the first formula.
(2) We can find in $\tau\left(a_{1}, \ldots, a_{k}, b_{1}^{1}, \ldots, b_{k}^{1}, \ldots, b_{1}^{m}, \ldots, b_{k}^{m}\right)$ an element of the form $(0, \ldots, 0$, $\left.\lambda_{1}^{1}, \ldots, \lambda_{k}^{1}, \ldots, \lambda_{1}^{m}, \ldots, \lambda_{k}^{m}\right)$ using the first part of the lemma. If we apply the spectral mapping property to the polynomial mapping

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{k}, y_{1}^{1}, \ldots, y_{k}^{1}, \ldots, y_{1}^{m}, \ldots, y_{k}^{m}\right)=\left(\sum_{j=1}^{k} x_{j} y_{j}^{1}, \ldots, \sum_{j=1}^{k} x_{j} y_{j}^{m}\right), \tag{2.6}
\end{equation*}
$$

we obtain the desired property.
Lemma 2.3. Let $(0, \ldots, 0) \in \tau\left(a_{1}, \ldots, a_{k}\right)$ for some $a_{1}, \ldots, a_{k} \in B$. Then there exists a maximal ideal $J \in M(B)$ such that $I_{B}\left(a_{1}, \ldots, a_{k}\right) \subset J$ and $(0, \ldots, 0) \in \tau\left(b_{1}, \ldots, b_{m}\right)$ for arbitrary $b_{1}, \ldots, b_{m} \in J$.

Proof. If $b_{1}, \ldots, b_{m} \in I_{0}=I_{B}\left(a_{1}, \ldots, a_{k}\right)$, then $(0, \ldots, 0) \in \tau\left(b_{1}, \ldots, b_{m}\right)$ by Lemma 2.2(2). Denote by \mathscr{F} the family of all ideals I in B which contain I_{0} and have the property that $(0, \ldots, 0) \in \tau\left(b_{1}, \ldots, b_{m}\right)$ for arbitrary $b_{1}, \ldots, b_{m} \in I$. For every linearly ordered subfamily $I_{\alpha}, \alpha \in S$ of \mathscr{F}, the set $\bigcup_{\alpha \in S} I_{\alpha} \in \mathscr{F}$. So by Kuratowski-Zorn lemma, the family \mathscr{F} contains a maximal element J. It remains to prove that $J \in M(B)$. Suppose that J is not maximal.

There exists $c \in B$ such that $c+\lambda \notin J$ for all $\lambda \in \mathbb{C}$.
However, by Lemma 2.2(1), for arbitrary $c_{1}, \ldots, c_{k} \in J$, the set

$$
\begin{equation*}
\delta\left(c_{1}, \ldots, c_{k}\right)=\left\{\lambda \in \mathbb{C} \mid 0 \in \tau\left(c_{1}, \ldots, c_{k}, c-\lambda\right)\right\} \tag{2.7}
\end{equation*}
$$

is nonempty. It is a compact set as an intersection of the compact set $\tau\left(c_{1}, \ldots, c_{k}, c\right)$ with a line.

By the spectral mapping property again,

$$
\begin{equation*}
\delta\left(c_{1}, \ldots, c_{k}, b_{1}, \ldots, b_{m}\right) \subset \delta\left(c_{1}, \ldots, c_{k}\right) \cap \delta\left(b_{1}, \ldots, b_{m}\right) \tag{2.8}
\end{equation*}
$$

The family of compact sets $\delta\left(c_{1}, \ldots, c_{k}\right)$ has the finite intersection property, so there exists $\lambda_{0} \in \mathbb{C}$ which belongs to $\delta\left(c_{1}, \ldots, c_{k}\right)$ for every $\left(c_{1}, \ldots, c_{k}\right) \in J^{k}$.

By Lemma 2.2(2), the ideal generated by J and $c-\lambda_{0}$ also belongs to \mathscr{F}, which is a contradiction. Lemma 2.3 is proved.

We return to the proof of Theorem 2.1.
Take $a \notin R_{\tau}$. In order to prove that $R_{\tau}^{\#}=R_{\tau}$, we must find a functional $\phi \in B^{\prime}$ such that $\phi(a)=0$ and $0 \notin \phi\left(R_{\tau}\right)$. By definition $0 \in \tau(a)$ and by Lemma 2.2(2), $(0, \ldots, 0) \in$ $\tau\left(b_{1}, \ldots, b_{m}\right)$ for all $b_{1}, \ldots, b_{m} \in I_{B}(a)$. Lemma 2.3 says that in particular, a belongs to some $J \in M(B)$ that does not intersect R_{τ}. J being a maximal ideal, it is equal to the kernel of a linear (multiplicative) functional. The proof follows.

Since the way from Lemma 2.3 to Żelazko theorem is short, we include the complete proof of this important theorem.

Theorem 2.4 [6]. For every subspectrum τ on a commutative algebra B, there exists a unique compact set $K \subset M(B)$ such that

$$
\begin{equation*}
\tau\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \mid \varphi \in K\right\} . \tag{2.9}
\end{equation*}
$$

Proof. We define K as the set of those multiplicative functionals φ on B for which

$$
\begin{equation*}
(0, \ldots, 0) \in \tau\left(b_{1}, \ldots, b_{m}\right) \quad \text { for arbitrary } b_{1}, \ldots, b_{m} \in \operatorname{ker} \varphi \tag{2.10}
\end{equation*}
$$

If $\left(\mu_{1}, \ldots, \mu_{k}\right) \in \tau\left(a_{1}, \ldots, a_{k}\right)$, then $(0, \ldots, 0) \in \tau\left(a_{1}-\mu_{1}, \ldots, a_{k}-\mu_{k}\right)$ and by Lemma 2.3, the ideal generated by $a_{1}-\mu_{1}, \ldots, a_{k}-\mu_{k}$ is contained in the kernel of a multiplicative functional φ such that condition (2.10) is satisfied.

This proves that K is nonempty and

$$
\begin{equation*}
\tau\left(a_{1}, \ldots, a_{k}\right) \subset\left\{\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \mid \varphi \in K\right\} . \tag{2.11}
\end{equation*}
$$

Now suppose that $\varphi \in K$ and $a_{1}, \ldots, a_{k} \in B$. Obviously, $a_{1}-\varphi\left(a_{1}\right), \ldots, a_{k}-\varphi\left(a_{k}\right) \in$ $\operatorname{ker} \varphi$ and $(0, \ldots, 0) \in \tau\left(a_{1}-\varphi\left(a_{1}\right), \ldots, a_{k}-\varphi\left(a_{k}\right)\right)$ that implies that $\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \in$ $\tau\left(a_{1}, \ldots, a_{k}\right)$.

It remains to prove that K is compact. Let $\phi \notin K$. There exist $b_{1}, \ldots, b_{m} \in \operatorname{ker} \phi$ such that $\left(\phi\left(b_{1}\right), \ldots, \phi\left(b_{m}\right)\right) \notin \tau\left(b_{1}, \ldots, b_{m}\right)$. By the definition of the Gelfand topology and the compactness of $\tau\left(b_{1}, \ldots, b_{m}\right)$, the property $\left(\psi\left(b_{1}\right), \ldots, \psi\left(b_{m}\right)\right) \notin \tau\left(b_{1}, \ldots, b_{m}\right)$ holds for ψ in some neighborhood of ϕ. The set K^{c} is open and K is compact.

3. \mathscr{F}-rationally convex sets and regularities

Let X be a topological Hausdorff space and \mathscr{F} a family of continuous functions on X. For an arbitrary set $C \subset X$, we define the \mathscr{F}-rationally convex hull of C as follows:

$$
\begin{equation*}
\widetilde{C}=\{x \in X \mid \forall f \in \mathscr{F} f(x)=0 \Longrightarrow 0 \in f(C)\} . \tag{3.1}
\end{equation*}
$$

The term \mathscr{F}-rationally convex hull is justified at least when C is compact and \mathscr{F} is a vector space that contains constant functions.

The case is being $x \in \widetilde{C}$ if and only if

$$
\begin{equation*}
\left|\frac{f}{g}\right|(x) \leq \sup _{y \in C}\left|\frac{f}{g}\right|(y) \tag{3.2}
\end{equation*}
$$

for every $f, g \in \mathscr{F}$ with $0 \notin g(C)$.
A subset $C \subset X$ is \mathscr{F}-rationally convex if $\widetilde{C}=C$.
The hull $R^{\#}$ that appears in the definition of a regularity is just the B^{\prime}-rationally convex hull of a set $R \subset B$. Condition (1.2) means that every regularity is B^{\prime}-rationally convex.

We observe some basic properties of regularities.
Proposition 3.1. Let $\varnothing \neq R \subset B$.
(1) If $R \subset B$ satisfies (1.1), then it contains the set $G(B)$ of all invertible elements in B,
(2) if R is a regularity, then

$$
\begin{equation*}
R^{c}=\bigcup_{I \in M(B), I \cap R=\varnothing}\{I\} . \tag{3.3}
\end{equation*}
$$

Proof. (1) Let $b \in R$. Then $b=b e \in R$. By condition(1.1), $e \in R$. If $a \in G(B)$, then $a a^{-1}=$ $e \in R$ and again by (1.1), we obtain that $a \in R$.
(2) By the definition, $\bigcup_{I \in M(B), I \cap R=\varnothing}\{I\} \subset R^{c}$.

Let $a \notin R$. By condition (1.2), there exists $\phi \in B^{\prime}$ such that $\phi(a)=0$ and $0 \notin \phi(R)$. In particular, $(\operatorname{ker} \phi) \cap G(B)=\varnothing$. By Gleason-Kahane-Żelazko theorem, $\phi \in M(B)$ (see [5, page 81]) and

$$
\begin{equation*}
a \in \operatorname{ker} \phi \subset \bigcup_{I \in M(B), I \cap R=\varnothing}\{I\} \tag{3.4}
\end{equation*}
$$

Proposition 3.2. A nontrivial open subset $R \subset B$ is a regularity if and only if $G(B) \subset R$ and $R^{\#}=R$.

Proof. We show that the right-hand side condition implies the property (1.1). By condition (1.2) and Gleason-Kahane-Żelazko theorem, $a b \notin R$ if and only if $\varphi(a b)=0$ for some $\varphi \in M(B)$ with $\operatorname{ker} \varphi \cap R=\varnothing$. This holds if and only if $\varphi(a)=0$ or $\varphi(b)=0$. The proof follows.

In general, condition (1.1) does not imply (1.2). The simplest counterexample is the set $Q=B \backslash\{0\}$, where B is an integral domain.

We us observe the following hereditary property.

Proposition 3.3. Let R be a regularity in B. Let A be a commutative unital Banach algebra and $\phi: A \rightarrow B$ a continuous homomorphism of algebras. Then $Q=\phi^{-1}(R)$ is a regularity in A.

Proof. The set Q is obviously open in A. Moreover,

$$
\begin{equation*}
G(A) \subset \phi^{-1}(G(B)) \subset \phi^{-1}(R)=Q . \tag{3.5}
\end{equation*}
$$

By Proposition 3.2, it is sufficent to prove that $Q^{\#}=Q$. To this end, given $a \notin Q$, we must find $\varphi \in A^{\prime}$ such that $\varphi(a)=0$ and $\operatorname{ker} \varphi \cap Q=\varnothing$. Since $\phi(a) \notin R$, there exists $\psi \in B^{\prime}$ such that $\psi(\phi(a))=0$ and $\operatorname{ker} \psi \cap R=\varnothing$. Hence, $\varphi=\psi \circ \phi$ has the desired properties.

We denote by \hat{B} the set of all Gelfand transforms of elements of B.
Theorem 3.4. Let R be a regularity in B and let

$$
\begin{equation*}
K=\{\varphi \in M(B) \mid 0 \notin \varphi(R)\}=\{\varphi \in M(B) \mid \operatorname{ker} \varphi \cap R=\varnothing\} . \tag{3.6}
\end{equation*}
$$

Then K is a nonempty, compact, \widehat{B}-rationally convex set.
Proof. As we know by Proposition 3.1(2), R^{c} is a union of a nonempty family of maximal ideals of B which are precisely kernels of each $\varphi \in K$. Hence K is nonempty.

If $\varphi \in K^{c}$, then $\hat{a}(\varphi)=0$ for some $a \in R$. If at the same time $\varphi \in \hat{K}$, we obtain $0 \in \hat{a}(K)$. Hence, $\varphi_{0}(a)=0$ for some $\varphi_{0} \in K$. This contradics the definition of K, and so $\hat{K} \backslash K=\varnothing$.

Take again $\varphi \in K^{c}$ and $a \in R$ such that $\varphi(a)=0$. Since R is open, there exists $\delta>$ 0 such that $\|a-b\|<\delta$ implies that $b \in R$. The set $V=\{\psi \in M(B)| | \hat{a}(\psi) \mid<\delta\}$ is a neighborhood of φ in $M(B)$. For $\psi \in V$, we have that $a-\psi(a) \in R$ and $\psi(a-\psi(a))=0$. It follows that $V \subset K^{c}$. So K^{c} is open, K is closed, and hence compact.

4. Subspectrum associated to a regularity

Let R be a regularity in B. For $\left(a_{1}, \ldots, a_{k}\right) \in B^{k}$, denote

$$
\begin{equation*}
\sigma_{R}\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{C}^{k} \mid I_{B}\left(a_{1}-\lambda_{1}, \ldots, a_{k}-\lambda_{k}\right) \cap R=\varnothing\right\} \tag{4.1}
\end{equation*}
$$

Theorem 4.1. For an arbitrary regularity R in a commutative unital Banach algebra, σ_{R} is a subspectrum. If $K=\{\varphi \in M(B) \mid 0 \notin \varphi(R)\}$, then

$$
\begin{equation*}
\sigma_{R}\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \mid \varphi \in K\right\} . \tag{4.2}
\end{equation*}
$$

Proof. The condition (a) defining subspectrum is obviously satisfied because $G(B) \subset R$.
We introduce the operator $T: B \rightarrow C(K)$ by the formula

$$
\begin{equation*}
T(a)=\left.\hat{a}\right|_{K} . \tag{4.3}
\end{equation*}
$$

The operator T is a continuous homomorphism of algebras and its image A is a unital subalgebra of $C(K)$. If $a \in R$, then $T(a)$ nowhere vanishes on K, hence it is invertible in $C(K)$. Conversely, if $a \notin R$, then by the property $R^{\#}=R$ and Gleason-Kahane-Żelazko theorem, there exists $\varphi \in K$ such that $\varphi(a)=0$. So \hat{a} vanishes at $\varphi \in K$ and $T(a)$ is not invertible in $C(K)$. It follows that $T(R)=G(C(K)) \cap A$.

Theorem 3.1 in [3] states that the mapping

$$
\begin{equation*}
\tau\left(f_{1}, \ldots, f_{k}\right)=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{C}^{k} \mid I_{A}\left(f_{1}-\lambda_{1}, \ldots, f_{k}-\lambda_{k}\right) \cap G(C(K))=\varnothing\right\} \tag{4.4}
\end{equation*}
$$

is a subspectrum on A. We extend T on A^{k} in a natural way: $T\left(a_{1}, \ldots, a_{k}\right)=\left(T\left(a_{1}\right), \ldots\right.$, $\left.T\left(a_{k}\right)\right)$.

Notice that

$$
\begin{equation*}
\sigma_{R}\left(a_{1}, \ldots, a_{k}\right)=\tau\left(T\left(a_{1}\right), \ldots, T\left(a_{k}\right)\right)=\tau\left(T\left(a_{1}, \ldots, a_{k}\right)\right) . \tag{4.5}
\end{equation*}
$$

Then for an arbitrary polynomial mapping $p: \mathbb{C}^{k} \rightarrow \mathbb{C}^{m}$, we have

$$
\begin{align*}
p\left(\sigma_{R}\left(a_{1}, \ldots, a_{k}\right)\right) & =p\left(\tau\left(T\left(a_{1}\right), \ldots, T\left(a_{k}\right)\right)\right)=\tau\left(p\left(T\left(a_{1}\right), \ldots, T\left(a_{k}\right)\right)\right) \\
& =\tau\left(T\left(p\left(a_{1}, \ldots, a_{k}\right)\right)\right)=\sigma_{R}\left(p\left(a_{1}, \ldots, a_{k}\right)\right) . \tag{4.6}
\end{align*}
$$

Thus the spectral mapping formula (b) holds for σ_{R}.
For every $\varphi \in K$ and $a_{1}, \ldots, a_{k} \in B$, we have

$$
\begin{equation*}
I_{B}\left(a_{1}-\varphi\left(a_{1}\right), \ldots, a_{k}-\varphi\left(a_{k}\right)\right) \subset \operatorname{ker} \varphi . \tag{4.7}
\end{equation*}
$$

The kernel of φ does not intersect R, so $\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \in \sigma_{R}\left(a_{1}, \ldots, a_{k}\right)$.
Now suppose that $\left(\mu_{1}, \ldots, \mu_{k}\right) \in \sigma_{R}\left(a_{1}, \ldots, a_{k}\right)$, which implies that $(0, \ldots, 0) \in \sigma_{R}\left(a_{1}-\right.$ $\left.\mu_{1}, \ldots, a_{k}-\mu_{k}\right)$. By Lemma 2.3, we know that the ideal $I_{B}\left(a_{1}-\mu_{1}, \ldots, a_{k}-\mu_{k}\right)$ is contained in the kernel of some $\varphi \in M(B)$ and $0 \in \sigma_{R}(b)$ for all $b \in \operatorname{ker} \varphi$. It follows that $\varphi \in K$ and $\left(\mu_{1}, \ldots, \mu_{k}\right)=\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right)$.

The set K is exactly the compact set which describes the subspectrum σ_{R} in the sense of Żelazko theorem (Theorem 2.4).

In Section 3, we have studied the regularity associated with a given subspectrum. According to the definition, the regularity associated with σ_{R} is the set $R_{1}=\{a \in B \mid 0 \notin$ $\left.\sigma_{R}(a)\right\}$. Obviously, $R \subset R_{1}$. If $a \in R_{1}$, then $I_{B}(a) \cap R \neq \varnothing$. There exists $b \in B$ such that $a b \in R$. Hence $a \in R$ by property (1.1). We conclude that $R_{1}=R$.

It is well known that different subspectra can lead to the same set of regular elements. Let τ be the approximate point spectrum. The corresponding regularity R_{τ} is the set of all elements of B which are not topological zero divisors while the set K_{τ} defining τ via formula (2.9) is the set of maximal ideals which consists of joint topological zero divisors.

The spectrum $\sigma_{R_{\tau}}$ was studied in [4] and it corresponds to K equal to the set of all maximal ideals consisting of topological zero divisors, which in general differs from K_{τ}.

If $K \subset M(B)$ is compact and τ is the subspectrum defined by formula (2.9), then the regularity R_{τ} can be described as

$$
\begin{equation*}
\{a \in B \mid 0 \notin \hat{a}(K)\} . \tag{4.8}
\end{equation*}
$$

Proposition 4.2. Let $K_{1}, K_{2} \subset M(B)$ and let

$$
\begin{equation*}
R_{i}=\left\{a \in B \mid 0 \notin \hat{a}\left(K_{i}\right)\right\} \tag{4.9}
\end{equation*}
$$

$i=1,2$. Then $R_{1}=R_{2}$ if and only if $\widetilde{K}_{1}=\widetilde{K}_{2}$.
Proof. Suppose that $R_{1}=R_{2}$. It means that for $a \in B$, the Gelfand transform \hat{a} vanishes on K_{1} if and only if it vanishes on K_{2}. If $\hat{a}(\varphi)=0$, then $\hat{a}\left(K_{1}\right)$ contains zero if and only if $\hat{a}\left(K_{2}\right)$ does. Hence $\widetilde{K}_{1}=\widetilde{K}_{2}$.

Now suppose that $\widetilde{K}_{1}=\widetilde{K}_{2}$ and that $a \notin R_{1}$. It follows that $\hat{a}(\varphi)=0$ for some $\varphi \in K_{1} \subset$ \tilde{K}_{2}. We obtain $0 \in \hat{a}\left(K_{2}\right)$. So $a \notin R_{2}$. This shows that $R_{1}^{c} \subset R_{2}^{c}$, and $R_{2} \subset R_{1}$. Similarly, we can prove the opposite. Then $R_{1}=R_{2}$.

For a given regularity R in B, the subspectrum σ_{R} is the largest subspectrum having R as the corresponding regularity.
Proposition 4.3. Let R be a regularity and let τ be a subspectrum such that $R_{\tau}=R$. Then for every k-tuple $\left(a_{1}, \ldots, a_{k}\right) \in B^{k}$,

$$
\begin{equation*}
\tau\left(a_{1}, \ldots, a_{k}\right) \subset \sigma_{R}\left(a_{1}, \ldots, a_{k}\right) \tag{4.10}
\end{equation*}
$$

Proof. If R is a regularity, then according to Theorem 4.1,

$$
\begin{equation*}
\sigma_{R}\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \mid \varphi \in K\right\} \tag{4.11}
\end{equation*}
$$

where $K=\tilde{K}$ as Theorem 3.4 asserts.
If τ is a subspectrum of the form

$$
\begin{equation*}
\tau\left(a_{1}, \ldots, a_{k}\right)=\left\{\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{k}\right)\right) \mid \varphi \in K_{1}\right\} \tag{4.12}
\end{equation*}
$$

and $R_{\tau}=R$, then $\widetilde{K}_{1}=\widetilde{K}=K$ by Proposition 4.2. In particular, $K_{1} \subset K$ and

$$
\begin{equation*}
\tau\left(a_{1}, \ldots, a_{k}\right) \subset \sigma_{R}\left(a_{1}, \ldots, a_{k}\right) \tag{4.13}
\end{equation*}
$$

References

[1] V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), no. 2, 109-128.
[2] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, vol. 139, Birkhäuser, Basel, 2003.
[3] A. Velázquez González and A. Wawrzyńczyk, The projection property of a family of ideals in subalgebras of Banach algebras, Bol. Soc. Mat. Mexicana (3) 8 (2002), no. 2, 155-160.
[4] A. Wawrzyńczyk, On ideals consisting of topological zero divisors, Studia Math. 142 (2000), no. 3, 245-251.
[5] W. Żelazko, Banach Algebras, Elsevier, Amsterdam; PWN—Polish Scientific Publishers, Warsaw, 1973.
[6] , An axiomatic approach to joint spectra. I, Studia Math. 64 (1979), no. 3, 249-261.
José SaúL Campos Orozco: Departamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana - Unidad Iztapalapa, 186 Avenida San Rafael Atlixco, Col. Vicentina, C.P. 09 340, Distrito Federal, AP 55-534, México

E-mail address: sul@xanum.uam.mx
Antoni Wawrzyńczyk: Departamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana - Unidad Iztapalapa, 186 Avenida San Rafael Atlixco, Col. Vicentina, C.P. 09 340, Distrito Federal, AP 55-534, México

E-mail address: awaw@xanum.uam.mx

