REGULARITIES AND SUBSPECTRA FOR COMMUTATIVE BANACH ALGEBRAS

JOSÉ SAÚL CAMPOS OROZCO AND ANTONI WAWRZYŃCZYK

Received 27 October 2004 and in revised form 7 July 2005

We introduce regularities in commutative Banach algebras in such a way that each regularity defines a joint spectrum on the algebra that satisfies the spectral mapping formula.

1. Introduction

Let *B* be a complex commutative Banach algebra with unit element denoted by *e*. The space of linear continuous functionals on *B* is denoted by B'.

We call regularity in *B* every nontrivial open subset $R \subset B$ which satisfies the following conditions:

$$ab \in R \quad \text{iff } a \in R, b \in R,$$
 (1.1)

$$R = R^{\#}, \quad \text{where } R^{\#} = \{ b \in B \mid \forall \varphi \in B' \ \varphi(b) = 0 \Longrightarrow 0 \in \varphi(R) \}.$$
(1.2)

The set G(B) of invertible elements of *B* is the main example of a regularity. As was proved in [4], the set of elements of *B* which are not topological zero divisors is also a regularity.

In the present paper, we investigate a construction of joint spectra in B by means of regularities in B.

Let $\sigma(a) = \{\mu \in \mathbb{C} \mid a - \mu e \notin G(B)\}$ be the ordinary spectrum in *B*.

Recall that according to the terminology introduced by Żelazko [6], a subspectrum τ in *B* is a mapping which associates to every *k*-tuple $(a_1, \ldots, a_k) \in B^k$ a nonempty compact set $\tau(a_1, \ldots, a_k)$ such that

- (a) $\tau(a_1,\ldots,a_k) \subset \prod_{i=1}^k \sigma(a_i)$,
- (b) $\tau(p(a_1,...,a_k)) = p(\tau(a_1,...,a_k))$ for every polynomial mapping $p = (p_1,...,p_m)$: $\mathbb{C}^k \to \mathbb{C}^m$.

In Theorem 2.1, we prove that an arbitrary subspectrum τ in *B* defines a regularity R_{τ} by the formula

$$R_{\tau} = \{ a \in B \mid 0 \notin \tau(a) \}. \tag{1.3}$$

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:15 (2005) 2399–2407 DOI: 10.1155/IJMMS.2005.2399

2400 Regularities and subspectra for commutative Banach algebras

Lemma 2.3 used in the proof of this theorem permits us to obtain an elementary proof of a theorem belonging to Żelazko which provides the complete description of all subspectra in B.

Let M(B) be the space of multiplicative functionals on B as usually identified with the space of maximal ideals in B. M(B) endowed with the Gelfand topology is a compact space. For $a \in B$, $\varphi \in M(B)$, we denote by $\hat{a}(\varphi) = \varphi(a)$ the Gelfand transform of a.

Theorem of Żelazko [6] states that for every subspectrum τ in B, there is a unique compact subset $K \subset M(B)$ such that

$$\tau(a_1,\ldots,a_k) = \{(\varphi(a_1),\ldots,\varphi(a_k)) \mid \varphi \in K\},\tag{1.4}$$

for $(a_1,...,a_k) \in B^k$.

Our proof emphasizes the role played by the spectral mapping formula (b) while the original elegant proof in [6] involves more advanced methods.

The principal result of the paper is Theorem 4.1 which states that for an arbitrary regularity R the formula

$$\sigma_{R} = (a_{1}, \dots, a_{k}) = \{ (\lambda_{1}, \dots, \lambda_{k}) \in \mathbb{C}^{k} \mid I_{B}(a_{1} - \lambda_{1}, \dots, a_{k} - \lambda_{k}) \cap R = \emptyset \}$$
(1.5)

defines a subspectrum in *B*. By $I_B(a_1 - \lambda_1, ..., a_k - \lambda_k)$ the ideal generated in *B* by the elements $a_1 - \lambda_1, ..., a_k - \lambda_k$ is denoted.

It follows that, given an arbitrary subspectrum τ , we can construct the regularity R_{τ} and then the subspectrum $\sigma_{R_{\tau}}$. Both subspectra τ and $\sigma_{R_{\tau}}$, according to Żelazko theorem, are uniquely determined by compact subsets of M(B), say K and K_1 , respectively.

We show that

$$K_1 = \widetilde{K} = \{ \varphi \in M(B) \mid \forall a \in B \ \varphi(a) = 0 \implies 0 \in \widehat{a}(K) \}.$$

$$(1.6)$$

The idea of describing spectra of single elements in a (noncommutative) Banach algebra by means of regularities appears in [1] by Kordula and Müller (see also [2]). The present paper is concerned with the case of a commutative Banach algebra and characterizes those regularities and corresponding spectra which admit an extension to a subspectrum.

2. Regularity corresponding to a subspectrum

Let τ be a subspectrum in a commutative unital Banach algebra *B* and let $R_{\tau} = \{a \in B \mid 0 \notin \tau(a)\}$.

For the completness of the paper, we include the elementary proof of the basic fact in the following theorem.

THEOREM 2.1. R_{τ} is a regularity.

Proof. By the property (a) of subspectra, we have $\emptyset \neq \tau(a) \subset \sigma(a)$ for an arbitrary $a \in B$. In particular, $\emptyset \neq \tau(0) \subset \sigma(0) = \{0\}$. Hence $\tau(0) = \{0\}$ and $0 \notin R_{\tau}$.

For $|\mu| > ||a||$, the element $a - \mu$ is invertible. So $0 \notin \sigma(a - \mu)$ and $0 \notin \tau(a - \mu)$ neither. The set R_{τ} is not empty and not equal to *B*. The particular case of the spectral mapping formula (b) is the addition formula

$$\tau(a+b) = \{\lambda + \mu \mid (\lambda, \mu) \in \tau(a, b)\},\tag{2.1}$$

corresponding to the polynomial p(x, y) = x + y.

On the other hand, by (a), we have

$$\tau(a,b) \subset \sigma(a) \times \sigma(b) \subset \sigma(a) \times D(0, \|b\|).$$
(2.2)

If $0 \notin \tau(a)$ and $||b|| < \min\{|\lambda| \mid \lambda \in \tau(a)\}$, then $0 \notin \tau(a+b)$. The set R_{τ} is open.

We apply the spectral mapping formula in the case of p(x, y) = xy. We obtain

$$\tau(ab) = \{\lambda \mu \mid (\lambda, \mu) \in \tau(a, b)\}.$$
(2.3)

Immediately, we conclude that $0 \notin \tau(ab)$ if and only if $0 \notin \tau(a)$ and $0 \notin \tau(b)$.

The set R_{τ} has property (1.1).

The proof of property (1.2) is based on the following two lemmas.

LEMMA 2.2. (1) If $(\mu_1, \dots, \mu_k) \in \tau(a_1, \dots, a_k)$ and $b_1, \dots, b_m \in B$, then there exist $\lambda_1, \dots, \lambda_m \in \mathbb{C}$ such that

$$(\mu_1,\ldots,\mu_k,\lambda_1,\ldots,\lambda_m) \in \tau(a_1,\ldots,a_k,b_1,\ldots,b_m).$$

$$(2.4)$$

(2) If $(0,...,0) \in \tau(a_1,...,a_k)$ and $b_1^i,...,b_k^i \in B, 1 \le i \le m$, then

$$(0,...,0) \in \tau \left(\sum_{j=1}^{k} a_j b_j^1, \dots, \sum_{j=1}^{k} a_j b_j^m \right).$$
(2.5)

Proof. (1) The spectral mapping property (b) applied to the polynomial $p(x_1,...,x_k, y_1,...,y_m) = (x_1,...,x_k)$ gives us the first formula.

(2) We can find in $\tau(a_1,...,a_k,b_1^1,...,b_k^1,...,b_1^m,...,b_k^m)$ an element of the form $(0,...,0, \lambda_1^1,...,\lambda_k^1,...,\lambda_1^m,...,\lambda_k^m)$ using the first part of the lemma. If we apply the spectral mapping property to the polynomial mapping

$$p(x_1, \dots, x_k, y_1^1, \dots, y_k^1, \dots, y_1^m, \dots, y_k^m) = \left(\sum_{j=1}^k x_j y_j^1, \dots, \sum_{j=1}^k x_j y_j^m\right),$$
(2.6)

we obtain the desired property.

LEMMA 2.3. Let $(0,...,0) \in \tau(a_1,...,a_k)$ for some $a_1,...,a_k \in B$. Then there exists a maximal ideal $J \in M(B)$ such that $I_B(a_1,...,a_k) \subset J$ and $(0,...,0) \in \tau(b_1,...,b_m)$ for arbitrary $b_1,...,b_m \in J$.

Proof. If $b_1,...,b_m \in I_0 = I_B(a_1,...,a_k)$, then $(0,...,0) \in \tau(b_1,...,b_m)$ by Lemma 2.2(2). Denote by \mathcal{J} the family of all ideals I in B which contain I_0 and have the property that $(0,...,0) \in \tau(b_1,...,b_m)$ for arbitrary $b_1,...,b_m \in I$. For every linearly ordered subfamily $I_{\alpha}, \alpha \in S$ of \mathcal{J} , the set $\bigcup_{\alpha \in S} I_{\alpha} \in \mathcal{J}$. So by Kuratowski-Zorn lemma, the family \mathcal{J} contains a maximal element J. It remains to prove that $J \in M(B)$. Suppose that J is not maximal.

2402 Regularities and subspectra for commutative Banach algebras

There exists $c \in B$ such that $c + \lambda \notin J$ for all $\lambda \in \mathbb{C}$. However, by Lemma 2.2(1), for arbitrary $c_1, \ldots, c_k \in J$, the set

$$\delta(c_1,\ldots,c_k) = \{\lambda \in \mathbb{C} \mid 0 \in \tau(c_1,\ldots,c_k,c-\lambda)\}$$
(2.7)

is nonempty. It is a compact set as an intersection of the compact set $\tau(c_1,...,c_k,c)$ with a line.

By the spectral mapping property again,

$$\delta(c_1,\ldots,c_k,b_1,\ldots,b_m) \subset \delta(c_1,\ldots,c_k) \cap \delta(b_1,\ldots,b_m).$$
(2.8)

The family of compact sets $\delta(c_1,...,c_k)$ has the finite intersection property, so there exists $\lambda_0 \in \mathbb{C}$ which belongs to $\delta(c_1,...,c_k)$ for every $(c_1,...,c_k) \in J^k$.

By Lemma 2.2(2), the ideal generated by *J* and $c - \lambda_0$ also belongs to \mathcal{J} , which is a contradiction. Lemma 2.3 is proved.

We return to the proof of Theorem 2.1.

Take $a \notin R_{\tau}$. In order to prove that $R_{\tau}^{\#} = R_{\tau}$, we must find a functional $\phi \in B'$ such that $\phi(a) = 0$ and $0 \notin \phi(R_{\tau})$. By definition $0 \in \tau(a)$ and by Lemma 2.2(2), $(0, \ldots, 0) \in \tau(b_1, \ldots, b_m)$ for all $b_1, \ldots, b_m \in I_B(a)$. Lemma 2.3 says that in particular, *a* belongs to some $J \in M(B)$ that does not intersect R_{τ} . *J* being a maximal ideal, it is equal to the kernel of a linear (multiplicative) functional. The proof follows.

Since the way from Lemma 2.3 to Żelazko theorem is short, we include the complete proof of this important theorem.

THEOREM 2.4 [6]. For every subspectrum τ on a commutative algebra B, there exists a unique compact set $K \subset M(B)$ such that

$$\tau(a_1,\ldots,a_k) = \{ (\varphi(a_1),\ldots,\varphi(a_k)) \mid \varphi \in K \}.$$

$$(2.9)$$

Proof. We define *K* as the set of those multiplicative functionals φ on *B* for which

$$(0,\ldots,0) \in \tau(b_1,\ldots,b_m)$$
 for arbitrary $b_1,\ldots,b_m \in \ker \varphi$. (2.10)

If $(\mu_1,...,\mu_k) \in \tau(a_1,...,a_k)$, then $(0,...,0) \in \tau(a_1 - \mu_1,...,a_k - \mu_k)$ and by Lemma 2.3, the ideal generated by $a_1 - \mu_1,...,a_k - \mu_k$ is contained in the kernel of a multiplicative functional φ such that condition (2.10) is satisfied.

This proves that *K* is nonempty and

$$\tau(a_1,\ldots,a_k) \subset \{(\varphi(a_1),\ldots,\varphi(a_k)) \mid \varphi \in K\}.$$
(2.11)

Now suppose that $\varphi \in K$ and $a_1, \ldots, a_k \in B$. Obviously, $a_1 - \varphi(a_1), \ldots, a_k - \varphi(a_k) \in \ker \varphi$ and $(0, \ldots, 0) \in \tau(a_1 - \varphi(a_1), \ldots, a_k - \varphi(a_k))$ that implies that $(\varphi(a_1), \ldots, \varphi(a_k)) \in \tau(a_1, \ldots, a_k)$.

It remains to prove that *K* is compact. Let $\phi \notin K$. There exist $b_1, \ldots, b_m \in \ker \phi$ such that $(\phi(b_1), \ldots, \phi(b_m)) \notin \tau(b_1, \ldots, b_m)$. By the definition of the Gelfand topology and the compactness of $\tau(b_1, \ldots, b_m)$, the property $(\psi(b_1), \ldots, \psi(b_m)) \notin \tau(b_1, \ldots, b_m)$ holds for ψ in some neighborhood of ϕ . The set K^c is open and *K* is compact.

3. *F*-rationally convex sets and regularities

Let *X* be a topological Hausdorff space and \mathcal{F} a family of continuous functions on *X*. For an arbitrary set $C \subset X$, we define the \mathcal{F} -rationally convex hull of *C* as follows:

$$\widetilde{C} = \{ x \in X \mid \forall f \in \mathcal{F} f(x) = 0 \Longrightarrow 0 \in f(C) \}.$$
(3.1)

The term \mathcal{F} -rationally convex hull is justified at least when *C* is compact and \mathcal{F} is a vector space that contains constant functions.

The case is being $x \in \widetilde{C}$ if and only if

$$\left|\frac{f}{g}\right|(x) \le \sup_{y \in C} \left|\frac{f}{g}\right|(y) \tag{3.2}$$

for every $f,g \in \mathcal{F}$ with $0 \notin g(C)$.

A subset $C \subset X$ is \mathcal{F} -rationally convex if $\widetilde{C} = C$.

The hull $R^{\#}$ that appears in the definition of a regularity is just the *B*'-rationally convex hull of a set $R \subset B$. Condition (1.2) means that every regularity is *B*'-rationally convex.

We observe some basic properties of regularities.

Proposition 3.1. Let $\emptyset \neq R \subset B$.

(1) If $R \subset B$ satisfies (1.1), then it contains the set G(B) of all invertible elements in B,

(2) if *R* is a regularity, then

$$R^{c} = \bigcup_{I \in M(B), I \cap R = \emptyset} \{I\}.$$
(3.3)

Proof. (1) Let $b \in R$. Then $b = be \in R$. By condition(1.1), $e \in R$. If $a \in G(B)$, then $aa^{-1} = e \in R$ and again by (1.1), we obtain that $a \in R$.

(2) By the definition, $\bigcup_{I \in M(B), I \cap R = \emptyset} \{I\} \subset R^{c}$.

Let $a \notin R$. By condition (1.2), there exists $\phi \in B'$ such that $\phi(a) = 0$ and $0 \notin \phi(R)$. In particular, $(\ker \phi) \cap G(B) = \emptyset$. By Gleason-Kahane-Żelazko theorem, $\phi \in M(B)$ (see [5, page 81]) and

$$a \in \ker \phi \subset \bigcup_{I \in M(B), I \cap R = \emptyset} \{I\}.$$
(3.4)

PROPOSITION 3.2. A nontrivial open subset $R \subset B$ is a regularity if and only if $G(B) \subset R$ and $R^{\#} = R$.

Proof. We show that the right-hand side condition implies the property (1.1). By condition (1.2) and Gleason-Kahane-Żelazko theorem, $ab \notin R$ if and only if $\varphi(ab) = 0$ for some $\varphi \in M(B)$ with ker $\varphi \cap R = \emptyset$. This holds if and only if $\varphi(a) = 0$ or $\varphi(b) = 0$. The proof follows.

In general, condition (1.1) does not imply (1.2). The simplest counterexample is the set $Q = B \setminus \{0\}$, where *B* is an integral domain.

We us observe the following hereditary property.

PROPOSITION 3.3. Let *R* be a regularity in *B*. Let *A* be a commutative unital Banach algebra and $\phi : A \to B$ a continuous homomorphism of algebras. Then $Q = \phi^{-1}(R)$ is a regularity in *A*.

Proof. The set *Q* is obviously open in *A*. Moreover,

$$G(A) \subset \phi^{-1}(G(B)) \subset \phi^{-1}(R) = Q.$$

$$(3.5)$$

By Proposition 3.2, it is sufficient to prove that $Q^{\#} = Q$. To this end, given $a \notin Q$, we must find $\varphi \in A'$ such that $\varphi(a) = 0$ and ker $\varphi \cap Q = \emptyset$. Since $\phi(a) \notin R$, there exists $\psi \in B'$ such that $\psi(\phi(a)) = 0$ and ker $\psi \cap R = \emptyset$. Hence, $\varphi = \psi \circ \phi$ has the desired properties.

We denote by \hat{B} the set of all Gelfand transforms of elements of *B*.

THEOREM 3.4. Let R be a regularity in B and let

$$K = \{ \varphi \in M(B) \mid 0 \notin \varphi(R) \} = \{ \varphi \in M(B) \mid \ker \varphi \cap R = \emptyset \}.$$
(3.6)

Then K is a nonempty, compact, \hat{B} -rationally convex set.

Proof. As we know by Proposition 3.1(2), R^c is a union of a nonempty family of maximal ideals of *B* which are precisely kernels of each $\varphi \in K$. Hence *K* is nonempty.

If $\varphi \in K^c$, then $\hat{a}(\varphi) = 0$ for some $a \in R$. If at the same time $\varphi \in \hat{K}$, we obtain $0 \in \hat{a}(K)$. Hence, $\varphi_0(a) = 0$ for some $\varphi_0 \in K$. This contradics the definition of K, and so $\hat{K} \setminus K = \emptyset$.

Take again $\varphi \in K^c$ and $a \in R$ such that $\varphi(a) = 0$. Since *R* is open, there exists $\delta > 0$ such that $||a - b|| < \delta$ implies that $b \in R$. The set $V = \{\psi \in M(B) \mid |\hat{a}(\psi)| < \delta\}$ is a neighborhood of φ in M(B). For $\psi \in V$, we have that $a - \psi(a) \in R$ and $\psi(a - \psi(a)) = 0$. It follows that $V \subset K^c$. So K^c is open, *K* is closed, and hence compact.

4. Subspectrum associated to a regularity

Let *R* be a regularity in *B*. For $(a_1, \ldots, a_k) \in B^k$, denote

$$\sigma_R(a_1,\ldots,a_k) = \{ (\lambda_1,\ldots,\lambda_k) \in \mathbb{C}^k \mid I_B(a_1-\lambda_1,\ldots,a_k-\lambda_k) \cap R = \emptyset \}.$$
(4.1)

THEOREM 4.1. For an arbitrary regularity R in a commutative unital Banach algebra, σ_R is a subspectrum. If $K = \{\varphi \in M(B) \mid 0 \notin \varphi(R)\}$, then

$$\sigma_R(a_1,\ldots,a_k) = \{(\varphi(a_1),\ldots,\varphi(a_k)) \mid \varphi \in K\}.$$
(4.2)

Proof. The condition (a) defining subspectrum is obviously satisfied because $G(B) \subset R$. We introduce the operator $T: B \to C(K)$ by the formula

$$T(a) = \hat{a} \mid_K. \tag{4.3}$$

The operator *T* is a continuous homomorphism of algebras and its image *A* is a unital subalgebra of *C*(*K*). If $a \in R$, then *T*(*a*) nowhere vanishes on *K*, hence it is invertible in *C*(*K*). Conversely, if $a \notin R$, then by the property $R^{\#} = R$ and Gleason-Kahane-Żelazko theorem, there exists $\varphi \in K$ such that $\varphi(a) = 0$. So \hat{a} vanishes at $\varphi \in K$ and *T*(*a*) is not invertible in *C*(*K*). It follows that *T*(*R*) = *G*(*C*(*K*)) $\cap A$.

Theorem 3.1 in [3] states that the mapping

$$\tau(f_1,\ldots,f_k) = \{(\lambda_1,\ldots,\lambda_k) \in \mathbb{C}^k \mid I_A(f_1-\lambda_1,\ldots,f_k-\lambda_k) \cap G(C(K)) = \emptyset\}$$
(4.4)

is a subspectrum on A. We extend T on A^k in a natural way: $T(a_1,...,a_k) = (T(a_1),..., T(a_k))$.

Notice that

$$\sigma_R(a_1, \dots, a_k) = \tau(T(a_1), \dots, T(a_k)) = \tau(T(a_1, \dots, a_k)).$$
(4.5)

Then for an arbitrary polynomial mapping $p : \mathbb{C}^k \to \mathbb{C}^m$, we have

$$p(\sigma_R(a_1,...,a_k)) = p(\tau(T(a_1),...,T(a_k))) = \tau(p(T(a_1),...,T(a_k)))$$

= $\tau(T(p(a_1,...,a_k))) = \sigma_R(p(a_1,...,a_k)).$ (4.6)

Thus the spectral mapping formula (b) holds for σ_R .

For every $\varphi \in K$ and $a_1, \ldots, a_k \in B$, we have

$$I_B(a_1 - \varphi(a_1), \dots, a_k - \varphi(a_k)) \subset \ker \varphi.$$

$$(4.7)$$

The kernel of φ does not intersect *R*, so $(\varphi(a_1), \dots, \varphi(a_k)) \in \sigma_R(a_1, \dots, a_k)$.

Now suppose that $(\mu_1, ..., \mu_k) \in \sigma_R(a_1, ..., a_k)$, which implies that $(0, ..., 0) \in \sigma_R(a_1 - \mu_1, ..., a_k - \mu_k)$. By Lemma 2.3, we know that the ideal $I_B(a_1 - \mu_1, ..., a_k - \mu_k)$ is contained in the kernel of some $\varphi \in M(B)$ and $0 \in \sigma_R(b)$ for all $b \in \ker \varphi$. It follows that $\varphi \in K$ and $(\mu_1, ..., \mu_k) = (\varphi(a_1), ..., \varphi(a_k))$.

The set *K* is exactly the compact set which describes the subspectrum σ_R in the sense of Żelazko theorem (Theorem 2.4).

In Section 3, we have studied the regularity associated with a given subspectrum. According to the definition, the regularity associated with σ_R is the set $R_1 = \{a \in B \mid 0 \notin \sigma_R(a)\}$. Obviously, $R \subset R_1$. If $a \in R_1$, then $I_B(a) \cap R \neq \emptyset$. There exists $b \in B$ such that $ab \in R$. Hence $a \in R$ by property (1.1). We conclude that $R_1 = R$.

2406 Regularities and subspectra for commutative Banach algebras

It is well known that different subspectra can lead to the same set of regular elements. Let τ be the approximate point spectrum. The corresponding regularity R_{τ} is the set of all elements of *B* which are not topological zero divisors while the set K_{τ} defining τ via formula (2.9) is the set of maximal ideals which consists of joint topological zero divisors.

The spectrum $\sigma_{R_{\tau}}$ was studied in [4] and it corresponds to *K* equal to the set of all maximal ideals consisting of topological zero divisors, which in general differs from K_{τ} .

If $K \subset M(B)$ is compact and τ is the subspectrum defined by formula (2.9), then the regularity R_{τ} can be described as

$$\{a \in B \mid 0 \notin \hat{a}(K)\}. \tag{4.8}$$

PROPOSITION 4.2. Let K_1 , $K_2 \subset M(B)$ and let

$$R_i = \{ a \in B \mid 0 \notin \hat{a}(K_i) \},\tag{4.9}$$

i = 1, 2. Then $R_1 = R_2$ if and only if $\widetilde{K}_1 = \widetilde{K}_2$.

Proof. Suppose that $R_1 = R_2$. It means that for $a \in B$, the Gelfand transform \hat{a} vanishes on K_1 if and only if it vanishes on K_2 . If $\hat{a}(\varphi) = 0$, then $\hat{a}(K_1)$ contains zero if and only if $\hat{a}(K_2)$ does. Hence $\widetilde{K}_1 = \widetilde{K}_2$.

Now suppose that $\widetilde{K}_1 = \widetilde{K}_2$ and that $a \notin R_1$. It follows that $\hat{a}(\varphi) = 0$ for some $\varphi \in K_1 \subset \widetilde{K}_2$. We obtain $0 \in \hat{a}(K_2)$. So $a \notin R_2$. This shows that $R_1^c \subset R_2^c$, and $R_2 \subset R_1$. Similarly, we can prove the opposite. Then $R_1 = R_2$.

For a given regularity *R* in *B*, the subspectrum σ_R is the largest subspectrum having *R* as the corresponding regularity.

PROPOSITION 4.3. Let *R* be a regularity and let τ be a subspectrum such that $R_{\tau} = R$. Then for every *k*-tuple $(a_1, \ldots, a_k) \in B^k$,

$$\tau(a_1,\ldots,a_k) \subset \sigma_R(a_1,\ldots,a_k). \tag{4.10}$$

Proof. If *R* is a regularity, then according to Theorem 4.1,

$$\sigma_R(a_1,...,a_k) = \{ (\varphi(a_1),...,\varphi(a_k)) \mid \varphi \in K \},$$
(4.11)

where $K = \widetilde{K}$ as Theorem 3.4 asserts.

If τ is a subspectrum of the form

$$\tau(a_1,\ldots,a_k) = \{(\varphi(a_1),\ldots,\varphi(a_k)) \mid \varphi \in K_1\}$$

$$(4.12)$$

and $R_{\tau} = R$, then $\widetilde{K}_1 = \widetilde{K} = K$ by Proposition 4.2. In particular, $K_1 \subset K$ and

$$\tau(a_1,\ldots,a_k) \subset \sigma_R(a_1,\ldots,a_k). \tag{4.13}$$

References

- V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), no. 2, 109–128.
- [2] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, vol. 139, Birkhäuser, Basel, 2003.
- [3] A. Velázquez González and A. Wawrzyńczyk, The projection property of a family of ideals in subalgebras of Banach algebras, Bol. Soc. Mat. Mexicana (3) 8 (2002), no. 2, 155–160.
- [4] A. Wawrzyńczyk, On ideals consisting of topological zero divisors, Studia Math. 142 (2000), no. 3, 245–251.
- [5] W. Żelazko, Banach Algebras, Elsevier, Amsterdam; PWN—Polish Scientific Publishers, Warsaw, 1973.
- [6] _____, An axiomatic approach to joint spectra. I, Studia Math. 64 (1979), no. 3, 249–261.

José SaúL Campos Orozco: Departamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana - Unidad Iztapalapa, 186 Avenida San Rafael Atlixco, Col. Vicentina, C.P. 09 340, Distrito Federal, AP 55-534, México

E-mail address: sul@xanum.uam.mx

Antoni Wawrzyńczyk: Departamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana - Unidad Iztapalapa, 186 Avenida San Rafael Atlixco, Col. Vicentina, C.P. 09 340, Distrito Federal, AP 55-534, México

E-mail address: awaw@xanum.uam.mx