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In 1977, Jacob defines Gα, for any 0 ≤ α <∞, as the set of all complex sequences x such
that limsup|xk|1/k ≤ α. In this paper, we apply Gu −Gv matrix transformation on the
sequences of operators given in the famous Walsh’s equiconvergence theorem, where we
have that the difference of two sequences of operators converges to zero in a disk. We
show that the Gu −Gv matrix transformation of the difference converges to zero in an
arbitrarily large disk. Also, we give examples of such matrices.

1. Introduction

If x = (xk) is a complex number sequence and A= [ank] is an infinite matrix, then Ax is
the sequence whose nth term is given by

(Ax)n =
∞∑
k=0

ankxk. (1.1)

The matrix A is called X −Y matrix if Ax is in the set Y whenever x is in X . For 0≤ α <∞,
let Gα = {x : limsup|xk|1/k ≤ α}. For various values of α, this sequence space has been
studied extensively by many authors (see [3, 8, 9]). In particular, Jacob [5, page 186]
proves the following result.

Theorem 1.1. An infinite matrix A is a Gu −Gv matrix if and only if for each number w
such that 0 < w < 1/v, there exist numbers B and s such that 0 < s < 1/u and∣∣ank∣∣wn ≤ Bsk (1.2)

for all n and k.

2. Preliminaries

Let f be an analytic function in the disk DR = {z ∈ C : |z| < R} for some R > 1. If f (z)
has the Taylor series expansion f (z)=∑∞

k=0 akz
k, then for each positive integer n, let

Sn(z; f )=
n∑

k=0

akz
k (2.1)
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be the nth partial sum of f (z). Also, let Ln(z; f ) denote the unique Lagrange interpolation
polynomial of degree at most n which interpolates f (z) in the (n+ 1)st roots of unity, that
is,

Ln
(
ωk; f

)= f
(
ωk
)

for k = 0,1, . . . ,n, (2.2)

where ω = e2πi/(n+1). Then the well-known Walsh’s equiconvergence theorem [10] states
that

lim
n→∞

[
Ln(z; f )− Sn(z; f )

]= 0 for z ∈DR2 , (2.3)

the convergence being uniform and geometric on any closed subdisk of DR2 .
This theorem has been extended in various ways by several authors. In [7], Price used

certain arithmetical means and in [6], Lou used commutators of interpolation operators
to enlarge the disk DR2 of equiconvergence. In [1], Brück applied certain summability
methods to the difference Ln − Sn in order to enlarge the disk DR2 . Also, in [2], the au-
thors extended the disk of convergence by substituting the nth partial sum Sn(z; f ) by
polynomials

Ql,n(z; f )=
n∑

k=0

l−1∑
j=0

ak+ j(n+1)z
k, (2.4)

where l is a fixed positive integer.
Our aim is to apply a certain class of matrices to Ln and Sn and enlarge the disk DR2 of

Walsh’s equiconvergence to Dρ for any ρ > R2.
Throughout this paper, we let Γ be any circle |t| = r with 1 < r < R. For any function f

analytic in DR, we have by Cauchy integral formula

Ln(z; f )= 1
2πi

∫
Γ

tn+1− zn+1

tn+1− 1
f (t)
t− z

dt

= 1
2πi

∫
Γ

[
1−

(
z

t

)n+1
]

tn+1

tn+1− 1
f (t)
t− z

dt.
(2.5)

Since |t| = r > 1, we get that

Ln(z; f )= 1
2πi

∫
Γ

[
1−

(
z

t

)n+1
] ∞∑

j=0

(
1

tn+1

) j f (t)
t− z

dt. (2.6)

Interchanging the summation and the integral, we see that

Ln(z; f )= 1
2πi

∫
Γ

[
1−

(
z

t

)n+1
]
f (t)
t− z

dt

+
1

2πi

∫
Γ

[
1−

(
z

t

)n+1
] ∞∑

j=1

1
t j(n+1)

f (t)
t− z

dt.

(2.7)
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Similarly, we can express Sn(z; f ) as follows:

Sn(z; f )= 1
2πi

∫
Γ

[
1−

(
z

t

)n+1
]
f (t)
t− z

dt. (2.8)

Therefore,

Ln(z; f )= Sn(z; f ) +
1

2πi

∫
Γ

[
1−

(
z

t

)n+1
] ∞∑

j=1

1
t j(n+1)

f (t)
t− z

dt. (2.9)

For simplicity, we will denote Ln(z; f ) by Ln(z) and Sn(z; f ) by Sn(z).

3. Main result

For 1 < r < R, choose ρ > R2, u > ρ/r, and 0 < v < 1. Let A be a Gu−Gv matrix. Therefore,
by Theorem 1.1, for any w such that 1 < w < 1/v, there exist numbers B and s such that
0 < s < 1/u and

∣∣ank∣∣wn ≤ Bsk ∀n,k. (3.1)

Consequently, the matrix A is a summability matrix which transforms null sequences
into null sequences. This is because

∞∑
k=0

∣∣ank∣∣≤ B

(1− s)wn
≤ B

(1− s)
,

∞∑
k=0

ank −→ 0 as n−→∞, ank −→ 0 as n−→∞.

(3.2)

We define λn(z)=∑∞
k=0 ankLk(z) and σn(z)=∑∞

k=0 ankSk(z). Then, for |z| < ρ, we obtain
that

σn(z)=
∞∑
k=0

ank
1

2πi

∫
Γ

f (t)
t− z

[
1−

(
z

t

)k+1
]
dt

= 1
2πi

∫
Γ

f (t)
t− z

[ ∞∑
k=0

ank −
(
z

t

) ∞∑
k=0

ank

(
z

t

)k]
dt.

(3.3)

The interchange of the integral and the summation is justified by showing that the series∑
k ank and

∑
k ank(z/t)k converge absolutely as follows. Using (3.1), we get that the series

∞∑
k=0

∣∣ank∣∣≤ B

wn

∞∑
k=0

sk, (3.4)



2650 Matrix transformations and Walsh’s equiconvergence theorem

which converges for each n since s < 1/u < 1 and that the series

∞∑
k=0

∣∣ank∣∣
∣∣∣∣zt
∣∣∣∣
k

≤ B

wn

∞∑
k=0

( |z|s
|t|

)k
, t ∈ Γ,

= B

wn

∞∑
k=0

( |z|s
r

)k
,

(3.5)

which also converges for each n, since |z|s/r < |z|/ru < |z|/ρ < 1. Also,

λn(z)=
∞∑
k=0

ank

[
Sk(z) +

1
2πi

∫
Γ

f (t)
t− z

(
1−

(
z

t

)k+1
) ∞∑

j=1

1
t j(k+1) dt

]

= σn(z) +
1

2πi

∫
Γ

f (t)
t− z

∞∑
j=1

[ ∞∑
k=0

ank
1

t j(k+1) −
∞∑
k=0

ank

(
z

t

)k+1 1
t j(k+1)

]
dt.

(3.6)

The interchange of the integral and the summation is justified as follows. Using (3.1), we
see that for each n and each j,

∞∑
k=0

∣∣ank∣∣ 1
|t| j(k+1) ≤

B

wnr j

∞∑
k=0

(
s

r j

)k

≤ B

wnr j
r j

(r j − s)
= B

wn(r j − s)

(3.7)

because s/r j < 1/ur j < 1/ρr j−1 < 1, and similarly

∞∑
k=0

∣∣ank∣∣
∣∣∣∣zt
∣∣∣∣
k+1 1
|t| j(k+1) ≤

B|z|
wnr j+1

∞∑
k=0

( |z|s
r j+1

)k

≤ B|z|
wnr j+1

r j+1(
r j+1−|z|s)

= B|z|
wn
(
r j+1−|z|s)

(3.8)

because |z|s/r j+1 < |z|s/r < 1.

Theorem 3.1. Let ρ > R2. Choose u > ρ/r, where 1 < r < R and 0 < v < 1 and let A be a
Gu−Gv matrix. Then

lim
n→∞

[
λn(z)− σn(z)

]= 0 ∀z ∈Dρ. (3.9)

Proof. Using the expressions obtained for λn(z) and σn(z), we get that

λn(z)− σn(z)= 1
2πi

∫
Γ

f (t)
t− z

∞∑
j=1

[ ∞∑
k=0

ank
1

t j(k+1) −
∞∑
k=0

ank

(
z

t

)k+1 1
t j(k+1)

]
dt. (3.10)
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Therefore using (3.7) and (3.8), for each n, we have that

∣∣λn(z)− σn(z)
∣∣≤ B

2πwn

∫
Γ

∣∣ f (t)
∣∣

|t− z|

[ ∞∑
j=1

1
r j − s

+
∞∑
j=1

|z|(
r j+1−|z|s)

]
dt. (3.11)

It can be easily proved that the two series on the right-hand side of the above inequality
converge by using the ratio test. Therefore, w > 1 implies that

lim
n→∞

[
λn(z)− σn(z)

]= 0 (3.12)

for each |z| < ρ. �

4. Examples

First, we give below an obvious example for such a matrix A. Choose u > ρ/r and v such
that 0 < v < 1. Define the matrix A by

ank = vn

tk
, t > u. (4.1)

For each w so that 0 < w < 1/v, we have

∣∣ank∣∣wn = (vw)n

tk
<

1
tk

, (4.2)

where 1/t < 1/u. Hence by Theorem 1.1, A is a Gu−Gv matrix.
Our next example is the Sonnenschein matrix A(g) = [ank] which is defined by [4,

page 257]

[
g(z)

]n = ∞∑
k=0

ankz
k for n≥ 1, (4.3)

where g is analytic at z = 0 and a00 = 1, and a0k = 0 for k ≥ 1. Clearly, for each n≥ 1,

ank = 1
k!

dk

dzk
[
g(z)

]n∣∣∣∣
z=0

. (4.4)

As we easily see that the first (n− 1) derivatives of [g(z)]n contains g(z) as its factor. So,
if g(0) = 0, then the first (n− 1) terms of the series

∑∞
k=0 ankz

k vanish and the matrix
A(g)= [ank] reduces to an upper triangular matrix.

Now, for u > ρ/r and 0 < v < 1, choose

l > max
{
u
(

1 +
1
v

)
,

3
2v

}
. (4.5)

Let g(z)= 1/(z− 2l) + 1/2l so that g(0)= 0. Therefore, the Sonnenschein matrix A(g)=
[ank] is an upper triangular matrix. Since g(z) is analytic at z = 0 and on D2l, [g(z)]n is
analytic on D2l. Let C = {z : |z| = l}. Then on C,

∣∣g(z)
∣∣≤ 1

|z− 2l| +
1
2l
≤ 3

2l
. (4.6)
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Therefore by Cauchy integral formula,

∣∣ank∣∣=
∣∣∣∣ 1

2πi

∫
C

[
g(z)

]n
tk+1

dt
∣∣∣∣

≤
(

3
2l

)n 1
lk

for k ≥ n > 0.

(4.7)

Then for any w such that 0 < w < 1/v, we have

∣∣ank∣∣wn ≤
(

3
2l

)n wn

lk

≤
(

3
2l

)n( 1
vl

)k
for k ≥ n (0 < v < 1)

< vn
(

1
vl

)k
since l >

3
2v

,

< (1 + v)n
(

1
vl

)k

=
(

1 + v

vl

)k
for k ≥ n,

(4.8)

where (1 + v)/vl = (1/l)(1 + 1/v) < 1/u. Therefore by Theorem 1.1, A(g) is a Gu−Gv ma-
trix.
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