sn-METRIZABLE SPACES AND RELATED MATTERS

ZHIMING LUO

Received 7 December 2004 and in revised form 27 July 2005

We give a mapping theorem on *sn*-metrizable spaces, discuss relationships among spaces with point-countable *sn*-networks, spaces with uniform *sn*-networks, spaces with locally countable *sn*-networks, spaces with σ -locally countable *sn*-networks, and *sn*-metrizable spaces, and obtain some related results.

1. Introduction and definitions

sn-networks were first introduced by Lin [12], which are the concept between weak bases and *cs*-networks. *sn*-metrizable spaces [6] (i.e., spaces with σ -locally finite *sn*-networks) are one class of generalized metric spaces, and they play an important role in metrization theory, see [6, 13]. In this paper, we give a mapping theorem on *sn*-metrizable spaces, discuss relationships among spaces with point-countable *sn*-networks, spaces with uniform *sn*-networks, spaces with locally countable *sn*-networks, spaces with σ -locally countable *sn*-networks, and *sn*-metrizable spaces, and obtain some related results.

In this paper, all spaces are regular and T_1 , all mappings are continuous and surjective. \mathbb{N} denotes the set of all natural numbers. ω denotes $\mathbb{N} \cup \{0\}$. For a family \mathcal{P} of subsets of a space *X* and $x \in X$, denote $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$. For two families \mathcal{A} and \mathcal{B} of subsets of *X*, denote $\mathcal{A} \land \mathcal{B} = \{A \cap B : A \in \mathcal{A} \text{ and } B \in \mathcal{B}\}$.

Definition 1.1. Let $f : X \to Y$ be a mapping.

(1) f is called a σ -mapping [1] if there exists a base \mathcal{B} for X such that $f(\mathcal{B})$ is a σ -locally finite family of subsets of Y.

(2) f is called a sequence-covering mapping [19] if each convergent sequence (including its limit point) of Y is the image of some convergent sequence (including its limit point) of X.

(3) *f* is called a 1-sequence-covering mapping [12] if for each $y \in Y$, there exists $x \in f^{-1}(y)$ satisfying the following condition. Whenever $\{y_n\}$ is a sequence of *Y* converging to a point *y* in *Y*, there exists a sequence $\{x_n\}$ of *X* converging to a point *x* in *X* such that each $x_n \in f^{-1}(y_n)$.

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:16 (2005) 2523–2531 DOI: 10.1155/IJMMS.2005.2523

2524 sn-metrizable spaces and related matters

Definition 1.2. Let \mathcal{P} be a cover of a space *X*.

(1) \mathcal{P} is called a *k*-network [18] for *X* if for each compact subset *K* of *X* and its open neighborhood *V*, there exists a finite subfamily \mathcal{P}' of \mathcal{P} such that $K \subset \cup \mathcal{P}' \subset V$.

(2) \mathcal{P} is called a *cs*-network for X if for each $x \in X$, its open neighborhood V, and a sequence $\{x_n\}$ converging to x, there exists $P \in \mathcal{P}$ such that $\{x_n : n \ge m\} \cup \{x\} \subset P \subset V$ for some $m \in \mathbb{N}$.

(3) \mathcal{P} is called a cs^* -network for X if for each $x \in X$, its open neighborhood V, and a sequence $\{x_n\}$ converging to x, there exist $P \in \mathcal{P}$ and a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k} : k \in \mathbb{N}\} \cup \{x\} \subset P \subset V$.

(4) *X* is called an \aleph -space if *X* has a σ -locally finite *k*-network.

Definition 1.3 [5]. Let *X* be a space, and $P \subset X$. Then, the following hold.

- (1) A sequence $\{x_n\}$ in X is called eventually in P, if $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P$.
- (2) *P* is called a sequential neighborhood of *x* in *X*, if whenever a sequence {*x_n*} in *X* converges to *x*, then {*x_n*} is eventually in *P*.
- (3) *P* is called sequential open in *X* if *P* is a sequential neighborhood of each of its points.
- (4) X is called a sequential space if any sequential open subset of X is open in X.

Definition 1.4. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a family of subsets of a space X satisfying that for each $x \in X$, the following exist.

- (a) \mathcal{P}_x is a network of x in X (i.e., $x \in \bigcap \mathcal{P}_x$ and for each neighborhood U of x in X, $P \subset U$ for some $P \in \mathcal{P}_x$).
- (b) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.
- (1) 𝒫 is called a weak base [3] for X if G ⊂ X such that for each x ∈ G, there exists P ∈ 𝒫_x satisfying P ⊂ G, then G is open in X, here 𝒫_x is called a weak base of x in X.
- (2) \mathcal{P} is called an *sn*-network [12] for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X, here \mathcal{P}_x is called an *sn*-network of x in X.
- (3) X is called *sn*-metrizable [6] (resp., *g*-metrizable [20]) if X has a σ -locally finite *sn*-network (resp., weak-base).
- (4) *X* is called *sn*-first countable [13] (resp., *g*-first countable) if *X* has an *sn*-network \mathcal{P} (resp., weak-base) such that each \mathcal{P}_x is countable.

Definition 1.5. Let \mathcal{P} be a cover of a space *X*.

(1) \mathcal{P} is called a uniform cover for X [2], if for each $x \in X$, whenever \mathcal{P}' is a countable infinite subset of $(\mathcal{P})_x$, then \mathcal{P}' is a network of x in X (i.e., $x \in \bigcap \mathcal{P}'$ and for each neighborhood U of x in X, $P \subset U$ for some $P \in \mathcal{P}'$).

(2) \mathcal{P} is called a uniform *sn*-network (resp., weak base, *cs*-network) for X if \mathcal{P} is both a uniform cover and *sn*-network (resp., weak base, *cs*-network) for X.

Remark 1.6. (1) For a space, weak base \Rightarrow *sn*-network \Rightarrow *cs*-network \Rightarrow *cs*^{*}-network. An *sn*-network for a sequential space is a weak base [12].

(2) *g*-metrizable spaces \Rightarrow *sn*-metrizable spaces \Rightarrow *s*-spaces \Leftrightarrow spaces with σ -locally finite *cs*^{*}-networks [4, 11].

(3) *g*-first countable spaces \Leftrightarrow sequential, *sn*-first countable spaces.

(4) Spaces with uniform weak-bases \Leftrightarrow sequential spaces with uniform *sn*-networks [12].

2. The characterization of spaces with uniform *sn*-networks

LEMMA 2.1 [15]. The following are equivalent for a space X.

- (1) *X* is a 1-sequence-covering compact image of a metric space.
- (2) X is a sequence-covering compact image of a metric space.
- (3) X has a uniform sn-network.
- (4) X has a uniform cs-network.

From Lemma 2.1 and [12, Proposition 2.3], we have the following theorem.

THEOREM 2.2. Let X be a space with a uniform sn-network. Then X has a point-countable *sn-network*.

THEOREM 2.3. The following are equivalent for a space X.

- (1) X has a uniform base.
- (2) *X* is a Fréchet space with a uniform sn-network.

(3) X is a sequential space with a uniform sn-network and contains no closed copy of S_2 .

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2)\Rightarrow(3)$ holds by [14, Corollary 2.1.11] and the fact that a space with a uniform *sn*-network has a point-countable *sn*-network.

 $(3)\Rightarrow(1)$. Suppose that X is a Fréchet space with a uniform *sn*-network. From Lemma 2.1, X is a sequence-covering compact image of a metric space. Let f be a sequence-covering compact map from the metric space M onto X. Then, by [11, Proposition 2.1.16(2)], f is quotient. Since X is Fréchet, then f is pseudo-open (see [11, Proposition 2.1.16(3)]). Hence X has a uniform base (see [11, Theorem 2.9.18]).

3. The characterization of *sn*-metrizable spaces

LEMMA 3.1 [6]. The following are equivalent for a space X.

- (1) X is sn-metrizable.
- (2) *X* has a σ -discrete sn-network.
- (3) *X* is an sn-first countable and \aleph -space.

THEOREM 3.2. The following are equivalent for a space X.

- (1) X is sn-metrizable.
- (2) *X* is a sequence-covering, compact, and σ -image of a metric space.
- (3) *X* is a 1-sequence-covering and σ -image of a metric space.

Proof. (1) \Rightarrow (2). Suppose *X* is *sn*-metrizable. From Lemma 3.1, *X* has a σ -discrete *sn*-network \mathcal{F} . Since *X* is regular, we can assume that each element of \mathcal{F} is closed in *X*. Put $\mathcal{F} = \bigcup \{\mathcal{B}_i : i \in \mathbb{N}\} = \bigcup \{\mathcal{F}_x : x \in X\}$, where \mathcal{B}_i is a discrete family of closed sets of *X*, and \mathcal{F}_x is a weak base of *x* in *X*. For each $i \in \mathbb{N}$, let $Q_i = \{x \in X : \mathcal{F}_x \cap \mathcal{B}_i = \phi\}$, $\mathcal{P}_i = \mathcal{B}_i \cup \{Q_i, X\}, \mathcal{P} = \bigcup \{\mathcal{P}_i : i \in \mathbb{N}\}$. Then \mathcal{P}_i is a locally finite cover of *X*, and \mathcal{P} is

2526 sn-metrizable spaces and related matters

a σ -locally finite *cs*-network for *X*. Let $\mathcal{P}_i = \{P_\alpha : \alpha \in A_i\}$, where \mathcal{P}_i is closed under finite intersections and $X \in \mathcal{P}_i \subset \mathcal{P}_{i+1}$. For each $i \in \mathbb{N}$, endow A_i with discrete topology, then A_i is a metric space. Put

$$M = \left\{ \alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} A_i : \{ P_{\alpha_i} : i \in \mathbb{N} \} \subset \mathcal{P} \text{ forms a network at some point } x(\alpha) \in X \right\},$$
(3.1)

and endow *M* with the subspace topology induced from the usual product topology of the family $\{A_i : i \in \mathbb{N}\}\$ of metric spaces, then *M* is a metric space. Since *X* is Hausdorff, $x(\alpha)$ is unique in *X* for each $\alpha \in M$. We define $f : M \to X$ by $f(\alpha) = x(\alpha)$ for each $\alpha \in M$. Because \mathcal{P} is a σ -locally finite *cs*-network for *X*, then *f* is surjective. For each $\alpha = (\alpha_i) \in$ $M, f(\alpha) = x(\alpha)$. Suppose that *V* is an open neighborhood of $x(\alpha)$ in *X*. Then there exists $n \in \mathbb{N}$ such that $x(\alpha) \in P_{\alpha_n} \subset V$. Set $W = \{c \in M :$ the *n*th coordinate of *c* is $\alpha_n\}$. Then *W* is an open neighborhood of α in *M*, and $f(W) \subset P_{\alpha_n} \subset V$. Hence *f* is continuous. We will show that *f* is a sequence-covering, compact, and σ -mapping.

(i) f is sequence-covering.

For each sequence $\{x_n\}$ converging to x_0 , we can assume that all $x'_n s$ are distinct, and that $x_n \neq x_0$ for each $n \in \mathbb{N}$. Set $K = \{x_m : m \in \omega\}$. Suppose that *V* is an open neighborhood of *K* in *X*. A subfamily \mathcal{A} of \mathcal{P}_i is called to hold the following property, which is denoted by F(K, V):

(a) \mathcal{A} is finite;

(b) for each $P \in \mathcal{A}$, $\phi \neq P \cap K \subset P \subset V$;

(c) for each $z \in K$, exists unique $P_z \in \mathcal{A}$ such that $z \in \mathcal{P}_z$;

(d) if $x_0 \in P \in \mathcal{A}$, then $K \setminus P$ is finite.

Since \mathcal{P} is a σ -locally finite *cs*-network for *X*, then the above construction can be realized, and we can assume that $\{\mathcal{A} \subset \mathcal{P}_i : \mathcal{A} \text{ holds the property } F(K, X)\} = \{\mathcal{A}_{ij} : j \in \mathbb{N}\}.$

For each $n \in \mathbb{N}$, put

$$\mathcal{P}'_n = \bigwedge_{i,j \le n} \mathcal{P}_{ij},\tag{3.2}$$

then $\mathcal{P}'_n \subset \mathcal{P}_n$ and \mathcal{P}'_n also holds the property F(K, X).

For each $i \in \mathbb{N}$, $m \in \omega$, and $x_m \in K$, there is $\alpha_{im} \in A_i$ such that $x_m \in P_{\alpha_{im}} \in \mathcal{P}'_i$. Let $\beta_m = (\alpha_{im}) \in \prod_{i \in \mathbb{N}} A_i$. It is easy to prove that $\{P_{\alpha_{im}} : i \in \mathbb{N}\}$ is a network of x_m in X. Then there is a $\beta_m \in M$ such that $f(\beta_m) = x_m$ for each $m \in \omega$. For each $i \in \mathbb{N}$, there is $n(i) \in \mathbb{N}$ such that $\alpha_{in} = \alpha_{io}$ when $n \ge n(i)$. Hence the sequence $\{\alpha_{in}\}$ converges to α_{io} in A_i . Thus the sequence $\{\beta_n\}$ converges to β_0 in M. This implies that f is sequence-covering.

(ii) *f* is a compact mapping.

For any $x \in X$, since $\{\alpha \in A_i : x \in P_\alpha\}$ is finite, put

$$L = \left(\prod_{n \in \mathbb{N}} \left\{ \alpha \in A_i : x \in P_\alpha \right\} \right) \cap X.$$
(3.3)

Then *L* is a compact subspace of *X*. In view of $f^{-1}(x) = L$, then *f* is a compact mapping.

(iii) f is a σ -mapping. For each $n \in \mathbb{N}$ and $\alpha_n \in A_n$, put

 $V(\alpha_1, \dots, \alpha_n) = \{ \beta \in M : \text{ for each } i \le n, \text{ the } i\text{th coordinate of } \beta \text{ is } \alpha_i \}.$ (3.4)

Let $\mathfrak{B} = \{V(\alpha_1, \dots, \alpha_n) : \alpha_i \in A_i \ (i \le n) \text{ and } n \in \mathbb{N}\}.$ Then \mathfrak{B} is a base for M.

To prove that *f* is a σ -mapping, we only need to check that for each $n \in \mathbb{N}$ and $\alpha_n \in A_n$, $f(V(\alpha_1,...,\alpha_n)) = \bigcap_{i \le n} P_{\alpha_i}$ because $f(\mathcal{B})$ is σ -locally finite in *X* by this result.

For each $n \in \mathbb{N}$, $\alpha_n \in A_n$, and $i \le n$, $f(V(\alpha_1,...,\alpha_n)) \subset P_{\alpha_i}$, then $f(V(\alpha_1,...,\alpha_n)) \subset \bigcap_{i\le n} P_{\alpha_i}$. On the other hand, for each $x \in \bigcap_{i\le n} P_{\alpha_i}$, there is $\beta = (\beta_j) \in M$ such that $f(\beta) = x$. For each $j \in \mathbb{N}$, $P_{\beta_j} \in \mathcal{P}_j \subset \mathcal{P}_{j+n}$, then there is $\alpha_{j+n} \in A_{j+n}$ such that $P_{\alpha_{j+n}} = P_{\beta_j}$. Set $\alpha = (\alpha_j)$. Then $\alpha \in V(\alpha_1,...,\alpha_n)$ and $f(\alpha) = x$. Thus $\bigcap_{i\le n} P_{\alpha_i} \subset f(V(\alpha_1,...,\alpha_n))$. Hence $f(V(\alpha_1,...,\alpha_n)) = \bigcap_{i\le n} P_{\alpha_i}$. Therefore, f is a σ -mapping.

 $(2)\Rightarrow(3)$. It is clear that every sequence-covering and compact mapping on a metric space is 1-sequence-covering (see [16, Theorem 4.4]).

 $(3)\Rightarrow(1)$. Suppose that $f: M \to X$ is a 1-sequence-covering σ -mapping, where M is a metric space. Since f is a σ -mapping, then $f(\mathcal{B})$ is σ -locally finite in X for some base \mathcal{B} for X. For each $x \in X$, there exists $\beta_x \in f^{-1}(x)$ satisfying Definition 1.1(3). Put

$$\mathcal{P}_x = \{ f(B) : \beta_x \in B \in \mathfrak{B} \}, \qquad \mathcal{P} = \bigcup \{ \mathcal{P}_x : x \in X \}, \tag{3.5}$$

it is easy to prove that \mathcal{P} is a *sn*-network for *X*. Thus \mathcal{P} is a σ -locally finite *sn*-network. This implies that *X* is *sn*-metrizable.

From Lemma 2.1 and Theorem 3.2, we have the following corollary.

COROLLARY 3.3. Let X be sn-metrizable, then X has a uniform sn-network.

4. The characterization of spaces with locally countable sn-networks

LEMMA 4.1 [9]. The following are equivalent for a space X.

(1) *X* has a locally countable *k*-network.

(2) *X* has a locally countable cs-network.

(3) *X* has a locally countable cs^* -network.

THEOREM 4.2. The following are equivalent for a space X.

(1) *X* has a locally countable sn-network.

(2) *X* is an sn-first countable space with a locally countable cs-network (k-network, cs^{*}-network).

Proof. (1) \Rightarrow (2) is clear. We show that (2) \Rightarrow (1). Suppose that *X* is an *sn*-first countable space with a locally countable *cs*-network. Let \mathcal{P} be a locally countable *cs*-network for *X* which is closed under finite intersections. For each $x \in X$, let $\{B(n,x) : n \in \mathbb{N}\}$ be a decrease *sn*-network at *x* in *X*. Put

$$\mathcal{F}_{x} = \{ P \in \mathcal{P} : B(n,x) \subset P \text{ for some } n \in \mathbb{N} \},$$

$$\mathcal{F} = \cup \{ \mathcal{F}_{x} : x \in X \}.$$
(4.1)

Obviously, $x \in \cap \mathcal{F}_x$ and \mathcal{F}_x is closed under finite intersections. Then \mathcal{F} satisfies Definition 1.4(a), (b). We claim that each element of \mathcal{F}_x is a sequential neighborhood at x in X. Otherwise, there exists $P \in \mathcal{F}_x$ such that P is not a sequential neighborhood at x in X. Then there exists a sequence $\{x_n\}$ converging to x such that for each $k \in \mathbb{N}$, $\{x_n : n > k\} \notin P$. Take $x_{n_1} \in \{x_n : n > 1\} \setminus P$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that each $x_{n_{k+1}} \in \{x_n : n > n_k\} \setminus P$. Obviously, x_{n_k} converges to x. Since $P \in \mathcal{F}_x$, then $B(m,x) \subset P$ for some $m \in \mathbb{N}$. Because B(m,x) is a sequential neighborhood at x in X, then $\{x\} \cup \{x_{n_k} : k \ge j\} \subset B(m,x)$ for some $j \in \mathbb{N}$, and so $\{x_{n_k} : k \ge j\} \subset P$, a contradiction. Hence \mathcal{F} is an *sn*-network for X. Obviously, $\mathcal{F} \subset \mathcal{P}$. Therefore \mathcal{F} is a locally countable *sn*-network for X.

THEOREM 4.3. A space with a locally countable sn-network is sn-metrizable.

Proof. Suppose that a space *X* has a locally countable *sn*-network. Then *X* is an *sn*-first countable space with a locally countable *k*-network by Theorem 4.2, and so *X* is a *k*-space with a locally countable *k*-network. By [10, Theorem 1], *X* is an \aleph -space. Thus *X* is *sn*-metrizable by Lemma 3.1.

5. The characterization of spaces with σ -locally countable *sn*-networks

THEOREM 5.1. For a space X, $(1) \Leftrightarrow (2) \Rightarrow (3)$ below hold.

- (1) *X* has a σ -locally countable sn-network.
- (2) *X* is an sn-first countable space with a σ -locally countable cs-network.
- (3) *X* is an sn-first countable space with a σ -locally countable k-network.

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2)\Rightarrow(3)$. Suppose that X is an *sn*-first countable space with a σ -locally countable *cs*-network. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally countable *cs*-network for X, where each \mathcal{P}_n is locally countable in X. We will show that \mathcal{P} is a *k*-network for X. Suppose that $K \subset V$ with K nonempty compact and V open in X. For each $n \in \mathbb{N}$, put

$$\mathcal{A}_n = \{ P \in \mathcal{P}_n : P \cap K \neq \Phi \text{ and } P \subset V \},$$
(5.1)

then \mathcal{A}_n is countable, and so $\mathcal{A} = \bigcup \{\mathcal{A}_n : n \in \mathbb{N}\}$ is countable. Denoting $\mathcal{A} = \{P_i : i \in \mathbb{N}\}$, then $K \subset \bigcup_{i \le n} P_i$ for some $n \in \mathbb{N}$. Otherwise, $K \notin \bigcup_{i \le n} P_i$ for each $n \in \mathbb{N}$, so choose $x_n \in K \setminus \bigcup_{i \le n} P_i$. Because $\{P \cap K : P \in \mathcal{P}\}$ is a countable *cs*-network for a subspace *K* and a compact space with a countable network is metrizable, then *K* is a compact metrizable space. Thus $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$, where $x_{n_k} \to x$. Obviously $x \in K$. Since \mathcal{P} is a *cs*-network for *X*, then there exist $m \in \mathbb{N}$ and $P \in \mathcal{P}$ such that $\{x_{n_k} : k \ge m\} \cup \{x\} \subset P \subset V$. Now, $P = P_j$ for some $j \in \mathbb{N}$. Take $l \ge m$ such that $n_l \ge j$, then $x_{n_l} \in P_j$. This is a contradiction. Therefore, $(2) \Rightarrow (3)$ holds.

 $(2) \Rightarrow (1)$. Suppose that *X* is an *sn*-first countable space with σ -locally countable *cs*-network. Let $\mathcal{P} = \bigcup \{\mathcal{P}_m : m \in \mathbb{N}\}$ be a σ -locally countable *cs*-network for *X*, where each \mathcal{P}_m is locally countable in *X* which is closed under finite intersections and $X \in \mathcal{P}_m \subset \mathcal{P}_{m+1}$,

and for each $x \in X$, let $\{B(n,x) : n \in \mathbb{N}\}$ be a decreasing *sn*-network of *x* in *X*. Put

$$\mathcal{F}_{m,x} = \{ P \in \mathcal{P}_m : B(n,x) \subset P \text{ for some } n \in \mathbb{N} \},$$

$$\mathcal{F}_x = \cup \{ \mathcal{F}_{m,x} : m \in \mathbb{N} \},$$

$$\mathcal{F}_m = \cup \{ \mathcal{F}_{m,x} : x \in X \},$$

$$\mathcal{F} = \cup \{ \mathcal{F}_x : x \in X \}.$$
(5.2)

Similar to the proof of Theorem 4.2, we can show that \mathcal{F} is an *sn*-network for *X*.

For each $m \in \mathbb{N}$, $\mathcal{F}_m \subset \mathcal{P}_m$, then \mathcal{F}_m is locally countable in *X*. Thus $\mathcal{F} = \bigcup \{\mathcal{F}_m : m \in \mathbb{N}\}$ is σ -locally countable in *X*. Therefore, $(2) \Rightarrow (1)$ holds.

LEMMA 5.2. A paracompact space with a σ -locally countable k-network is an \aleph -space.

Proof. Suppose that X is a paracompact space with a σ -locally countable k-network \mathcal{P} . Let $\mathcal{P} = \bigcup \{\mathcal{P}_i : i \in \mathbb{N}\}\)$, where each \mathcal{P}_i is locally countable in X. Since locally countable families are closed under finite unions, we can assume that each $\mathcal{P}_i \subset \mathcal{P}_{i+1}$. For each $i \in \mathbb{N}$, since \mathcal{P}_i is locally countable in X, then there exists an open cover \mathcal{U}_i of X such that any element of \mathcal{U}_i only intersects many countable elements of \mathcal{P}_i . Because X is paracompact, then \mathcal{U}_i has a locally finite open refinement \mathcal{V}_i . We will show that $\bigcup_{i \in \mathbb{N}} (\mathcal{P}_i \land \mathcal{V}_i)$ is a σ -locally finite k-network for X. For each $V \in \mathcal{V}_i$, let $\{P \in \mathcal{P}_i : V \cap P \neq \phi\} = \{P(V,n) : n \in \mathbb{N}\}$. Put $\mathcal{H}_{i,n} = \{P(V,n) \cap V : V \in \mathcal{V}_i\}$. Since \mathcal{V}_i is locally finite in X, then $\mathcal{H}_{i,n}$ also is. Now, $\mathcal{P}_i \land \mathcal{V}_i = \bigcup_{n \in \mathbb{N}} \mathcal{H}_{i,n}$, thus $\bigcup_{i \in \mathbb{N}} (\mathcal{P}_i \land \mathcal{V}_i)$ is σ -locally finite in X. Suppose that $K \subset W$ with K nonempty compact and W open in X. Then, there are $i \in \mathbb{N}$ and finite $\mathcal{P}_i^* \subset \mathcal{P}_i$ such that $K \subset \bigcup \mathcal{P}_i^* \subset W$. So $K \subset \bigcup \mathcal{V}_i^*$ for some finite $\mathcal{V}_i^* \subset \mathcal{V}_i$. As $\mathcal{P}_i^* \land \mathcal{V}_i^*$ is a finite family of $\mathcal{P}_i \land \mathcal{V}_i$, and $K \subset \bigcup (\mathcal{P}_i^* \land \mathcal{V}_i^*) \subset W$, then $\bigcup_{i \in \mathbb{N}} (\mathcal{P}_i \land \mathcal{V}_i)$ is a k-network for X. This implies that X is an N-space.

From Theorem 5.1 and Lemmas 5.2 and 3.1, we have the following theorem.

THEOREM 5.3. A paracompact space with a σ -locally countable sn-network is sn-metrizable.

6. Examples

Example 6.1. A space *X* has a point-countable *sn*-network $\neq X$ has a uniform *sn*-network. For each $n \in \mathbb{N}$, let C_n be a convergent sequence which includes a limit point p_n , and $C_n \cap C_m = \phi$ if $n \neq m$. And let $S = \bigoplus_{n \in \mathbb{N}} C_n$, and $M = S \bigoplus \mathbb{R}$. Then *M* is a separable, locally compact metric space. Put $Q = \{q_n : n \in \mathbb{N}\}$, and let *X* be the quotient space obtained from *M* by identifying p_n in *S* with q_n in \mathbb{R} for each $n \in \mathbb{N}$. Then *X* is a regular, non-Cauchy space, which has a point-countable weak base (see [21, Example 2.14(3)] or [14, Example 3.1.13(2)]). Obviously, *X* has a point-countable *sn*-network. By [17, Corollary 2], *X* is not a sequence-covering, quotient, and π -image of a metric space. Note that *X* is sequential, *X* is not a sequence-covering π -image of a metric space (see [11, Proposition 2.1.16(2)]). Thus *X* is not a sequence-covering compact image of a metric space. By Lemma 2.1, *X* has not any uniform *sn*-network.

2530 *sn*-metrizable spaces and related matters

Example 6.2. A space X has a uniform *sn*-network \neq X is *sn*-metrizable. Let

$$S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0\}, \qquad X = [0,1] \times S.$$
 (6.1)

And let

$$Y = [0,1] \times \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$
(6.2)

have the usual Euclidean topology as a subspace of $[0,1] \times S$. Define a typical neighborhood of (t,0) in *X* to be of the form

$$\{(t,0)\} \cup \left(\bigcup_{k \ge n} V\left(t,\frac{1}{k}\right)\right), \quad n \in \mathbb{N},$$
(6.3)

where V(t, 1/k) is a neighborhood of (t, 1/k) in $[0, 1] \times \{1/k\}$. Put

$$M = \left(\bigoplus_{n \in \mathbb{N}} [0,1] \times \left\{\frac{1}{n}\right\}\right) \oplus \left(\bigoplus_{t \in [0,1]} \{t\} \times S\right),\tag{6.4}$$

and define f from M onto X such that f is an obvious mapping.

Then f is a compact-covering, quotient, two-to-one mapping from the locally compact metric space M onto separable, regular, non-meta-Lindelöf space X (see [11, Example 2.8.16] or [8, Example 9.3]). It is easy to check that f is a 1-sequence-covering mapping. From Lemma 2.1, X has a uniform sn-network.

Because *X* is a sequential space, and a regular sequential space with a σ -locally countable *k*-network is meta-Lindelöf (see [10, Proposition 1]), then *X* has not any σ -locally countable *k*-network. So *X* is not an \aleph -space. By Lemma 3.1, *X* is not *sn*-metrizable.

Example 6.3. Let *Y* be a subset of \mathbb{R} such that $Q \subset Y \subset \mathbb{R}$ and $|Y| > \omega$. Let $X = Y \cup (\bigcup_{n \in \mathbb{N}} Q \times \{1/n\})$, and define a base \mathcal{B} for the desired topology on *X* as follows:

(1) if $x \in X - Y$, let $\{x\} \in \mathfrak{B}$,

(2) if $x \in Y$, then $\{\{x\} \cup (\bigcup_{n \ge m} ([a_{x,n}, x) \cup Q) \times \{1/m\}) : m \in \mathbb{N}, x > a_{x,n} \in \mathbb{R}\} \subset \mathcal{B}$. Then *X* is a separable, *sn*-metrizable space, which has not any countable *sn*-network (see [7, Example 2.3]). Thus the following holds:

X is *sn*-metrizable \neq *X* has a countable *sn*-network.

Example 6.4. Let $S = \{1/n : n \in \mathbb{N}\} \cup \{0\}$. Let $X = \omega_1 \times S$ and define a base \mathcal{B} for the desired topology on *X* as follows:

- (1) $\{\{x\}: x \in X \setminus \omega_1 \times \{0\}\} \subset \mathfrak{B},$
- (2) if $\alpha < \omega_1$, {{($\alpha, 0$)} $\cup (\bigcup_{n \ge m} (V(\alpha, n) \times \{1/n\})) : m \in \mathbb{N}, V(\alpha, n)$ is an open neighborhood α in ω_1 which has the order topology} $\subset \mathfrak{B}$.

Then X has a locally countable k-network, which is not an \aleph -space (see [11, Example 2.8.17]). From Lemma 4.1, X has a locally countable *cs*-network. Since X is not *sn*-metrizable, then X has not any locally countable *sn*-network by Theorem 4.3. Thus the

following holds.

- (1) *X* has a locally countable *cs*-network \neq *X* has a σ -locally finite *cs*-network.
- (2) *X* has a locally countable *cs*-network \neq *X* has a locally countable *sn*-network.

References

- P. Alexandroff, On some results concerning topological spaces and their continuous mappings, General Topology and Its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961), Academic Press, New York, 1962, pp. 41–54.
- [2] A. V. Arhangel'skii, On mappings of metric spaces, Dokl. Akad. Nauk SSSR 145 (1962), 245–247 (Russian).
- [3] _____, *Mappings and spaces*, Russian Math. Surveys **21** (1966), no. 4, 115–162 (Russian).
- [4] L. Foged, Characterizations of N-spaces, Pacific J. Math. 110 (1984), no. 1, 59–63.
- [5] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.
- [6] Y. Ge, On sn-metrizable spaces, Acta Math. Sinica 45 (2002), no. 2, 355–360 (Chinese).
- [7] _____, Spaces with countable sn-networks, Comment. Math. Univ. Carolin. 45 (2004), no. 1, 169–176.
- [8] G. Gruenhage, E. Michael, and Y. Tanaka, *Spaces determined by point-countable covers*, Pacific J. Math. 113 (1984), no. 2, 303–332.
- J. J. Li and W. Y. Cai, Notes on sequence-covering s-mappings, Acta Math. Sinica 43 (2000), no. 4, 757–762 (Chinese).
- [10] S. Lin, Spaces with a locally countable k-network, Northeast. Math. J. 6 (1990), no. 1, 39–44.
- [11] _____, Generalized Metric Spaces and Mappings, Science Press, Beijing, 1995.
- [12] _____, Sequence-covering s-mappings, Adv. Math. (China) 25 (1996), no. 6, 548–551 (Chinese).
- [13] _____, A note on the Arens' space and sequential fan, Topology Appl. 81 (1997), no. 3, 185– 196.
- [14] _____, Point-Countable Covers and Sequence-Covering Mappings, Science Press, Beijing, 2002.
- [15] S. Lin and P. F. Yan, On sequence-covering compact mappings, Acta Math. Sinica 44 (2001), no. 1, 175–182 (Chinese).
- [16] _____, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), no. 3, 301–314.
- [17] S. Lin, Y. C. Zhou, and P. F. Yan, On sequence-covering π-mappings, Acta Math. Sinica 45 (2002), no. 6, 1157–1164 (Chinese).
- [18] P. O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183–189.
- [19] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1 (1971), no. 2, 143–154.
- [20] _____, On defining a space by a weak base, Pacific J. Math. 52 (1974), 233–245.
- [21] Y. Tanaka, Symmetric spaces, g-developable spaces and g-metrizable spaces, Math. Japon. 36 (1991), no. 1, 71–84.

Zhiming Luo: Department of Information, Hunan Business College, Changsha, Hunan 410205, China

E-mail address: zhi_ming_luo@yahoo.com.cn