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In this work, the formula is given for the differential of the Hasimoto transformation in
Minkowski 3-space.

1. Introduction

Hasimoto [10] introduced the map from vortex filament solutions of Euler’s equations
for incompressible fluids in the local induction approximation to solutions of the non-
linear Schrödinger equation and he showed vortex filament equation is equivalent non-
linear Schrödinger equation. After this discovering of Hasimoto, several authors [1, 5, 9,
12, 13, 14, 15, 17, 20, 21, 22, 23, 24] studied the connection between the integrable non-
linear Schrödinger equation and the nonstretching vortex filament equation. Ding and
Inoguchi also presented this connection in Minkowski 3-space [6, 7, 8].

Langer and Perline derived the formula for the differential of the Hasimoto trans-
formation in 3D spaces [16]. We also present a formula for the differential formula of
Hasimoto transformation in Minkowski 3-space in this paper.

Since this construction has potential applications to further investigation using the
inverse scattering scheme and finite-gap solutions, much works have been revived by sev-
eral authors. In recent years, Langer and Perline found a recursion relation which gener-
ates the hierarchy of space curve equations which maps by Hasimoto transformation and
nonlinear Schrödinger equation [18]. Calini and Ivey [2, 3, 4] studied finite-gap solutions
of the vortex filament equation. Holm and Stechmann also investigated vortex solution
motion driven by fluid helicity [11].

2. Nonlinear Schrödinger equation

Definition 2.1. The motion of very thin isolated vortex filament X = X(s, t) of incom-
pressible unbounded fluid by its own induction is described asymptotically by

∂X

∂t
= κb, (2.1)
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where s is the length measured along the filament, t the time, κ the curvature, b the unit
vector in the direction of the binormal [10].

Theorem 2.2. The binormal motion of timelike curves in the Minkowski 3-space is
equivalent to the nonlinear Schrödinger equation (NLS−) of repulsive type

iψt +ψ′′ − 1
2

∣∣〈ψ,ψ〉∣∣2
ψ = 0. (2.2)

Proof. The Frenet-Serret formulas for curve γ is given by
T

′

n′

b′


=


 0 ε2κ 0
−ε1κ 0 −ε3τ

0 ε2τ 0




Tn
b


 , (2.3)

where κ= √|〈T′,T′〉| is the curvature of γ, τ is the torsion, and 〈T ,T〉 = ε1, 〈n,n〉 = ε2,
〈b,b〉 = ε3 are causal characters of γ. Here are the tangent vector field T , binormal vector
field b, and principal normal vector field n.

We consider binormal motion of timelike curves. In this case

ε1 =−1, ε2 = 1, ε3 = 1;

T × b =−n, b= T ×n;
(2.4)

and the Frenet formula is

T′ = κn, n′ = κT − τb, b′ = τn. (2.5)

We get binormal motion vortex filament X = X(s, t),

T = ∂X

∂t
(s, t)= κ(s, t)B(s, t),

∂T

∂t
(s, t)= ∂X

∂s∂t
= κ′b+ κτn,

(2.6)

where a prime denotes ∂/∂s.
With differentiating (2.6) as to s,

∂2T

∂s2
= κ′n+ κ2T − κτb. (2.7)

Then

∂T

∂t
= T × ∂2T

∂s2
. (2.8)

We will show that the binormal motion of unit speed timelike curves is equivalent to
the nonlinear Schrödinger equation of repulsive type (NLS−).

We get

ξ1 = T , ξ2 = (n+ ib)exp
(
− i
∫ s

0
τds̃
)

, ψ = κexp
(
− i
∫ s

0
τds̃
)
. (2.9)
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Equation (2.5) can be written as follows:

ξ′1 =
1
2

(
ψξ2 +ψξ2

)
, ξ′2 = ψξ1,

∂ξ1

∂t
= 1

2
i
(
ψ′ξ2−ψ′ξ2

)
,

∂ξ2

∂t
=−iψ′ξ1 + iRξ2,

(2.10)

where R is a real function of s and t. Let V = (ξ1,ξ2,ξ3) be a pseudo-unitary matrix. We
have

∂

∂s



ξ1

ξ2

ξ2


=




0
1
2
ψ

1
2
ψ

ψ 0 0

ψ 0 0





ξ1

ξ2

ξ2


 , Vs = YV ,

∂

∂t



ξ1

ξ2

ξ2


=




0 −1
2
iψ′

1
2
iψ′

−iψ′ iR 0

iψ′ 0 −iR





ξ1

ξ2

ξ2


 , Vt = ZV.

(2.11)

The integrability condition Yt −Zt − [Y ,Z]= 0 of (2.10) denotes

R′ = 1
2

(
ψ′ψ +ψ′ψ

)
, (2.12)

ψt − iψ′′ + iRψ = 0. (2.13)

From (2.12),

R= 1
2

(
ψψ +A

)
. (2.14)

Using (2.14) and (2.13), we obtain

iψt +ψ′′ − 1
2
|ψ|2ψ = 0. (2.15)

This form is equivalent to the nonlinear Schrödinger equation of repulsive type (NLS−).
�

Theorem 2.3. The binormal motion of spacelike curves in the Minkowski 3-space is equiv-
alent to the nonlinear heat system (see [1])

rt = rss + r2q,

qt =−qss− q2r.
(2.16)

3. The differential formula in Minkowski 3-space

We get the space of curves with nonvanishing curvature Υ = {γ : [0, l] → R3
1 : κ �= 0},

where l =∞. U = iT + jn+ kb is vector field along γ where i, j, k are functions on [0, l].
U must satisfy i′ = jκ for arclength-preserving condition.
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We can add on a tangential term for the resulting vector field perserving arclength
parametrization. For this reason, we define the linear “normalization operator”

�U = ε1

(∫ s
0
jκdu

)
T + jn+ kb. (3.1)

Here vector fields are vector fields whose components are expressed as to κ, τ, and their
derivatives in Minkowski 3-space.

3.1. The differential of the Hasimoto transformation for timelike curves. For the first
time in literature, conclusions of the formula of the differential of the Hasimoto transfor-
mation were presented by Langer and Perline [16]. In this paper, we also state conclusions
and this formula for the first time in Minkowski 3-space.

Hasimoto transformation will be written as

�(γ)= ψ = κρ, (3.2)

where

ρ(s)= e−i
∫ s

0 τdu. (3.3)

The differential of � can be expressed as

d�(U)= ε1
〈
ζ2,�2U

〉
+ icψ. (3.4)

ζ2 is the complex vector field

ζ2 = (n+ ib)ρ, (3.5)

� is the linear “recursion operator” as given by

�U =�
(
T ×U ′), (3.6)

× is the Minkowski cross product, and c is a real constant involving boundary terms.
Considering brevity, we write the differential formula as follows:

d�(U)≡�(U)= ε1ρ
〈

(n+ ib),�2U
〉
. (3.7)

We compute differential formula to the field U = κb. Thus

U ′ = κ′b+ κτN ,

T ×U ′ = κ′T × b+ κτT ×n.
(3.8)

From (2.4),

T ×U ′ = −κ′n+ κτb,

�U =�
(
T ×U ′)= 1

2
κ2T − κ′n+ κτb.

(3.9)
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Continuing,

(
�U

)′ = (1
2
κ3− κ′′ + κτ2

)
n+

(
2κ′τ + κτ′

)
b,

T × (�U
)′ = (1

2
κ3− κ′′ + κτ2

)
T ×n+

(
2κ′τ + κτ′

)
T × b.

(3.10)

From (2.4),

T × (�U)′ =
(

1
2
κ3− κ′′ + κτ2

)
b− (2κ′τ + κτ′

)
n,

�2U =−1
2
κ2τT − (2κ′τ + κτ′

)
n+

(
1
2
κ3 + κ′′ − κτ2

)
b,

(3.11)

and as result

�(U)= ρ
[(

2κ′τ + κτ′
)− i(1

2
κ3− κ′′ + κτ2

)]
. (3.12)

We can give some results of this formula. First, differentiating ψ = κρ, one gets

ψ′ = ρ(κ′ − iκτ),
ψ′′ = ρ[(κ′′ − κτ2)− i(2κ′τ + κτ′

)]
.

(3.13)

The filament flow γt =U induces a flow on ψ satisfying

iψt +ψ′′ − 1
2

∣∣〈ψ,ψ
〉∣∣2

ψ = 0. (3.14)

This form is equivalent to (2.15), the nonlinear Schrödinger equation of repulsive type.

3.2. The differential of the Hasimoto transformation for spacelike curves. The Hasi-
moto transformation is given by

�i(γ)= κρi, i= 1,2, (3.15)

where the differential of � can be expressed as

d�i(U)= ε1
〈
ζi+1,�2U

〉
, i= 1,2,

ζ1 = T , ζ2 = (n+ b)ρ1, ζ3 = (n− b)ρ2,
(3.16)
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where

ρ1(s)= exp
(
−
∫ s

0
τ du

)
,

ρ2(s)= exp
(∫ s

0
τ du

)
,

(3.17)

and finally we formula can be written as

d�i(U)≡�i(U)= ε1
〈
ζi+1,�2U

〉
, i= 1,2. (3.18)

We compute the differential formula for vector field U = κb. Thus

U ′ = κ′b+ κτn,

T ×U ′ = κ′T × b+ κτT ×n.
(3.19)

Since

T × b=−ε3n b = ε2T ×n,

T ×U ′ = κ′n+ κτb,

�U =�
(
T ×U ′)= 1

2
κ2T + κ′n+ κτb,

(�U)′ =
(

1
2
κ3 + κ′′ + κτ2

)
n+

(
2κ′τ + κτ′

)
b,

T × (�U)′ =
(

1
2
κ3 + κ′′ + κτ2

)
T ×n+

(
2κ′τ + κτ′

)
T × b.

(3.20)

From (3.20),

�2U = T × (�U)′ = ···+
(

1
2
κ3 + κ′′ + κτ2

)
b+
(
2κ′τ + κτ′

)
n, (3.21)

and as result

�1(U)= ε1ρ1
〈

(n+ b),�2U
〉= ρ1

(
2κ′τ + κτ′ − κ′′ − κτ2− 1

2
κ3
)

,

�2(U)= ε1ρ2
〈

(n− b),�2U
〉= ρ2

(
2κ′τ + κτ′ + κ′′ + κτ2 +

1
2
κ3
)
.

(3.22)

We can give some results of this formula : with differentianting q = κρ1 and r = κρ2,
we obtain

r′ = rs = ρ2
(
κ′ + κτ

)
,

q′ = qs = ρ1
(
κ′ − κτ),

r′′ = rss = ρ2
[(
κ′′ + κτ2 + 2κ′τ + κτ′

)]
,

q′′ = qss = ρ1
[(
κ′′ + κτ2− 2κ′τ − κτ′)].

(3.23)
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We conclude that the filament flow γt =U induces a flow on q and r satisfying

rt = d�1(U)= rss + r2q,

qt = d�2(U)=−qss− q2r.
(3.24)

This form is equivalent to the nonlinear heat equation (2.16).
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