ON THE MAXIMUM MODULUS OF A POLYNOMIAL AND ITS DERIVATIVES

K. K. DEWAN AND ABDULLAH MIR

Received 18 February 2005 and in revised form 5 April 2005

Let $f(z)$ be an arbitrary entire function and $M(f, r)=\max _{|z|=r}|f(z)|$. For a polynomial $P(z)$ of degree n, having no zeros in $|z|<k, k \geq 1$, Bidkham and Dewan (1992) proved $\max _{|z|=r}\left|P^{\prime}(z)\right| \leq\left(n(r+k)^{n-1} /(1+k)^{n}\right) \max _{|z|=1}|P(z)|$ for $1 \leq r \leq k$. In this paper, we generalize as well as improve upon the above inequality.

1. Introduction and statement of results

Let $P(z)$ be a polynomial of degree n and $M(P, r)=\max _{|z|=r}|P(z)|$, then according to Bernstein's inequality

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

The result is best possible and equality in (1.1) is obtained for $P(z)=\alpha z^{n}, \alpha \neq 0$.
If we restrict ourselves to the class of polynomials not vanishing in $|z|<1$, then Erdös conjectured and Lax [4] proved

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1.2}
\end{equation*}
$$

Inequality (1.2) is best possible and the extremal polynomial is $P(z)=\alpha+\beta z^{n}$ with $|\alpha|=$ $|\beta|$.

As an extension of (1.2), Malik [5] proved the following.
Theorem 1.1. If $P(z)$ is a polynomial of degree n which does not vanish in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|P(z)| . \tag{1.3}
\end{equation*}
$$

The result is best possible and equality holds for $P(z)=(z+k)^{n}$.
Further, as a generalization of (1.3), Bidkham and Dewan [1] proved the following theorem.

Theorem 1.2. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$, then for $1 \leq \rho \leq k$,

$$
\begin{equation*}
\max _{|z|=\rho}\left|P^{\prime}(z)\right| \leq \frac{n(\rho+k)^{n-1}}{(1+k)^{n}} \max _{|z|=1}|P(z)| . \tag{1.4}
\end{equation*}
$$

The result is best possible and equality in (1.4) holds for $P(z)=(z+k)^{n}$.
In this paper, we obtain the following result which is a generalization as well as an improvement of Theorem 1.2.

Theorem 1.3. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$, then for $0 \leq r \leq \rho \leq k$,

$$
\begin{align*}
\max _{|z|=\rho} & \left|P^{\prime}(z)\right| \\
& \leq \frac{n(\rho+k)^{n-1}}{(k+r)^{n}}\left\{1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(k^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right\} \times M(P, r) . \tag{1.5}
\end{align*}
$$

Remark 1.4. Since it is well known that if $P(z)=\sum_{v=0}^{n} a_{v} z^{v}, P(z) \neq 0$ in $|z|<k, k \geq 1$, then $\left|a_{1}\right| /\left|a_{0}\right| \leq n / k$, the above theorem with $r=1$ gives a bound that is much better than obtainable from Theorem 1.2.

If we assume $P^{\prime}(0)=0$ in the above theorem, we get the following result.
Corollary 1.5. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$ and $P^{\prime}(0)=0$, then for $0 \leq r \leq \rho \leq k$,

$$
\begin{equation*}
\max _{|z|=\rho}\left|P^{\prime}(z)\right| \leq \frac{n(\rho+k)^{n-1}}{(k+r)^{n}}\left\{1-\frac{k(k-\rho)(\rho-r) n}{\left(k^{2}+\rho^{2}\right)(k+\rho)}\left(\frac{k+r}{k+\rho}\right)^{n-1}\right\} M(P, r) . \tag{1.6}
\end{equation*}
$$

2. Lemmas

We require the following lemmas for the proof of the theorem. The first lemma is due to Govil et al. [2].
Lemma 2.1. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having all its zeros in $|z| \geq k \geq$ 1 , then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{\left(1+k^{2}\right) n\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|} \max _{|z|=1}|P(z)| . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having no zeros in $|z|<k, k>0$, then for $0 \leq r \leq \rho \leq k$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{r+k}{\rho+k}\right)^{n} M(P, \rho) . \tag{2.2}
\end{equation*}
$$

There is equality in (2.2) for $P(z)=(z+k)^{n}$.

The above lemma is due to Jain [3].
Lemma 2.3. If $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n having no zeros in $|z|<k$, $k \geq 1$, then for $0 \leq r \leq \rho \leq k$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{k+r}{k+\rho}\right)^{n}\left\{1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(k^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right\}^{-1} \times M(P, \rho) \tag{2.3}
\end{equation*}
$$

Proof. Since $P(z)$ has no zeros in $|z|<k, k \geq 1$, therefore, the polynomial $T(z)=P(t z)$ where $0 \leq t \leq k$ has no zeros in $|z|<k / t$, where $k / t \geq 1$. Using Lemma 2.1 with the polynomial $T(z)$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|T^{\prime}(z)\right| \leq n\left\{\frac{n\left|a_{0}\right|+k^{2} / t^{2}\left|t a_{1}\right|}{\left(1+k^{2} / t^{2}\right) n\left|a_{0}\right|+2\left(k^{2} / t^{2}\right)\left|t a_{1}\right|}\right\} \max _{|z|=1}|T(z)| \tag{2.4}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\max _{|z|=t}\left|P^{\prime}(z)\right| \leq n\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} \max _{|z|=t}|P(z)| . \tag{2.5}
\end{equation*}
$$

Now for $0 \leq r \leq \rho \leq k$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{align*}
\left|P\left(\rho e^{i \theta}\right)-P\left(r e^{i \theta}\right)\right| & \leq \int_{r}^{\rho}\left|P^{\prime}\left(t e^{i \theta}\right)\right| d t \\
& \leq \int_{r}^{\rho} n\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} \max _{|z|=t}|P(z)| d t \quad(\text { by }(2.5)) \tag{2.6}
\end{align*}
$$

which implies on using inequality (2.2) of Lemma 2.2,

$$
\begin{align*}
\left|P\left(\rho e^{i \theta}\right)-P\left(r e^{i \theta}\right)\right| & \leq \int_{r}^{\rho} n\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\}\left(\frac{k+t}{k+r}\right)^{n} M(P, r) d t \\
& \leq \frac{n M(P, r)}{(k+r)^{n}} \int_{r}^{\rho}\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\}(k+t)^{n} d t \tag{2.7}
\end{align*}
$$

2644 On the maximum modulus of a polynomial and its derivatives
which gives, for $0 \leq r \leq \rho \leq k$,

$$
\begin{align*}
& M(P, \rho) \\
& \leq\left[1+\frac{n}{(k+r)^{n}} \int_{r}^{\rho}\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|}\right\}(k+t)^{n} d t\right] M(P, r) \\
& \leq\left[1+\frac{n(k+\rho)}{(k+r)^{n}}\left\{\frac{n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\} \int_{r}^{\rho}(k+t)^{n-1} d t\right] M(P, r) \\
& =\left[1-\left\{\frac{(k+\rho)\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\}+\left\{\frac{(k+\rho)\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\}\left(\frac{k+\rho}{k+r}\right)^{n}\right] M(P, r) \\
& =\left[\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}+\left\{1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\}\left(\frac{k+\rho}{k+r}\right)^{n}\right] M(P, r) \\
& =\left(\frac{k+\rho}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right)}{\left(k^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left\{1-\left(\frac{k+r}{k+\rho}\right)^{n}\right\}\right] M(P, r) \\
& =\left(\frac{k+\rho}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \times \frac{\rho-r}{(k+\rho)\{1-((k+r) /(k+\rho))\}}\right. \\
& \left.\left.\quad \times\left\{1-\left(\frac{k+r}{k+\rho}\right)^{n}\right\}\right] M(P, r)\right] M(P, r),
\end{align*}
$$

from which inequality (2.3) follows.

3. Proof of theorem

Since the polynomial $P(z)=\sum_{v=0}^{n} a_{v} z^{v}$ has no zero in $|z|<k$, where $k \geq 1$, therefore, it follows that $F(z)=P(\rho z)$ has no zeros in $|z|<k / \rho$ where $k / \rho \geq 1$. Applying inequality (1.3) to the polynomial $F(z)$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|F^{\prime}(z)\right| \leq \frac{n}{1+k / \rho} \max _{|z|=1}|F(z)|, \tag{3.1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{\rho+k} \max _{|z|=\rho}|F(z)| . \tag{3.2}
\end{equation*}
$$

Now if $0 \leq r \leq \rho \leq k$, then applying inequality (2.3) of Lemma 2.3 to (3.2), it follows that

$$
\begin{align*}
\max _{|z|=\rho}\left|P^{\prime}(z)\right| \leq & \frac{n(k+\rho)^{n-1}}{(k+r)^{n}}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(k^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right] \tag{3.3}\\
& \times \max _{|z|=r}|P(z)|,
\end{align*}
$$

which is (1.5) and the theorem is proved.

Acknowledgment

The authors are grateful to the referee for valuable suggestions.

References

[1] M. Bidkham and K. K. Dewan, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl. 166 (1992), no. 2, 319-324.
[2] N. K. Govil, Q. I. Rahman, and G. Schmeisser, On the derivative of a polynomial, Illinois J. Math. 23 (1979), no. 2, 319-329.
[3] V. K. Jain, Converse of an extremal problem in polynomials. II, J. Indian Math. Soc. (N.S.) 60 (1994), no. 1-4, 41-47.
[4] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
[5] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. (2) 1 (1969), 57-60.
K. K. Dewan: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India

E-mail address: kkdewan123@yahoo.co.in
Abdullah Mir: Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India

E-mail address: abdullah_mir@rediffmail.com

