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Using the integral expression of Mathieu’s series and some integral and analytic inequal-
ities involving periodic functions and the generating function of Bernoulli numbers, we
present several new inequalities and estimates for Mathieu’s series and generalize Math-
ieu’s series. Two open problems are proposed.

1. Introduction

In 1890, Mathieu defined S(r) in [10] as

S(r)=
∞∑
n=1

2n(
n2 + r2

)2 , r > 0, (1.1)

and conjectured that S(r) < 1/r2. We call formula (1.1) Mathieu’s series.
This conjecture was proved in 1952 by Berg in [2]. Since then, various papers appeared

providing interesting new inequalities involving S(r). Please refer to references listed in
this paper.

In [9], Makai proved

1
r2 + 1/2

< S(r) <
1
r2
. (1.2)

Alzer et al. in [1] obtained

1
x2 + 1/

(
2ζ(3)

) < S(x) <
1

x2 + 1/6
, (1.3)

where ζ denotes the zeta function. The inequalities in (1.3) are sharp: the constants
1/(2ζ(3)) and 1/6 are the best possibe.

The integral form of Mathieu’s series (1.1) was given in [3, 4] by

S(r)= 1
r

∫∞
0

x

ex − 1
sin(rx)dx. (1.4)
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In this paper, using the integral expression (1.4) of Mathieu’s series and certain in-
equalities involving periodic functions and the generating function of Bernoulli numbers,
some new inequalities and estimates for Mathieu’s series are established and Mathieu’s se-
ries is generalized. At the end, two open problems are proposed.

2. General results

In this section, we will establish several general theorems and inequalities involving peri-
odic functions and then obtain some general inequalities for Mathieu’s series.

Lemma 2.1. Let ψ(x) be an integrable function satisfying ψ(x) = −ψ(x + T), where T is
a given positive number, and ψ(x) ≥ 0 for x ∈ [0,T], let f (x) and g(x) be two integrable
functions on [0,2T] such that

f (x)− g(x)≥ f (x+T)− g(x+T) (2.1)

on [0,T]. Then

∫ 2T

0
ψ(x) f (x)dx ≥

∫ 2T

0
ψ(x)g(x)dx. (2.2)

Proof. By easy computation, it is deduced that

∫ 2T

0
ψ(x)

[
f (x)− g(x)

]
dx

=
∫ T

0
ψ(x)

[
f (x)− g(x)

]
dx+

∫ 2T

T
ψ(x)

[
f (x)− g(x)

]
dx

=
∫ T

0
ψ(x)

[
f (x)− g(x)

]
dx+

∫ T
0
ψ(x+T)

[
f (x+T)− g(x+T)

]
dx

=
∫ T

0
ψ(x)

{[
f (x)− g(x)

]− [ f (x+T)− g(x+T)
]}
dx

≥ 0.

(2.3)

The proof is complete. �

Corollary 2.2. Let ψ(x) �≡ 0 be an integrable periodic function with period 2T > 0 satis-
fying ψ(x)=−ψ(x+T) and ψ(x)≥ 0 for x ∈ [0,T]. If f (x) is an integrable function such
that f (x)≥ f (x+T) on [0,T], then

∫ 2T

0
ψ(x) f (x)dx ≥ 0. (2.4)

Corollary 2.3. Let f (x) be an integrable function such that f (x) ≥ f (x + π) on [0,π],
then

∫ 2π

0
f (x)sinxdx ≥ 0. (2.5)

As a direct consequence of Lemma 2.1, we have the following theorem.
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Theorem 2.4. Let Φ1 and Φ2 be two integrable functions such that x/(ex − 1)−Φ1(x) and
Φ2(x)− x/(ex − 1) are both increasing. Then, for any positive number r,

1
r

∫∞
0
Φ2(x)sin(rx)dx ≤

∞∑
n=1

2n(
n2 + r2

)2 ≤
1
r

∫∞
0
Φ1(x)sin(rx)dx. (2.6)

Proof. The function ψ(x)= sin(rx) has a period 2π/r, and ψ(x)=−ψ(x+π/r).
Since f (x)= x/(ex − 1)−Φ1(x) is increasing, for any α > 0, we have f (x+ α)≥ f (x).

Therefore, from Corollary 2.2, we obtain

∫ 2(k+1)π/r

2kπ/r

[
x

ex − 1
−Φ1(x)

]
sin(rx)dx ≤ 0,

∫ 2(k+1)π/r

2kπ/r

x

ex − 1
sin(rx)dx ≤

∫ 2(k+1)π/r

2kπ/r
Φ1(x)sin(rx)dx.

(2.7)

Then, from formula (1.4), we have

S(r)= 1
r

∞∑
k=0

∫ 2(k+1)π/r

2kπ/r

x

ex − 1
sin(rx)dx

≤ 1
r

∞∑
k=0

∫ 2(k+1)π/r

2kπ/r
Φ1(x)sin(rx)dx

= 1
r

∫∞
0
Φ1(x)sin(rx)dx.

(2.8)

The right-hand side of inequality (2.6) follows.
Similar arguments yield the left-hand side of inequality (2.6). �

3. The first concrete result

Using Theorem 2.4 obtained in the previous section, now we will give the first concrete
estimate for Mathieu’s series by monotonicity of difference between a function related to
the exponential function and the generating function x/(ex − 1) of Bernoulli numbers.

Proposition 3.1. The function

g(x)= x

ex − 1
− x2

e3x − ex (3.1)

is decreasing with x > 0.

Proof. The proof follows from elementary analysis and standard argument. �

Theorem 3.2. For any positive number r > 0,

∞∑
n=1

2n(
n2 + r2

)2 ≥
2
(
r2− 3

)
(
1 + r2

)3 +
π3

8r
sech2

(
πr

2

)
tanh

(
πr

2

)
. (3.2)
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Proof. In [15, page 356], the following formula is given:

∫∞
0

x2m sin(ax)
e(2n+1)αx − e(2n−1)αx

dx = (−1)m
∂2m

∂a2m

[
π

4α
tanh

aπ

2α
−

n∑
ν=1

a

a2 + (2ν− 1)2α2

]
, (3.3)

where α > 0 and m,n= 0,1,2, . . . . If n= 0 in formula (3.3), then the summation terms are
omitted.

Therefore, we have

∫∞
0

x2 sin(rx)
e3x − ex dx =− ∂2

∂r2

[
π

4
tanh

πr

2
− r

r2 + 1

]

= 1

8
(
1 + r2

)3

[
16r

(
r2− 3

)
+π3(r2 + 1

)3
sech2

(
πr

2

)
tanh

(
πr

2

)]
.

(3.4)

From Theorem 2.4 and Proposition 3.1, inequality (3.2) follows. �

4. The second concrete result

In this section, by an inequality relating to the generating function x/(ex − 1) of Bernoulli
numbers, using the periodicity of the sine function, and reducing the integral expression
(1.4) of Mathieu’s series to another series, we will formulate another meaningful estimate
to Mathieu’s series.

Proposition 4.1. For x > 0,

1
ex
<

x

ex − 1
<

1
ex/2

. (4.1)

Proof. This follows from standard argument. �

Theorem 4.2. For any positive number r > 0,

4
(
1 + r2

)(
e−π/r + e−π/(2r)

)− 4r2− 1(
e−π/r − 1

)(
1 + r2

)(
1 + 4r2

) ≤ S(r)≤
(
1 + 4r2

)(
e−π/r − e−π/(2r)

)− 4
(
1 + r2

)
(
e−π/r − 1

)(
1 + r2

)(
1 + 4r2

) .

(4.2)

Proof. For r > 0, using (1.4), by direct calculation, we have

S(r)= 1
r

∞∑
k=0

[∫ (2k+1)π/r

2kπ/r

x sin(rx)
ex − 1

dx+
∫ (2k+2)π/r

(2k+1)π/r

x sin(rx)
ex − 1

dx

]
. (4.3)
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The inequality (4.1) gives us

r
(
1 + e−π/r

)
(
1 + r2

)(
1− e−2π/r

) = ∞∑
k=0

∫ (2k+1)π/r

2kπ/r

sin(rx)
ex

dx ≤
∞∑
k=0

∫ (2k+1)π/r

2kπ/r

x sin(rx)
ex − 1

dx

≤
∞∑
k=0

∫ (2k+1)π/r

2kπ/r

sin(rx)
ex/2

dx = 4r
(
1 + e−π/(2r)

)
(
1 + 4r2

)(
1− e−π/r) ,

− 4r
(
e−π/r + e−π/(2r)

)
(
1 + 4r2

)(
1− e−π/r) =

∞∑
k=0

∫ 2(k+1)π/r

(2k+1)π/r

sin(rx)
ex/2

dx ≤
∞∑
k=0

∫ 2(k+1)π/r

(2k+1)π/r

x sin(rx)
ex − 1

dx

≤
∞∑
k=0

∫ 2(k+1)π/r

(2k+1)π/r

sin(rx)
ex

dx =− r
(
e−2π/r + e−π/r

)
(
1 + r2

)(
1− e−2π/r

) .

(4.4)

Substituting (4.4) into (4.3) yields

4e−π/r + 4r2e−π/r + 4e−π/(2r) + 4r2e−π/(2r)− 4r2− 1(
e−π/r − 1

)(
1 + r2

)(
1 + 4r2

)
= 1 + e−π/r(

1 + r2
)(

1− e−2π/r
) − 4

(
e−π/r + e−π/(2r)

)
(
1 + 4r2

)(
1− e−π/r)

≤ S(r)

≤ 4
(
1 + e−π/(2r)

)
(
1 + 4r2

)(
1− e−π/r) −

e−2π/r + e−π/r(
1 + r2

)(
1− e−2π/r

)
= e−π/r + 4r2e−π/r − 4e−π/(2r)− 4r2e−π/(2r)− 4− 4r2(

e−π/r − 1
)(

1 + r2
)(

1 + 4r2
) .

(4.5)

The proof is complete. �

Remark 4.3. When 0 < r < 0.83273 . . . , the upper bound in (4.2) is better than that in
(1.3). In fact, straightforward computation yields

lim
r→0

(
1 + 4r2

)(
e−π/r − e−π/(2r)

)− 4
(
1 + r2

)
(
e−π/r − 1

)(
1 + r2

)(
1 + 4r2

) = 4 < 6= lim
r→0

1
r2 + 1/6

. (4.6)

When 0 < r < 2.9002 . . . , the lower bound in (4.2) is positive, and then is useful. But, it
is not better than that in (1.3).

5. The third concrete result

In this section, we will give another result using an approach similar to that in the previ-
ous section.

Theorem 5.1. For any positive number r > 0,

∞∑
n=1

2n(
n2 + r2

)2 <
1
r

∫ π/r
0

x

ex − 1
sin(rx)dx <

1 + exp
(−π/(2r)

)
r2 + 1/4

. (5.1)
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Proof. Straightforward computation yields

∫∞
0

x

ex − 1
sin(rx)dx−

∫ π/r
0

x

ex − 1
sin(rx)dx

=
∞∑
k=1

∫ (k+1)π/r

kπ/r

x

ex − 1
sin(rx)dx

=
∞∑
i=1

(∫ (2i+1)π/r

2iπ/r
+
∫ 2iπ/r

(2i−1)π/r

)
x

ex − 1
sin(rx)dx

=
∞∑
i=1

(∫ π
0

+
∫ 0

−π

)
(2iπ + t)/r

exp
(
(2iπ + t)/r

)− 1
sin(2iπ + t)

dt

r

=−1
r

∞∑
k=1

∫ π
0

[ [
(2k− 1)π + t

]
/r

exp
([

(2k− 1)π + t
]
/r
)− 1

− (2kπ + t)/r
exp

(
(2kπ + t)/r

)− 1

]
sin t dt.

(5.2)

It is easy to see that the function (et − 1)/t is strictly increasing on (0,+∞), therefore, for
all t > 0, we have

[
(2k− 1)π + t

]
/r

exp
([

(2k− 1)π + t
]
/r
)− 1

>
(2kπ + t)/r

exp
(
(2kπ + t)/r

)− 1
. (5.3)

Then, from inequality (4.1), we have

∫∞
0

x

ex − 1
sin(rx)dx <

∫ π/r
0

x

ex − 1
sin(rx)dx <

∫ π/r
0

e−x/2 sin(rx)dx = r
(
1 + exp(−π/2r))

r2 + 1/4
.

(5.4)

Inequality (5.1) follows from combining (5.4) with (1.4). �

Remark 5.2. The monotonicity and convexity of the function (et − 1)/t can be deduced
from those of the function (bt − at)/t. For details, please refer to [6, 7, 8, 11, 12, 13, 14].

Remark 5.3. If r > 1.57482 . . . , the upper bound in (5.1) is better than that in (4.2). When
r < 1.574816 . . . , the upper bound in (5.1) is not better than that in (4.2). When 0 < r <
0.734821 . . . , the upper bound in (5.1) is better than that in (1.3).

6. Open problems

Now we would like to propose two open problems as follows.

Open Problem 6.1. Let

S(r, t,α)=
∞∑
n=1

2nα/2(
nα + r2

)t+1 (6.1)

for t > 0, r > 0, and α > 0. Can one obtain an integral expression of S(r, t,α)? Give some
sharp inequalities for the series S(r, t,α).
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In [15, page 356], the following formula is given

∫∞
0

x2m sin(ax)
e2nαx − e(2n−2)αx

dx = (−1)m
∂2m

∂a2m

[
π

4α
coth

aπ

2α
− 1

2a
−

n−1∑
ν=1

a

a2 + (2ν)2α2

]
, (6.2)

where a > 0, α > 0, m = 0,1,2, . . . , and n = 1,2, . . . . If n = 1 in formula (6.2), then the
summation terms are omitted.

Remark 6.2. One can also find the formulae (3.3) and (6.2) in other handbooks on inte-
gral formulae.

Open Problem 6.3. Find suitable ranges of numbers α, m, and n such that

x

ex − 1
− x2m

e(2n+1)αx − e(2n−1)αx
, α > 0 and m,n= 0,1,2, . . . ,

x

ex − 1
− x2m

e2nαx − e(2n−2)αx
, α > 0, m= 0,1,2, . . . and n= 1,2, . . . ,

(6.3)

are monotonic in x.

Remark 6.4. If one can give an answer to Open Problem 6.3, then, maybe a better upper
bound for Mathieu’s series (1.1) could be obtained.

Remark 6.5. In [5], several inequalities of the series S(r, t,α) for 0 < r < 1 are established
and Open Problem 6.1 is solved in the following cases:

(1) α= 2 and t is a natural number with t > 1;
(2) α= 2 and t = k− 1/2, where k is a natural number.
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