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The aim of the present paper is to introduce the asymmetric locally convex spaces and
to prove some basic properties. Among these I do mention the analogs of the Eidelheit-
Tuckey separation theorems, of the Alaoglu-Bourbaki theorem on the weak compactness
of the polar of a neighborhood of 0, and a Krein-Milman-type theorem. These results
extend those obtained by Garcı́a-Raffi et al. (2003) and Cobzaş (2004).

1. Introduction

Let X be a real vector space. An asymmetric seminorm on X is a positive sublinear func-
tional p : X → [0;∞), that is, p satisfies the conditions

(AN1) p(x)≥ 0,
(AN2) p(tx)= tp(x), t ≥ 0,
(AN3) p(x+ y)≤ p(x) + p(y),

for all x, y ∈ X . The function p̄ : X → [0,∞), defined by p̄(x)= p(−x), x ∈ X , is another
positive sublinear functional on X , called the conjugate of p, and

ps(x)=max
{
p(x), p(−x)

}
, x ∈ X , (1.1)

is a seminorm on X . The inequalities

∣∣p(x)− p(y)
∣∣≤ ps(x− y),

∣∣ p̄(x)− p̄(y)
∣∣≤ ps(x− y) (1.2)

hold for all x, y ∈ X . If the seminorm ps is a norm on X , then we say that p is an asym-
metric norm on X . This means that, beside (AN1)–(AN3), it satisfies also the condition

(AN4) p(x)= 0 and p(−x)= 0 imply that x = 0.
The pair (X , p), where X is a linear space and p is an asymmetric seminorm on X is

called a space with asymmetric seminorm, respectively, a space with asymmetric norm, if p
is an asymmetric norm.

In the last years, the properties of spaces with asymmetric norms were investigated in a
series of papers, emphasizing similarities as well as differences with respect to the theory
of (symmetric) normed spaces, see [3, 5, 6, 7, 12, 13, 16, 17]. This study was stimulated
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also by their applications in the complexity of algorithms, see [11, 14, 18]. The aim of
the present paper is to develop the basic results in the theory of asymmetric locally con-
vex spaces, a natural extension of asymmetric normed spaces and of (symmetric) locally
convex spaces as well.

The function ρ : X ×X → [0;∞) defined by ρ(x, y) = p(y − x), x, y ∈ X , is an asym-
metric semimetric on X . Denote by

B′p(x,r)= {x′ ∈ X : p(x′ − x) < r
}

, Bp(x,r)= {x′ ∈ X : p(x′ − x)≤ r}, (1.3)

the open, respectively closed, ball in X of center x and radius r > 0. Denoting by

B′p = B′p(0,1), Bp = Bp(0,1) (1.4)

the corresponding unit balls, then

B′p(x,r)= x+ rB′p, Bp(x,r)= x+ rBp. (1.5)

The unit balls B′p and Bp are convex absorbing subsets of the space X and p agrees with
the Minkowski functional associated to any of them.

An asymmetric seminorm p on X generates a topology τp on X , having as basis of
neighborhoods of a point x ∈ X the family {B′p(x,r) : r > 0} of open p-balls. The family
{Bp(x,r) : r > 0} of closed p-balls is also a neighborhood basis at x for τp.

The ball B′p(x,r) is τp-open but the ball Bp(x,r) need not to be τp-closed, as can be
seen from the following typical example.

Example 1.1. Consider on R the asymmetric seminorm u(α) = max{α,0}, α ∈ R, and
denote by Ru the space R equipped with the topology τu generated by u. The conjugate
seminorm is ū(α) = −min{α,0}, and us(α) =max{u(α), ū(α)} = |α|. The topology τu,
called the upper topology of R, is generated by the intervals of the form (−∞;a), a ∈ R,
and the family {(−∞;α+ ε) : ε > 0} is a neighborhood basis of a point α ∈ R. The set
(−∞;1) = B′u(0,1) is τu-open, and the ball Bu(0,1) = (−∞;1] is not τu-closed because
R \Bu(0,1)= (1;∞) is not τu-open.

Remark 1.2. As can be easily seen, the continuity of a mapping f from a topological
space (T ,τ) to (R,τu) is equivalent to its upper semicontinuity as a mapping from (T ,τ)
to (R,| · |).

The topology τp is translation invariant, that is, the addition + : X ×X → X is con-
tinuous, but the multiplication by scalars · : R×X → X need not be continuous, as it is
shown by some examples, as, for example, that given in [5]. We will present another one
in the context of Example 1.1.

Example 1.3. In the space (R,u) from Example 1.1, the interval (−∞;1/2) is a τu-
neighborhood of 0= (−1)0 but for any α,β > 0, the neighborhood (−∞;−1 +α)× (−∞,
β) of (−1,0) contains the point (−1,−1) and (−1)(−1)= 1 /∈ (−∞;1/2).

The discontinuity of the multiplication by scalars, (α,x) �→ αx, for α=−1 follows also
from the fact that the interval (−∞;a) is τu-open but−(−∞;a)= (−a;∞) is not τu-open.
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The following proposition will be useful in the study of the continuity of linear map-
pings between asymmetric locally convex spaces.

Proposition 1.4. If X is a real vector space, f ,g : X → R are sublinear functionals, and
α,β > 0, then the following conditions are equivalent:

∀x ∈ X , g(x)≤ β =⇒ f (x)≤ α, (1.6)

∀x ∈ X , u
(
f (x)

)≤ α

β
u
(
g(x)

)
. (1.7)

If g(x) ≥ 0 for all x ∈ X , then these two conditions are also equivalent to the following
one:

∀x ∈ X , f (x)≤ α

β
g(x). (1.8)

Proof. (1.6)⇒(1.7). Let x ∈ X . If g(x) ≤ 0, then g(nx) = ng(x) ≤ 0 < α, n ∈ N, so that
n f (x)= f (nx)≤ β, n∈N, implying that f (x)≤ 0 and

u
(
f (x)

)= 0= α

β
u
(
g(x)

)
. (1.9)

If g(x) > 0, then g((β/g(x))x)= β, so that

f
(

β

g(x)
x
)
≤ α ⇐⇒ f (x)≤ α

β
g(x) ⇐⇒ u

(
f (x)

)≤ α

β
u(g(x)). (1.10)

(1.7)⇒(1.6). Let x ∈ X . If g(x)≤ 0 < β, then u(g(x))= 0, so that

f (x)≤ u( f (x)
)≤ α

β
u
(
g(x)

)= α

β
g(x)≤ α. (1.11)

If g(x) > 0, then by hypothesis,

f (x)≤ u( f (x)
)≤ α

β
u
(
g(x)

)= α

β
g(x)≤ α. (1.12)

Since g(x)≥ 0, x ∈ X , implies that u(g(x))= g(x), x ∈ X , the equivalence (1.7)⇔ (1.8) is
obvious. �

Let now P be a family of asymmetric seminorms on a real vector space X . Denote by
�(P) the family of all nonempty finite subsets of P, and for F ∈�(P), x ∈ X , and r > 0,
let

BF(x,r)= {y ∈ X : p(y− x)≤ r, p ∈ F}=⋂{
Bp(x,r) : p ∈ F},

B′F(x,r)= {y ∈ X : p(y− x) < r, p ∈ F}=⋂{
B′p(x,r) : p ∈ F} (1.13)

denote the closed, respectively, open multiball of center x and radius r. It is immediate
that these multiballs are convex absorbing subsets of X .
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Putting

pF(x)=max
{
p(x) : p ∈ F}, x ∈ X , (1.14)

then pF is an asymmetric seminorm on X and

BF(x,r)= BpF (x,r), B′F(x,r)= B′pF (x,r). (1.15)

The asymmetric locally convex topology associated to the family P of asymmetric semi-
norms on a real vector space X is the topology τP having as basis of neighborhoods of
any point x ∈ X the family �′(x)= {B′F(x,r) : r > 0, F ∈�(P)} of open multiballs. The
family �(x) = {BF(x,r) : r > 0, F ∈ �(P)} of closed multiballs is also a neighborhood
basis at x for τP .

It is easy to check that the family �′(x) fulfills the requirements of a neighborhood
basis, that is,

(BN1) x ∈ B′F(x,r),
(BN2) for B′F1

(x,r1) and B′F2
(x,r2) in �′(x), there exists B′F(x,r) ∈ �′(x) such that

B′F(x,r)⊂ B′F1
(x,r1)∩B′F2

(x,r2).
For (BN2), one can take F = F1∪F2 and r =min{r1,r2}.
Obviously, for P = {p}, we obtain the topology τp of an asymmetric seminormed

space (X , p) considered above, that is, τ{p} = τp.
The topology τP is derived from a quasiuniformity �P on X having as vicinities the

sets

WF(ε)= {(x, y)∈ X ×X : p(y− x) < ε, p ∈ F}, (1.16)

for F ∈ �(P) and ε > 0. Replacing the sign < by ≤ in the above definition, the corre-
sponding sets will form a basis for the same quasiuniformity �P . A good source for the
properties of quasiuniform spaces is the book [10] (see also [4]). Quasiuniform structures
related to asymmetric normed spaces were investigated in [1, 2, 9].

We say that the family P is directed if for any p1, p2 ∈ P, there exists p ∈ P such that p ≥
pi, i= 1,2, where p ≥ q stands for the pointwise ordering: p(x)≥ q(x) for all x ∈ X . If the
family P is directed, then for any τP-neighborhood of a point x ∈ X , there exist p ∈ P and
r > 0 such that B′p(x,r)⊂V (resp., Bp(x,r)⊂V). Indeed, if B′F(x,r)⊂V , then there exists
p ∈ P such that p ≥ q for all q ∈ F so that B′p(x,r)⊂ B′F(x,r)⊂V . Similarly, the vicinities
defined by (1.16) with F = {p}, p ∈ P, and ε > 0 form a basis for the quasiuniformity
�P .

The family

Pd =
{
pF : F ∈�(P)

}
, (1.17)

where pF is defined by (1.14), is a directed family of asymmetric seminorms generating
the same topology as P, that is, τPd = τP . Therefore, without restricting the generality, we
can always suppose that the family P of asymmetric seminorms is directed.
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Because BF(x,r) = x +BF(0,r) and B′F(x,r) = x +B′F(0,r), the topology τP is transla-
tion invariant,

�(x)= {x+V :V ∈�(0)
}

, (1.18)

where by �(x) we have denoted the family of all neighborhoods with respect to τP of a
point x ∈ X .

The addition + : X ×X → X is continuous. Indeed, for x, y ∈ X and the neighborhood
B′F(x+ y,r) of x+ y, we have B′F(x,r/2) +B′F(y,r/2)⊂ B′F(x+ y,r).

As we have seen in Example 1.3, the multiplication by scalars need not be continuous,
even in asymmetric seminormed spaces.

The topology τp generated by an asymmetric norm is not always Hausdorff. A nec-
essary and sufficient condition in order that τp be Hausdorff is given in the following
proposition.

Proposition 1.5 (see [13]). For an asymmetric seminorm p on a real vector space X , put

p̃(x)= inf
{
p(x′) + p(x′ − x) : x′ ∈ X}, x ∈ X. (1.19)

(1) The functional p̃ is a (symmetric) seminorm on X , p̃ ≤ p, and p̃ is the greatest of the
seminorms on X majorized by p.

(2) The topology τp generated by p is Hausdorff if and only if p̃(x) > 0 for every x �= 0.

Proof. We will give a proof of the first assertion, different from that given in [13]. The
second assertion will be proved in the more general context of asymmetric locally convex
spaces.

First, observe that replacing x′ by x′ − x in (1.19), we get

p̃(−x)= inf
{
p(x′) + p(x′ + x) : x′ ∈ X}

= inf
{
p(x′ − x) + p

(
(x′ − x) + x

)
: x′ ∈ X}= p̃(x),

(1.20)

so that p̃ is symmetric. The positive homogeneity of p̃, p̃(αx) = αp̃(x), x ∈ X , α ≥ 0, is
obvious. For x, y ∈ X and arbitrary x′, y′ ∈ X , we have

p̃(x+ y)≤ p(x′ + y′) + p(x′ + y′ − x− y)≤ p(x′) + p(x′ − x) + p(y′) + p(y′ − y),
(1.21)

so that passing to infimum with respect to x′, y′ ∈ X , we obtain the subadditivity of p̃,

p̃(x+ y)≤ p̃(x) + p̃(y). (1.22)

Suppose now that there exists a seminorm q on X such that q ≤ p, that is, for all z ∈ X ,
q(z)≤ p(z), and p̃(x) < q(x)≤ p(x), for some x ∈ X . Then, by the definition of p̃, there
exists x′ ∈ X such that p̃(x) < p(x′) + p(x′ − x) < q(x), leading to the contradiction

q(x)≤ q(x′) + q(x− x′)= q(x′) + q(x′ − x)≤ p(x′) + p(x′ − x) < q(x). (1.23)
�
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The following characterization of the Hausdorff separation property for locally convex
spaces is well known, see, for example, [19, Lemma VIII.1.4].

Proposition 1.6. Let (X ,Q) be a locally convex space, where Q is a family of seminorms
generating the topology τQ of X . The topology τQ is Hausdorff separated if and only if for
every x ∈ X , x �= 0, there exists q ∈Q such that q(x) > 0.

In the case of asymmetric locally convex spaces, we have the following characteriza-
tion.

Proposition 1.7. Let P be a family of asymmetric seminorms on a real vector space X .
The asymmetric locally convex topology τP is Hausdorff separated if and only if for every
x ∈ X , x �= 0, there exists p ∈ P such that p̃(x) > 0, where p̃ is the seminorm associated to
the asymmetric seminorm p through the formula (1.19).

Proof. Suppose that P is directed and let

P̃ = { p̃ : p ∈ P}. (1.24)

Denote by τP̃ the locally convex topology on X generated by the family P̃ of seminorms.
The topology τP is finer than τP̃ . Indeed, G̃ ∈ τP̃ is equivalent to the fact that for every
x ∈ G̃, there exist p ∈ P and r > 0 such that B′̃p(x,r) ⊂ G̃. Because p(y − x) < r implies

that p̃(y− x)≤ p(y− x) < r, we have B′p(x,r)⊂ B′̃p(x,r)⊂ G̃, so that G̃∈ τP . If for every
x ∈ X , x �= 0, there exists p ∈ P such that p̃(x) > 0, then the locally convex topology τP̃ is
separated Hausdorff, and so will be the finer topology τP .

Conversely, suppose that the topology τP is Hausdorff and show that p̃(x) = 0 for all
p ∈ P implies that x = 0.

Let x ∈ P be such that p̃(x)= 0 for all p ∈ P. By the definition (1.19) of the seminorm
p̃, for every p ∈ P and n∈N, there exists an element x(p,n) ∈ X such that

p
(
x(p,n)

)
+ p
(
x(p,n)− x

)
<

1
n
. (1.25)

Define the order on P×N by (p,n)≤ (q,m) if and only if p ≤ q and n≤m. Since the
family P of asymmetric seminorms is directed, the set P×N is also directed with respect
to the order we just defined. Therefore, {x(p,n) : (p,n)∈ P×N} is a net inX and by (1.25),
we have

p
(
x(p,n)

)
<

1
n

, p
(
x(p,n)− x

)
<

1
n

, (1.26)

for all (p,n)∈ P×N.
We will prove that the net {x(p,n)} converges to both 0 and x. Since the topology τP is

Hausdorff, this will imply that x = 0.
To prove that the net {x(p,n)} converges to 0, we have to show that for every p ∈ P, the

net {p(x(p,n))} tends to 0, that is,

∀p ∈ P, ∀ε > 0, ∃(p0,n0
)∈ P×N, ∀(q,n)∈ P×N, such that

(q,n)≥ (p0,n0
)=⇒ p

(
x(q,n)

)
< ε.

(1.27)
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Let p ∈ P and ε > 0. Put p0 = p and let n0 ∈N be such that 1/n0 < ε. Then for every
(q,n)∈ P×N such that q ≥ p and n≥ n0, we have

p
(
x(q,n)

)≤ q(x(q,n)
)
<

1
n
≤ 1
n0

< ε. (1.28)

The convergence of {p(x(p,n)− x)} to 0, which is equivalent to the τP-convergence of
{x(p,n)} to x, can be proved similarly, using the second inequality in (1.26). �

Corollary 1.8. Let (X ,P) be an asymmetric locally convex space. If the topology τP is
Hausdorff, then for every x ∈ X , x �= 0, there exists p ∈ P such that p(x) > 0.

Proof. If the topology τP is Hausdorff, then for every x ∈ X , x �= 0, there exists p ∈ P
such that p̃(x) > 0. Replacing x by −x and taking x′ = 0 in the definition (1.19) of the
seminorm p̃, we get

p(x)= p(0) + p(0 + x)≥ p̃(x) > 0. (1.29)
�

As in the symmetric case, asymmetric locally convex topologies can be defined through
some basic families of convex absorbing sets.

A nonempty family � of subsets of a real vector space X is called an asymmetric locally
convex basis provided that

(BC1) each C ∈� is convex and absorbing;
(BC2) for every C1,C2 ∈�, there exists C ∈� such that C ⊂ C1∩C2;
(BC3) for every C ∈� and α > 0, there exists D ∈� such that D ⊂ αC.
Define a mapping � : X → 2X by

�(x)= {U ⊂ X : ∃C ∈� such that x+C ⊂U}. (1.30)

Recall that for an absorbing subset C of X , the Minkowski functional pC : X → [0;∞)
is defined by

pC(x)= inf{t > 0 : x ∈ tC}. (1.31)

If C is absorbing and convex, then pC is a positive sublinear functional, and

{
x ∈ X : pC(x) < 1

}⊂ C ⊂ {x ∈ X : pC(x)≤ 1
}
. (1.32)

Conversely, if p is a positive sublinear functional on X , then C′ = {x ∈ X : p(x) < 1}
and C = {x ∈ X : p(x)≤ 1} are convex absorbing subsets of X , and pC′ = pC = p.

Denoting by

P = {pC : C ∈�} (1.33)

the family of all Minkowski functionals associated to the sets in �, then P is a family of
asymmetric seminorms on X . By (BC1) and the fact that pC ≤ pD ifD ⊂ C, it follows that
the family P is directed.
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Proposition 1.9. The family �(x) of subsets of X given by (1.30) satisfies the axioms of
a neighborhood system, so that it defines a topology τ� on X . This topology agrees with the
asymmetric locally convex topology generated by the family (1.33) of asymmetric seminorms.

Proof. One can easily check that the family � of subsets of X satisfies the axioms of a
neighborhood system.

Since both of the topologies τ� and τP are translation invariant, in order to prove their
coincidence, it suffices to show that they have the same 0-neighborhoods. Denote by �
the neighborhood mapping associated to τP . If U ∈�(0), then there exists C ∈ � such
that C ⊂U . The inclusions

{
x ∈ X : pC(x) < 1

}⊂ C ⊂U (1.34)

show that U ∈�(0).
Conversely, if V ∈�(0), then there exist C ∈� and r > 0 such that {x ∈ X : pC(x) ≤

r} ⊂V . By (BC3), there exists D ∈� such that D ⊂ rC. But then

D ⊂ rC ⊂ {x ∈ X : pC(x)≤ r}⊂V , (1.35)

so that V ∈�(0). �

2. Bounded linear mappings between asymmetric locally convex spaces
and the dual space

Let (X ,P), (Y ,Q) be two asymmetric locally convex spaces with the topologies τP and τQ
generated by the families P and Q of asymmetric seminorms on X and Y , respectively. In
the following, when we say that (X ,P) is an asymmetric locally convex space, we under-
stand that X is a real vector space, P is a family of asymmetric seminorms on X , and τP is
the asymmetric locally convex topology associated to P.

A linear mapping A : X → Y is called (P,Q)-bounded if for every q ∈ Q, there exist
F ∈�(P) and L≥ 0 such that

∀x ∈ X , q(Ax)≤ Lmax
{
p(x) : p ∈ F}. (2.1)

If the family P is directed, then the (P,Q)-boundedness of A is equivalent to the con-
dition that for every q ∈Q, there exist p ∈ P and L≥ 0 such that

∀x ∈ X , q(Ax)≤ Lp(x). (2.2)

The continuity of the mapping A from (X ,τP) to (Y ,τQ) is called (τP ,τQ)-continuity.
We will use also the term (P,Q)-continuity for this property, and (P,u)-continuity in the
case of (τP ,τu)-continuous linear functionals.

Because both of the topologies τP and τQ are translation invariant, we have the follow-
ing result. Recall that a mapping F between two quasiuniform spaces (X ,�) and (Y ,�)
is called quasiuniformly continuous if for every W ∈�, there exists U ∈� such that
(F(x),F(y))∈W for every (x, y)∈U .
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Proposition 2.1. Let (X ,P) and (Y ,Q) be asymmetric locally convex spaces andA : X → Y
a linear mapping. The following conditions are equivalent.

(1) The mapping A is (P,Q)-continuous on X .
(2) The mapping A is continuous at 0∈ X .
(3) The mapping A is continuous at some point x0 ∈ X .

The following proposition emphasizes the equivalence of continuity and boundedness
for linear mappings.

Proposition 2.2. Let (X ,P) and (Y ,Q) be two asymmetric locally convex spaces and A :
X → Y a linear mapping. The following assertions are equivalent.

(1) The mapping A is (P,Q)-continuous on X .
(2) The mapping A is continuous at 0∈ X .
(3) The mapping A is (P,Q)-bounded.
(4) The mapping A is quasiuniformly continuous with respect to the quasiuniformities

�P and �Q.

Proof. The equivalence (1)⇔ (2) follows from the preceding proposition.
Suppose that the families P and Q are directed.
(2) ⇔ (3). For q ∈Q, consider the τQ-neighborhood V = Bq(0,1) of A0= 0∈ Y , and

let U be a neighborhood of 0 ∈ X such that A(U) ⊂ V . If p ∈ P and r > 0 are such that
Bp(0,r)⊂U , then

∀x ∈ X , p(x)≤ r =⇒ q(Ax)≤ 1. (2.3)

By Proposition 1.4 applied to f (x)= q(Ax) and g(x)= p(x), this relation implies that

∀x ∈ X , q(Ax)≤ 1
r
p(x). (2.4)

Conversely, if A is (P,Q)-bounded, then for every τQ-neighborhood V of 0∈ Y , there
exist q ∈Q and R > 0 such that Bq(0,R)⊂V . Let p ∈ P and L≥ 0 be such that the condi-
tion (2.2) is fulfilled. Taking r := R/(L+ 1), we have

∀x ∈ Bp(0,r), q(Ax)≤ Lp(x)≤ L

L+ 1
R≤ R, (2.5)

which shows that A(Bp(0,r))⊂ Bq(0,R)⊂V , that is, A is continuous at 0∈ X .
The implication (3)⇒(4) follows from the (P,Q)-boundedness of the mapping A and

the definition (1.16) of the vicinities.
To prove (4)⇒(3), suppose thatA is (�P ,�Q)-quasiuniformly continuous. For q ∈Q,

let W = {(y′, y) ∈ Y × Y : q(y − y′) ≤ 1} ∈ �Q, and let U = {(x′,x) ∈ X × X : p(x −
x′)≤ r} ∈�P be such that (x′,x)∈U implies that (Ax′,Ax)∈W . Taking x′ = 0, it fol-
lows that

∀x ∈ X , p(x)≤ r =⇒ q(Ax)≤ 1, (2.6)
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so that, by Proposition 1.4,

∀x ∈ X , q(Ax)≤ 1
r
p(x). (2.7)

�

In the case of linear functionals on an asymmetric locally convex space, we have the
following characterization of continuity, where u is as in Example 1.1.

Proposition 2.3. Let (X ,P) be an asymmetric locally convex space and ϕ : X →R a linear
functional. The following assertions are equivalent.

(1) ϕ is (P,u)-continuous at 0∈ X .
(2) ϕ is (P,u)-continuous on X .
(3) There exist p ∈ P and L≥ 0 such that

∀x ∈ X , ϕ(x)≤ Lp(x). (2.8)

(4) ϕ is upper semicontinuous from (X ,τP) to (R,| · |).

Remark 2.4. If the family P is not directed, then the (P,u)-continuity of the functional ϕ
is equivalent to the condition that there exist F ∈�(P) and L≥ 0 such that

∀x ∈ X , ϕ(x)≤ Lmax
{
p(x) : p ∈ F}= LpF(x). (2.9)

The dual of an asymmetric locally convex space. For an asymmetric locally convex space
(X ,P), denote by X� = X�P the set of all linear (P,u)-continuous functionals. If P = {p},
then we obtain the dual space X�p of an asymmetric normed space (X , p) considered in
[13].

Let X# be the algebraic dual space to X , that is, the space of all linear functionals on X .
In contrast to the symmetric case, X� = X�P is not a subspace of X#, but merely a convex
cone, that is,

(i) ϕ,ψ ∈ X�⇒ ϕ+ψ ∈ X�,
(ii) ϕ∈ X� and α≥ 0⇒ αϕ∈ X�.

There are examples in the case P = {p} of p-bounded linear functionals ϕ on a space
with asymmetric norm (X , p) such that−ϕ is not p-bounded, see [5]. A simpler example
can be exhibited in the space (R,u) from Example 1.1.

Example 2.5. The identity mapping ϕ(t)= t, t ∈R, is (τu,τu)-continuous because

∀t ∈R, ϕ(t)= t ≤max{t,0} = u(t), (2.10)

but −ϕ is not (τu,τu)-continuous, because it is impossible to find L ≥ 0 such that
(−ϕ)(t)≤ Lu(t) for all t ∈R. Indeed, taking t =−1, we obtain the contradiction

1= (−ϕ)(−1)≤ L ·u(−1)= 0. (2.11)

Remark 2.6. It is easy to check that a linear functional ϕ(t) = at, t ∈ R, is (τu,τu)-
continuous if and only if a ≥ 0. Indeed if a ≥ 0, then ϕ(t) = at ≤ u(at) = au(t), t ∈ R.
If a < 0, then, reasoning as above, one concludes that ϕ fails to be continuous.
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Suppose that the family P of asymmetric seminorms is directed, and for p ∈ P, let
ps(x)=max{p(x), p(−x)} be the symmetric seminorm attached to p, and let

Ps = {ps : p ∈ P}. (2.12)

Denote by X∗ = (X ,Ps)∗ the dual space of the locally convex space (X ,Ps). Since for a
seminorm q and a linear functional ϕ we have

∀x ∈ X , ϕ(x)≤ Lq(x) ⇐⇒ ∀x ∈ X ,
∣∣ϕ(x)

∣∣≤ Lq(x), (2.13)

we have X� = X�P ⊂ X∗ = (X ,Ps)∗. Indeed, if ϕ∈ X�, p ∈ P, and L≥ 0 are such that for
all x ∈ X , ϕ(x)≤ Lp(x), then, the inequality p ≤ ps and the above equivalence imply that
|ϕ(x)| ≤ Lps(x), x ∈ X , showing that ϕ∈ X∗.

Let p be an asymmetric seminorm on a real vector space X and let ϕ : X → R be a
linear functional. Put

‖ϕ|p = supϕ
(
Bp
)
. (2.14)

We say that the functional ϕ is p-bounded if there exists L≥ 0 such that

∀x ∈ X , ϕ(x)≤ Lp(x). (2.15)

A number L≥ 0 satisfying (2.15) is called a p-Lipschitz constant for ϕ. The functional ϕ
is p-bounded if and only if ‖ϕ|p <∞ and ‖ϕ|p is the smallest p-Lipschitz constant for ϕ.
The p-boundedness of ϕ is also equivalent to its (τp,τu)-continuity. The functional ‖ · |p
defined by (2.14) is an asymmetric norm on the asymmetric dual X�p of (X , p), that is,
‖ϕ+ψ|p ≤ ‖ϕ|p + ‖ψ|p, ‖αϕ|p = α‖ϕ|p, for all ϕ,ψ ∈ X�p and α ≥ 0. Also, ‖ϕ|p > 0 for
ϕ∈ X�p \ {0}.

Similar considerations can be done with respect to the conjugate asymmetric semi-
norm p̄(x)= p(−x) of p and

‖ϕ| p̄ = supϕ
(
Bp̄
)
. (2.16)

Some properties of the norm ‖ · |p are collected in the following proposition.

Proposition 2.7. Let p be an asymmetric seminorm on a real vector spaceX and ϕ : X →R
a linear functional.

(1) The following equalities hold:

‖ϕ|p = supϕ
(
B′p
)
, ‖ϕ| p̄ = supϕ

(
B′̄p
)
. (2.17)

Moreover, if the functional ϕ �= 0 is p-bounded, then ‖ϕ|p > 0 and ϕ(x0)= ‖ϕ|p, for some
x0 ∈ Bp, implies that p(x0)= 1.

(2) If ϕ �= 0 is (p, p̄)-bounded, then

ϕ
(
B′p
)= (−‖ϕ| p̄;‖ϕ|p

)
. (2.18)
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If ϕ is p-bounded but not p̄-bounded, then

ϕ
(
B′p
)= (−∞;‖ϕ|p

)
. (2.19)

Proof. (1) If (xn) is a sequence in Bp such that ϕ(xn)→ ‖ϕ|p for n→∞, then x′n = (1−
1/n)xn ∈ B′p and ϕ(x′n)→‖ϕ|p. Because

supϕ
(
B′p
)≤ supϕ

(
Bp
)= ‖ϕ|p, (2.20)

it follows that supϕ(B′p)= ‖ϕ|p.
If ϕ �= 0, and z ∈ X is such that ϕ(z) > 0, then the inequality ϕ(z)≤ ‖ϕ|p p(z) implies

that ‖ϕ|p > 0.
If x0 ∈ Bp is such that ϕ(x0)= ‖ϕ|p, then ‖ϕ|p p(x0)≥ ϕ(x0)= ‖ϕ|p > 0, so that p(x0) >

0. If p(x0) < 1, then x1 = (1/p(x0))x0 ∈ Bp and

ϕ
(
x1
)= ϕ

(
x0
)

p
(
x0
) = ‖ϕ|p

p
(
x0
) > ‖ϕ|p = supϕ

(
Bp
)
, (2.21)

a contradiction.
(2) Suppose that ϕ is (p, p̄)-bounded. We have

‖ϕ| p̄ =sup
{
ϕ(x) : p̄(x) < 1

}= sup
{
ϕ(−x) : p(x) < 1

}
=− inf

{
ϕ(x) : p(x) < 1

}
.

(2.22)

Similar calculations show that

‖ϕ| p̄ =− inf
(
Bp
)
. (2.23)

Because B′p is convex, it follows that ϕ(B′p) is an interval in R and

(−‖ϕ| p̄;‖ϕ|p
)⊂ ϕ(B′p)⊂ [−‖ϕ| p̄;‖ϕ|p

]
. (2.24)

If ‖ϕ|p ∈ ϕ(B′p), then ‖ϕ|p = ϕ(x0), for some x0 ∈ X with p(x0) < 1, in contradiction
to the assertion (1) of the proposition. Similarly, if −‖ϕ| p̄ ∈ ϕ(B′p), then −‖ϕ| p̄ = ϕ(x1),
for some x1 ∈ X with p(x1) < 1. But then, for x′1 = (1/p(x1))x1 ∈ Bp, we obtain the con-
tradiction

ϕ
(
x′1
)= ϕ

(
x1
)

p
(
x1
) = −‖ϕ| p̄

p
(
x1
) <−‖ϕ| p̄ = inf ϕ

(
Bp
)
. (2.25)

If ϕ is p-bounded but not p̄-bounded, then

‖ϕ| p̄ = supϕ
(
B′p
)=∞, (2.26)

so that, by (2.22), inf ϕ(B′p) = −‖ϕ| p̄ = −∞. Since ϕ(B′p) is an interval in R,‖ϕ|p =
supϕ(B′p), and ‖ϕ|p /∈ ϕ(B′p), it follows that ϕ(B′p)= (−∞;‖ϕ|p). �
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Extension of bounded linear functionals. As in the symmetric case, an extension result for
continuous linear functionals defined on subspaces of an asymmetric locally convex space
will be particularly useful in developing a duality theory for such spaces.

Proposition 2.8. Let (X ,P) be an asymmetric locally convex space and Y a subspace of X .
If ϕ : Y →R is a (P,u)-continuous linear functional, then there exists a (P,u)-continuous

linear functional Φ : X →R such that Φ |Y= ϕ.

Proof. Suppose that the family P is directed. By Proposition 2.3, there exist p ∈ P and
L≥ 0 such that

∀y ∈ Y , ϕ(y)≤ Lp(y). (2.27)

By the Hahn-Banach dominated extension theorem, there exists a linear functional
Φ : X →R such that Φ|Y = ϕ and

∀x ∈ X , Φ(x)≤ Lp(x), (2.28)

which, by the same Proposition 2.3, is equivalent to the (P,u)-continuity of Φ. �

The following existence result is well known in the symmetric case.

Proposition 2.9. (1) If p is an asymmetric norm on a real vector space X and x0 ∈ X is
such that p(x0) > 0, then there exists a p-bounded linear functional ϕ : X →R such that

(i) ϕ
(
x0
)= p

(
x0
)
,

(ii) ‖ϕ|p = 1.
(2) Let (X ,P) be an asymmetric locally convex space. If the topology τP is Hausdorff, then

for every x0 ∈ X , x0 �= 0, there exists ψ ∈ X� such that ψ(x0)= 1.

Proof. (1) Let Z = Rx0 and ϕ0 : Z → R be defined by ϕ0(tx0) = tp(x0), t ∈ R. Then ϕ0

is linear and ϕ0(tx0) = tp(x0) = p(tx0) for t ≥ 0. Since ϕ0(tx0) = tp(x0) < 0 ≤ p(tx0) for
t < 0, it follows that ϕ0(z)≤ p(z) for all z ∈ Z. By the Hahn-Banach extension theorem,
there exists a linear functional ϕ : X →R such that ϕ|Z = ϕ0 and ϕ(x)≤ p(x) for all x ∈ X ,
implying that ‖ϕ|p ≤ 1. Since

‖ϕ|p = sup
{
ϕ(x) : x ∈ Bp

}≥ sup
{
ϕ0(z) : z ∈ Z∩Bp

}≥ ϕ0

(
1

p
(
x0
)x0

)
= 1, (2.29)

it follows that ‖ϕ|p = 1.
(2) If x0 �= 0 and τP is Hausdorff, then by Corollary 1.8, there exists p ∈ P such that

p(x0) > 0. If ϕ : X →R is a p-bounded linear functional satisfying the conditions (i) and
(ii) of the first assertion, then we can take ψ = (1/p(x0))ϕ. �

The w�-topology of the dual X�. This is the analog of the weak∗-topology (w∗-topology)
on the dual of a locally convex space. In the case of an asymmetric normed space (X , p),
it was considered in [13].

Let (X ,P) be an asymmetric locally convex space and X� = X�P the asymmetric dual
cone. A w�-neighborhood of an element ϕ∈ X� is a subset W of X� for which there exist
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x1, . . . ,xn ∈ X and ε > 0 such that

Vx1,...,xn;ε(ϕ) := {ψ ∈ X� : ψ
(
xi
)−ϕ(xi) < ε, i= 1, . . . ,n

}⊂W. (2.30)

For x ∈ X , define qx : X� → [0;∞) by qx(ϕ) = ϕ(x), ϕ ∈ X�. Then qx is additive and
positively homogeneous on X� and

Vx1,...,xn;ε(ϕ)= {ψ ∈ X� : qxi(ψ−ϕ) < ε, i= 1, . . . ,n
}
. (2.31)

The w�-convergence of a net {ϕi, i ∈ I} to ϕ ∈ X� is equivalent to the fact that for
every x ∈ X , the net {(ϕi−ϕ)(x), i∈ I} converges to 0 in (R,u), that is,

∀x ∈ X , ∀ε > 0, ∃i0 ∈ I such that∀i≥ i0,
(
ϕi−ϕ

)
(x) < ε. (2.32)

Since X� ⊂ X∗ and

Vx;ε(ϕ)∩V−x;ε(ϕ)= {ψ ∈ X� :
∣∣(ψ−ϕ)(x)

∣∣ < ε}, (2.33)

it follows that the w�-topology on X� is induced by the w∗-topology of the space X∗.

Asymmetric polars. Let (X ,P) be an asymmetric locally convex space, (X ,Ps) the asso-
ciated locally convex space, X� the asymmetric dual of (X ,P), and X∗ = (X ,Ps)∗ the
conjugate space of (X ,Ps).

The polar of a nonempty subset Y of (X ,Ps) is defined by

Y◦ = {x∗ ∈ X∗ :∀y ∈ Y , x∗(y)≤ 1
}
. (2.34)

Define the corresponding set in the case of the asymmetric dual X� by

Yα = Y◦ ∩X� = {ϕ∈ X� :∀y ∈ Y , ϕ(y)≤ 1
}

, (2.35)

and call it the asymmetric polar of the set Y .
As it is well known, the set Y◦ is a convex w∗-closed subset of X∗ (see, e.g., [19, page

341]). Since the w�-topology on X� ⊂ X∗ is induced by the w∗-topology on X∗, we have
the following result.

Proposition 2.10. The asymmetric polar Yα of a nonempty subset Y of an asymmetric
locally convex space (X ,P) is a convex w�-closed subset of X�.

In the following proposition, we prove the asymmetric analog of the Alaoglu-Bourbaki
theorem, see, for example, [8, Theorem 4.31] or [19, Satz VIII.3.11].

Proposition 2.11. The asymmetric polar of a neighborhood of the origin of an asymmetric
locally convex space (X ,P) is a convex w�-compact subset of the asymmetric dual X�.

Proof. Suppose that P is directed. If V is a τP-neighborhood of 0 ∈ X , then there exist
p ∈ P and r > 0 such that Bp(0,r)⊂V . Because ps(x)≤ r implies that p(x)≤ ps(x)≤ r, it
follows that Bps(0,r)⊂ Bp(0,r)⊂V , so thatV is a neighborhood of 0 in the locally convex
space (X ,P). By the Alaoglu-Bourbaki theorem (see [19, Satz WIII.3.11]), it follows that
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V◦ is a convex w∗-compact subset of the dual X∗. Since w�-compactness of Vα is equiv-
alent to its w∗-compactness in X∗, it is sufficient to show that the set Vα is w∗-closed
in X∗.

Let {ϕi : i ∈ I} be a net in Vα that is w∗-convergent to f ∈ X∗. This means that for
every x ∈ X , the net {ϕi(x) : i ∈ I} converges to f (x) in (R,| · |). Since for every v ∈ V ,
ϕi(v)≤ 1, for all i∈ I , it follows that f (v)≤ 1 for all v ∈V . Because f is linear, it is suffi-
cient to prove its (P,u)-continuity at 0∈ X . Consider for some ε > 0 the τu-neighborhood
(−∞;ε) of f (0)= 0∈R. ThenU = (ε/2)V is a τP-neighborhood of 0∈ X , and for v ∈V
and u= (ε/2)v ∈U , we have

f (u)= ε
2
f (v)≤ ε

2
< ε, (2.36)

that is, f (U)⊂ (−∞;ε), proving the (P,u)-continuity of f at 0.
It follows that f ∈Vα, so that Vα is w∗-closed in X∗. �

3. The continuity of the Minkowski functional and the separation of convex sets

Proposition 2.3 can be extended to sublinear functionals.

Proposition 3.1. Let (X ,P) be an asymmetric locally convex space, where P is a directed
family of asymmetric seminorms on X , and let f : X → R be a sublinear functional. The
following assertions are equivalent.

(1) The functional f is (P,u)-continuous at 0∈ X .
(2) The functional f is (P,u)-continuous on X .
(3) There exist p ∈ P and L > 0 such that

∀x ∈ X , f (x)≤ Lp(x). (3.1)

(4) The functional f is upper semicontinuous from (X ,τP) to (R,| · |).

Proof. (1)⇒(3). Since (−∞;1] is a τu-neighborhood of f (0) = 0 ∈ R, there exist p ∈ P
and r > 0 such that f (Bp(0,r))⊂ (−∞;1], that is,

∀x ∈ X , p(x)≤ r =⇒ f (x)≤ 1. (3.2)

By Proposition 1.4, this implies that

∀x ∈ X , f (x)≤ 1
r
p(x). (3.3)

(3)⇒(2). Let x0 ∈ X , and for some ε > 0, let (−∞; f (x0) + ε) be a τu-neighborhood
of f (x0). If p ∈ P and L≥ 0 are as in the assertion (3) of the proposition, then U = x0 +
(ε/(L+ 1))Bp is a τP-neighborhood of x0, and for every z ∈ Bp and x = x0 + (ε/(L+ 1))z ∈
U , we have

f (x)≤ f
(
x0
)

+
ε

L+ 1
f (z)≤ f

(
x0
)

+ ε
L

L+ 1
< f
(
x0
)

+ ε, (3.4)

proving the (P,u)-continuity of f at x0.
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Because the implication (2)⇒(1) is trivial, it follows the equivalence of the first three
assertions of the theorem.

As the equivalence (2) ⇔ (4) holds for any mapping f : X → R (see Remark 1.2), it
follows the equivalence of all four assertions of the proposition. �

The above proposition has the following useful corollary.

Corollary 3.2. Let f , g be sublinear functionals defined on an asymmetric locally convex
space (X ,P). If f ≤ g and g is (P,u)-continuous, then f is (P,u)-continuous too.

In particular, the result is true when f is linear.

Proof. By Proposition 3.1, there exist p ∈ P and L ≥ 0 such that for all x ∈ X , g(x) ≤
Lp(x). It follows that for all x ∈ X , f (x)≤ g(x)≤ Lp(x), which, by the same proposition,
implies the continuity of f . �

Concerning the continuity of the Minkowski functional, we have the following result.

Proposition 3.3. Let C be a convex absorbing subset of an asymmetric locally convex space
(X ,P).

(1) The Minkowski functional pC is (P,u)-continuous if and only if 0 is a τP-interior
point of C.

(2) If pC is (P,u)-continuous, then

τP- intC = {x ∈ X : pC(x) < 1
}
. (3.5)

Proof. Suppose that the family P is directed.
(1) If 0 is a τP-interior point of C, then there exist p ∈ P and r > 0 such that

Bp(0,r)⊂ C ⊂ {x ∈ X : pC(x)≤ 1
}

, (3.6)

that is,

∀x ∈ X , p(x)≤ r =⇒ pC(x)≤ 1. (3.7)

By Proposition 1.4, we have

∀x ∈ X , pC(x)≤ 1
r
p(x), (3.8)

which, by Proposition 3.1, implies the (P,u)-continuity of pC.
Conversely, suppose that pC is (P,u)-continuous. Since the set (−∞;1) is τu-open in

R, the set {x ∈ X : pC(x) < 1} = p−1
C (−∞;1) is τP-open, contains 0, and is contained in C,

implying that 0∈ τP-intC.
(2) If pC is (P,u)-continuous, then the above inclusion shows that

{
x ∈ X : pC(x) < 1

}⊂ τP- intC. (3.9)

If x ∈ τP-intC, then there exist p1 ∈ P and r > 0 such that B′p1
(x,r)⊂ C. Let p2 ∈ P and

L > 0 be such that for all x ∈ X , pC(x)≤ Lp2(x). If p ∈ P is such that p ≥ p1, i= 1,2, then
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B′p(x,r)⊂ B′p1
(x,r)⊂ C and

∀x ∈ X , pC(x)≤ Lp(x). (3.10)

If p(x)= 0, then, by the above inequality, pC(x)= 0 < 1. If p(x) > 0, put xα = (1 +α)x for
α > 0. Since p(xα − x) = αp(x) < r for 0 < α < r/p(x), it follows that xα ∈ C for 0 < α <
r/p(x). But then, for any such α, we have

pC(x)= 1
1 +α

pC
(
xα
)≤ 1

1 +α
< 1. (3.11)

�

The separation of convex sets. The separation results for convex subsets of locally convex
spaces are key tools in the study of duality for these spaces as well as in optimization
problems.

In the following two theorems, we prove the asymmetric analogs of the classical sepa-
ration theorems of Eidelheit and Tukey (see [15, Theorems 2.2.26 and 2.2.28]).

Theorem 3.4. Let (X ,P) be an asymmetric locally convex space. If Y1, Y2 are two disjoint
nonempty convex subsets of X with Y1 τP-open, then there exists a linear functional ϕ∈ X�
such that

∀y1 ∈ Y1, ∀y2 ∈ Y2 ϕ
(
y1
)
< ϕ
(
y2
)
. (3.12)

Proof. Let y0
i ∈ Yi, i= 1,2, and let x0 = y0

2 − y0
1. Since the set Y1 is τP-open and the topol-

ogy τP is translation invariant, the set

Y := x0 +Y1−Y2 =∪
{
x0− y2 +Y1 : y2 ∈ Y2

}
(3.13)

is τP-open too.
We have 0= x0 + y0

1 − y0
2 ∈ Y and x0 /∈ Y . Indeed, if x0 = x0 + y1− y2, for some y1 ∈ Y1

and y2 ∈ Y2, then the element y = y1 = y2 would belong to the empty set Y1∩Y2.
By the preceding proposition, the Minkowski functional pY of the τP-open convex set

Y is sublinear, (P,u)-continuous, and pY (x0) ≥ 1 since x0 /∈ Y . By Proposition 2.9(1),
there exists a pY -bounded linear functional ψ : X → R such that ψ(x0) = pY (x0) and
ψ(x)≤ pY (x), x ∈ X . Taking ϕ= (1/pY (x0))ψ, it follows that

ϕ
(
x0
)= 1, ∀x ∈ X , ϕ(x)= 1

pY
(
x0
)ψ(x)≤ 1

pY
(
x0
) pY (x)≤ pY (x). (3.14)

By Proposition 2.3, the functional ϕ is (P,u)-continuous. Because Y is τP-open and
0∈ Y , by Proposition 3.3, we have Y = {x ∈ X : pY (x) < 1}. Since ϕ(x0)= 1, we obtain

∀y1 ∈ Y1, ∀y2 ∈ Y2 1 +ϕ
(
y1
)−ϕ(y2

)= ϕ(x0 + y1− y2
)≤ pY

(
x0 + y1− y2

)
< 1,
(3.15)

implying that

∀y1 ∈ Y1, ∀y2 ∈ Y2, ϕ
(
y1
)
< ϕ
(
y2
)
. (3.16)

�
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We prove now the asymmetric analog of Tukey’s separation theorem.

Theorem 3.5. Let (X ,P) be an asymmetric locally convex space. If Y1, Y2 are two nonempty
disjoint convex subsets of X with Y1 τP-compact and Y2 τP-closed, then there exists a func-
tional ϕ∈ X� such that

supϕ
(
Y1
)
< inf ϕ

(
Y2
)
. (3.17)

Proof. Suppose that P is directed.
Since Y1∩Y2 =∅ and Y2 is τP-closed, for every y ∈ Y1, there exist py ∈ P and ry > 0

such that

(
y + 2ryB′py

)∩Y2 =∅. (3.18)

The τP-open cover {y + ryB′py : y ∈ Y1} of the τP-compact setY1 contains a finite subcover
{yk + rkB′pk : k = 1,2, . . . ,n}, where pk = pyk and rk = ryk for k = 1, . . . ,n. Take p ∈ P such
that p ≥ pk, k = 1,2, . . . ,n, put r :=min{rk : k = 1,2, . . . ,n} and show that

(
Y1 + rB′p

)∩Y2 =∅. (3.19)

Indeed, if y′ = y + ru for some y ∈Y1, u∈ B′p, and y′ ∈ Y2, then, choosing k ∈ {1,2, . . . ,n}
such that y ∈ yk + rkB′pk , we have

y′ = y + ru∈ yk + rB′p + rkB′pk ⊂ yk + rkB′pk + rkB′pk = yk + 2rkB′pk , (3.20)

in contradiction to (3.18).
The set Z := Y1 + rB′p is convex, τP-open, and disjoint from Y2. By Theorem 3.4, there

exists ϕ∈ X� such that

∀y ∈ Y1, ∀u∈ B′p, ∀y′ ∈ Y2 ϕ(y) + rϕ(u) < ϕ(y′). (3.21)

By Proposition 2.3, there exist q1 ∈ P and L > 0 such that for all x ∈ X , ϕ(x)≤ Lq1(x). If
q ∈ P is such that q ≥max{p,q1}, then ϕ(x)≤ Lq(x), x ∈ X , and B′q ⊂ B′p, so that

∀y ∈ Y1, ∀u∈ B′q, ∀y′ ∈ Y2 ϕ(y) + rϕ(u) < ϕ(y′). (3.22)

By (3.21), ϕ �= 0, so that by Proposition 2.7, ‖ϕ|q = supϕ(B′q) > 0. Passing in (3.22) to
supremum with respect to u∈ B′q, we get

∀y ∈ Y1, ∀y′ ∈ Y2 ϕ(y) + r‖ϕ|q ≤ ϕ(y′), (3.23)

implying that

r‖ϕ|q + supϕ
(
Y1
)≤ inf ϕ

(
Y2
)
. (3.24)

It follows that

supϕ
(
Y1
)
< inf ϕ

(
Y2
)
. (3.25)

�
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Remark 3.6. The inequality in Theorem 3.4 cannot be reversed, in the sense that, under
the same hypotheses on the sets Y1 and Y2, we cannot find a (P,u)-continuous linear
functional ψ on X such that

∀y2 ∈ Y2, ∀y1 ∈ Y1 ψ
(
y2
)
< ψ

(
y1
)
. (3.26)

This is due, on one side, to the fact that the functional−ϕ need not be (P,u)-continuous,
where ϕ is the linear functional given by Theorem 3.4. On the other side, analyzing the
proof of Theorem 3.4, it follows that we should work with the setY ′ := x0 +Y2−Y1 which
need not be τP-open, because the τP-openness of Y1 does not imply the τP-openness of
−Y1, see Example 1.3.

The same caution must be taken when applying Theorem 3.5.

Extreme points and the Krein-Milman theorem. We start by recalling some notions and
facts. A point e of a convex subset of a vector space X is called an extreme point of Y
provided that (1− t)x+ ty = e, for some x, y ∈ Y and 0 < t < 1, implies that x = y = e. A
nonempty convex subset Z of Y is called an extremal subset of Y if (1− t)x+ ty ∈ Z, for
some x, y ∈ Y and 0 < t < 1, implies that x, y ∈ Z (in fact, [x; y]⊂ Z, by the convexity of
Z). Obviously, that a one-point set Z = {e} is an extremal subset of Y if and only if e is an
extreme point of Y . Also, if W is an extremal subset of the extremal subset Z of Y , then
W is an extremal subset of Y too. In particular, if e is an extreme point of an extremal
subset Z of Y , then e is an extreme point of Y . The intersection of a family of extremal
subsets of Y is an extremal subset of Y provided that it is nonempty. We denote by extY
the (possibly empty) set of extreme points of the convex set Y .

The following proposition is an immediate consequence of the definitions.

Proposition 3.7. Let Y be a nonempty convex subset of a vector space X and f a linear
functional on X . If the set Z = {z ∈ Y : f (z)= sup f (Y)} is nonempty, then it is an extremal
subset of Y . A similar assertion holds for the set W = {w ∈ Y : f (w)= inf f (Y)}.

We can state and prove now the Krein-Milman theorem in the asymmetric case.

Theorem 3.8. Let (X ,P) be an asymmetric locally convex space such that the topology τP
is Hausdorff. Then any nonempty convex τP-compact subset Y of X coincides with the τP-
closed convex hull of the set of its extreme points

Y = τP-cl-co(extY). (3.27)

Proof. All the topological notions will concern the τP-topology of X so that we will omit
“τP-” in the following. By Proposition 2.9(2), for every x ∈ X , x �= 0, there exists ϕ∈ X�

with ϕ(x)= 1.

Fact 3.9. Every nonempty convex compact subset Z of X has an extreme point.

Let

� := {F : F is a closed extremal subset of Z}, (3.28)
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and define the order in � by F1 ≤ F2 ⇔ F1 ⊂ F2 and show that the set � is nonempty and
downward inductively ordered. Because Y is τP-compact and the topology τP is Haus-
dorff, it follows that Y is convex and τP-closed, so that Y ∈ �. Since a totally ordered
subfamily � of � has the finite intersection property, by the compactness of the set Z,
the set G=∩� is nonempty, closed, and extremal. Therefore, G∈� is a lower bound for
�. By Zorn’s lemma, the ordered set � has a minimal element F0. If we show that F0 is a
one-point set, F0 = {x0}, then x0 will be an extreme point of Z.

Suppose that F0 contains two distinct points x1, x2, and let p ∈ P be such that p(x1−
x2) > 0. Let ϕ be a p-bounded linear functional such that ϕ(x1 − x2) = p(x1 − x2) > 0
(see Proposition 2.9(1)). It follows that ϕ ∈ X�, so that ϕ is upper semicontinuous as a
mapping from (X ,τP) to (R,| · |). By the compactness of the set F0, the set

F1 =
{
x ∈ F0 : ϕ(x)= supϕ

(
F0
)}= {x ∈ F0 : ϕ(x)≥ supϕ

(
F0
)}

(3.29)

is nonempty and closed. By Proposition 3.7, F1 is an extremal subset of F0, thus an ex-
tremal subset of Z. Therefore, F1 ∈�, F1 ⊂ F0, and x2 ∈ F0 \ F1 in contradiction to the
minimality of F0.

Fact 3.10. Y = τP-clco(extY).

The inclusion ext(Y) ⊂ Y implies that Y1 := τP-clco(extY) ⊂ Y . As a closed subset
of a compact set, the set Y1 is convex and compact. Supposing that there exists a point
y0 ∈ Y \Y1, then, by Theorem 3.5, there exists ϕ∈ X� such that

supϕ
(
Y1
)
< ϕ
(
y0
)
. (3.30)

Using again the upper semicontinuity of ϕ as a mapping from (X ,τP) to (R,| · |), we
see that the set

F = {y ∈ Y : ϕ(y)= supϕ(Y)
}= {y ∈ Y : ϕ(y)≥ supϕ(Y)

}
(3.31)

is nonempty, convex, and compact, so that, by Fact 3.9, it has an extreme point e1. Since
F is an extremal subset of Y , it follows that e1 is an extreme point of Y , implying that
e1 ∈ Y1. Taking into account (3.30), we obtain the contradiction

supϕ(Y)= ϕ(e1
)≤ supϕ

(
Y1
)
< ϕ(y0)≤ supϕ(Y). (3.32)

�

4. The asymmetric weak topology

The weak topology of a locally convex space (X ,Q) is defined by the locally convex basis
� formed by the sets of the form

V ′
x∗1 ,...,x∗n ;ε =

{
x ∈ X :

∣∣x∗i (x)
∣∣ < ε, 1≤ i≤ n}, (4.1)

for n∈N, x∗1 , . . . ,x∗n ∈ X∗ and ε > 0. Obviously, we can suppose that x∗i �= 0, i= 1, . . . ,n.
The duality theory for locally convex spaces is based on the following key lemma of

algebraic nature.
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Lemma 4.1 (see [19, Lemma VIII.3.3]). Let X be a vector space and f , f1, . . . , fn : X → R
linear functionals. The following assertions are equivalent.

(1) f ∈ sp{ f1, . . . , fn}.
(2) There exists L≥ 0 such that

∀x ∈ X , f (x)≤ Lmax
{∣∣ f1(x)

∣∣, . . . ,
∣∣ fn(x)

∣∣}. (4.2)

(3)
⋂n
i=1 ker fi ⊂ ker f .

In our case, this lemma takes the form.

Lemma 4.2. Let f , f1, . . . , fn be real linear functionals on a vector space X , with f1, . . . , fn
linearly independent. Then the following assertions are equivalent.

(1) For all x ∈ X , fi(x)≤ 0, i= 1, . . . ,n⇒ f (x)≤ 0.
(2) There exists L≥ 0 such that for all x ∈ X , f (x)≤ Lmax{ fi(x) : 1≤ i≤ n}.
(3) There exist a1, . . . ,an ≥ 0, such that f =∑n

i=1 ai fi.

Proof. Since the implications (2)⇒(1) and (3)⇒(2) are obvious, it is sufficient to prove
(1)⇒(3).

If fi(x)= 0 for i= 1, . . . ,n, then fi(−x)=− fi(x)= 0, i= 1, . . . ,n, so that f (x)≤ 0 and
− f (x)= f (−x)≤ 0, implying that f (x)= 0. Therefore Lemma 4.1(3) is fulfilled, so that
there exist a1, . . . ,an ∈ R such that f =∑n

i=1 ai fi. It remains to show that aj ≥ 0 for j =
1, . . . ,n. Because f1, . . . , fn are linearly independent, there exist the elements xj ∈ X such
that fi(xj) = −δi j ≤ 0, i, j = 1,2, . . . ,n, where δi j is the Kronecker symbol. It follows that
f (xj)≤ 0 and

−aj =
n∑
i=1

ai fi
(
xj
)= f

(
xj
)≤ 0, (4.3)

for j = 1, . . . ,n. �

Define the asymmetric weak topologywα on an asymmetric locally convex space (X ,P)
as the asymmetric locally convex topology generated by the asymmetric locally convex
basis �′

α formed by the sets

V ′
ϕ1,...,ϕn;ε =

{
x ∈ X : ϕi(x) < ε, 1≤ i≤ n}, (4.4)

for n∈N, ϕ1, . . . ,ϕn ∈ X� and ε > 0. The neighborhoods of an arbitrary point x ∈ X are
subsets of X containing a set of the form x+V ′

ϕ1,...,ϕn;ε = {x′ ∈ X : ϕi(x′ − x) < ε, 1≤ i≤
n}.

The sets

Vϕ1,...,ϕn;ε =
{
x ∈ X : ϕi(x)≤ ε, 1≤ i≤ n} (4.5)

generate the same topology.
In the following proposition, we collect some properties of the topology wα.
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Proposition 4.3. Let (X ,P) be an asymmetric locally convex space and X� = (X ,P)� its
asymmetric dual cone.

(1) The topology τP is finer than wα.
(2) For ϕ∈ X� and ε > 0, the set {x ∈ X : ϕ(x) < ε} is wα-open and {x ∈ X : ϕ(x)≥ ε}

is wα-closed.
(3) A net {xi : i∈ I} in X is wα-convergent to x ∈ X if and only if for every ϕ∈ X�, the

net {ϕ(xi)} converges to ϕ(x) in (R,u). This means the following:

∀ϕ∈ X�, ∀ε > 0, ∃i0 such that∀i≥ i0, ϕ
(
xi− x

)
< ε. (4.6)

(4) The asymmetric dual (X ,wα)� of the asymmetric locally convex space (X ,wα) agrees
with X�.

Proof. Suppose that P is directed.
(1) Let V ′ = V ′

ϕ1,...,ϕn;ε be an element of the locally convex basis (4.4). Because ϕi are
(P,u)-continuous, there exist pi ∈ P and Li ≥ 0 such that

∀x ∈ X , ϕi(x)≤ Lipi(x), for i= 1, . . . ,n. (4.7)

The multiball U ′ = {x ∈ X : pi(x) < ε/(L+ 1), 1 ≤ i ≤ n}, where L =maxLi, is con-
tained in V ′, showing that V ′ is a τP-neighborhood of 0∈ X .

(2) If V = {x ∈ X : ϕ(x) < ε} and x0 ∈ V , then the wα-neighborhood {x ∈ X : ϕ(x−
x0) < ε−ϕ(x0)} of x0 is contained in V ′ because

ϕ
(
x− x0

)
< ε−ϕ(x0

)=⇒ ϕ(x)= ϕ(x− x0
)

+ϕ
(
x0
)
< ε. (4.8)

The assertion (3) follows from definitions.
(4) Because τP is finer than wα, the identity map Id : (X ,τP)→ (X ,wα) is continuous,

implying the (P,u)-continuity of ϕ◦ Id for any ϕ∈ (X ,wα)�, that is, (X ,wα)� ⊂ (X ,P)�.
Conversely, if ϕ is a (P,u)-continuous linear functional, then the set V = {x ∈ X :

ϕ(x) < ε} is a wα-neighborhood of 0 ∈ X and ϕ(V) ⊂ (−∞;ε) for every ε > 0, proving
the (wα,τu)-continuity of ϕ at 0, and by the linearity of ϕ, on the whole X . �

As in the symmetric case, the closed convex sets are the same for the topologies τP and
wα.

Proposition 4.4. Let (X ,P) be an asymmetric locally convex space and Y a convex subset
of X . Then Y is wα-closed if and only if it is τP-closed.

Proof. Because τP is finer than wα, it follows that any (not necessarily convex) wα-closed
subset of X is also τP-closed.

Suppose now that the convex set Y is τP but not wα-closed. If x0 is a point in wα-clY \
Y , then, applying Theorem 3.5 to the sets {x0} and Y , we get a functional ϕ ∈ X� such
that

ϕ
(
x0
)
< inf ϕ(Y). (4.9)
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If m := inf ϕ(Y), then V = {x ∈ X : ϕ(x− x0) < 2−1(m−ϕ(x0))} is a wα-neighborhood of
x0. Because

ϕ(x)= ϕ(x− x0
)

+ϕ
(
x0
)
<
m+ϕ

(
x0
)

2
<m, (4.10)

for every x ∈V , it follows that V ∩Y =∅, in contradiction to x0 ∈wα-cl Y . �

The proposition has the following corollary.

Corollary 4.5. Let (X ,P) be an asymmetric locally convex space. Then for every subset Z
of X , the following equality holds:

wα-clco(Y)= τP-clco(Y). (4.11)

Proof. By the definition of the closed convex hull and the preceding proposition, we have
the equalities

wα-clco(Y)=
⋂
{Y : Y ⊂ X , Y convex and wα-closed}

=
⋂
{Y : Y ⊂ X , Y convex and τP-closed}

= τP-clco(Y).

(4.12)

�

Remark 4.6. We can define the asymmetric polar of a subset W of the dual X� of an
asymmetric locally convex space (X ,P) by

Wα =
{
x ∈ X :∀ϕ∈W , ϕ(x)≤ 1

}
. (4.13)

Since, for ϕ∈ X�, a set of the form {x ∈ X : ϕ(x)≤ 1} is not necessarily τP-closed, the
set Wα need not be τP-closed. Therefore, an asymmetric analog of the bipolar theorem
(see [19, Satz WIII.3.9]), asserting that

(
A◦
)
◦ = -clco

(
A∪{0}) (4.14)

for any subset A of a locally convex space (X ,Q), does not hold in the asymmetric case.

References

[1] C. Alegre, J. Ferrer, and V. Gregori, Quasi-uniformities on real vector spaces, Indian J. Pure Appl.
Math. 28 (1997), no. 7, 929–937.

[2] , On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math.
Hungar. 82 (1999), no. 4, 325–330.

[3] A. R. Alimov, The Banach-Mazur theorem for spaces with nonsymmetric distance, Uspekhi Mat.
Nauk 58 (2003), no. 2(350), 159–160 (Russian), translated in Russian Math. Surveys 58
(2003), no. 2, 367–369.

[4] A. Andrikopoulos, Completeness in quasi-uniform spaces, Acta Math. Hungar. 105 (2004), no. 1-
2, 151–173.

[5] P. A. Borodin, The Banach-Mazur theorem for spaces with an asymmetric norm and its appli-
cations in convex analysis, Mat. Zametki 69 (2001), no. 3, 329–337 (Russian), translated in
Math. Notes 69 (2001), no. 3-4, 298–305.



2608 Asymmetric locally convex spaces
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