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The edge chromatic number of G is the minimum number of colors required to color
the edges of G in such a way that no two adjacent edges have the same color. We will
determine a sufficient condition for a various graph products to be of class 1, namely,
strong product, semistrong product, and special product.

1. Introduction

All graphs under consideration are nonnull, finite, undirected, and simple graphs. We
adopt the standard notations dG(v) for the degree of the vertex v in the graph G, and
∆(G) for the maximum degree of the vertices of G.

The edge chromatic number, χ′(G), of G is the minimum number of colors required
to color the edges of G in such a way that no two adjacent edges have the same color. A
graph is called a k-regular graph if the degree of each vertex is k. A cycle of a graph G
is said to be Hamiltonian if it passes by all the vertices of G. A sequence F1,F2, . . . ,Fn of
pairwise edge disjoint graphs with union G is called a decomposition of G and we write
G=⋃n

i=1Fi. In addition, if the subgraphs Fi are k-regular spanning of G, then G is called
a k-factorable graph and each Fi is called a k-factor. Moreover, if Fi is Hamiltonian cycle
for each i = 1,2, . . . ,n, then G is called a Hamiltonian decomposable graph. A graph M
is a matching if ∆(M) = 1, and a perfect matching if the degree of each vertex is 1. An
independent set of edges is a subset of E(G) in which no two edges are adjacent. Vizing
[8] classified graphs into two classes, 1 and 2; a graph G is of class 1 if χ′(G)= ∆(G), and
of class 2 if χ′(G) = ∆(G) + 1. It is known that a bipartite graph is of class 1. Also, a 2r-
regular graph is 2-factorable. It is elementary from the definitions that a graph is regular
and of class 1 if and only if it is 1-factorable.

Let G= (V(G),E(G)) and H = (V(H),E(H)) be two graphs.
(1) The direct product G∧H has vertex set V(G∧H) = V(G)×V(H) and edge set

E(G∧H)= {(u1,v1)(u2,v2) | u1u2 ∈ E(G) and v1v2 ∈ E(H)}.
(2) The Cartesian product G×H has vertex set V(G×H)= V(G)×V(H) and edge

set E(G×H)= {(u1,v1)(u2,v2) | u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and v1v2 ∈
E(H)}.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:16 (2005) 2669–2676
DOI: 10.1155/IJMMS.2005.2669

http://dx.doi.org/10.1155/S0161171205411527


2670 On the edge coloring of graph products

(3) The strong product G�H has vertex set V(G�H)= V(G)×V(H) and edge set
E(G�H)= {(u1,v1)(u2,v2) | u1u2 ∈ E(G) and v1v2 ∈ E(H) or u1u2 ∈ E(G) and
v1 = v2, or u1 = u2 and v1v2 ∈ E(H)}.

(4) The semistrong product G •H has vertex set V(G •H)= V(G)×V(H) and edge
set E(G •H) = {(u1,v1)(u2,v2) | u1u2 ∈ E(G) and v1v2 ∈ E(H), or u1 = u2 and
v1v2 ∈ E(H)}.

(5) The lexicographic product G[H] has vertex set V(G[H])=V(G)×V(H) and edge
set E(G[H])= {(u1,v1)(u2,v2) | u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H)}.

(6) The special product G⊕H has vertex set V(G⊕H)= V(G)×V(H) and edge set
E(G⊕H)= {(u1,v1)(u2,v2) | u1u2 ∈ E(G) or v1v2 ∈ E(H)}.

(7) The wreath product GρH has vertex set V(GρH) = V(G)×V(H) and edge set
E(GρH)={(u1,v1)(u2,v2) | u1=u2 and v1v2∈E(H), or u1u2∈ E(G) and there is
α ∈ Aut(H) such that α(v1) = v2}, where Aut(H) is the automorphism group of
H . Note that

dG⊕H(u,v)= dG(u)
∣∣V(H)

∣∣+dH(v)
∣∣V(G)

∣∣−dH(v)dG(u). (1.1)

For a long time, the question of whether the product of two graphs is of class 1, if
one of the graphs is of class 1, has been studied by a number of authors. The following
theorem, due to Mahmoodian [6], answers the question for the Cartesian product.

Theorem 1.1 (E. S. Mahmoodian). Let G∗ =G×H be the Cartesian product of G and H .
If one of G and H is of class 1, then G∗ is of class 1.

The (noncommutative) lexicographic product has been studied by Anderson and Lip-
man [1], Pisanski et al. [7], and Jaradat [4].

Theorem 1.2 (Anderson and Lipman). Let G and H be two graphs. If G is of class 1, then
G[H] is of class 1.

Theorem 1.3 (Jaradat). Let G and H be two graphs. If χ′(H) = ∆(H) and H is of even
order, then χ′(G[H]) = ∆(G[H]). Moreover, the corresponding statement needs not hold
when H has odd order.

The (noncommutative) wreath product has been studied by Anderson and Lipman
[1] and Jaradat [4] who proved the following.

Theorem 1.4 (Anderson and Lipman). Let G be of class 1. If H has the property that a
vertex in the largest isomorphism class of vertices in H has the maximum degree in H , then
GρH is of class 1.

Anderson and Lipman conjectured that if G is of class 1, then GρH is of class 1. The
same conjecture appeared in Jensen and Toft’s book [5] as a question. The next result due
to Jaradat [4] is a major progress to the conjecture, there are still some cases unsettled.

Theorem 1.5 (Jaradat). Let G and H be two graphs such that G is of class 1. Then, GρH
is of class 1 if one of the following holds: (i) χ′(H)− δ(H) ≤ ∆(G), (ii) ∆(H) = ∆(G),
(iii) ∆(H) < 2∆(G), and |{v ∈V(H) : dH(v)= 0}| > |V(H)|/2.



M. M. M. Jaradat 2671

Also, Anderson and Lipman posed the question about the edge chromatic number of
GρP2 when G is of class 2 and hinted that this would be a difficult problem. Jaradat gave a
complete answer for this question when he proved a more general case as in the following
result.

Theorem 1.6 (Jaradat). Let G and H be two graphs. If H is vertex-transitive of even order,
and if χ′(H)= ∆(H), then χ′(GρH)= ∆(GρH).

The direct product has been studied by Jaradat who proved the following result.

Theorem 1.7 (Jaradat). Let G and H be two graphs such that at least one of them is of class
1, then G∧H is of class 1.

In this paper, we determine sufficient condition for various graph products to be of
class 1, namely, strong product, semistrong product, and special product of two graphs.

2. Main results

We start this section by focusing on the chromatic number of the strong product of two
graphs. Note that ∆(G�H)= ∆(G) +∆(H) +∆(G)∆(H).

Theorem 2.1. Let G and H be two graphs such that at least one of them is of class 1, then
G�H is of class 1.

Proof. It is an easy matter to see that G�H = (G×H)
⋃

(G∧H). And so, χ′(G�H) ≤
χ′(G×H)+ χ′(G∧H). Since at least one of G and H is of class 1, by Theorems 1.1 and 1.7,
χ′(G×H) ≤ ∆(G) +∆(H) and χ′(G∧H) ≤ ∆(G)∆(H). Therefore, χ′(G�H) ≤ ∆(G) +
∆(H) +∆(G)∆(H)= ∆(G�H). The proof is complete. �

The following result is a straightforward consequence of Theorem 2.1 and the fact that
a regular graph is of class 1 if and only if it is 1-factorable.

Corollary 2.2 (Zhou). Let G and H be two graphs such that at least one of them is 1-
factorable and the other is regular, then G�H is 1-factorable.

Now, we turn our attention to deal with the chromatic number of the semistrong prod-
uct of graphs. Note that ∆(G•H)= ∆(G)∆(H) +∆(H).

Lemma 2.3. Let H be a 2r-regular graph and let M be a matching, then χ′(M •H)= 4r.

Proof. Since H is a 2r-regular graph, H is a 2-factorable graph, say, H =∪r
i=1C

∗
i . And so,

C∗i is decomposable into vertex disjoint union of cycles, say, C∗i =∪ ji
j=1C

( j)
i . Since M is a

matching, M is decomposable into a vertex disjoint union of {K ( f )
2 }lf=1∪{ut}st=1, where

K
( f )
2 is a complete graph of order 2 and ut is an isolated vertex. Therefore,

M •H =
(( l⋃

f=1

K
( f )
2

)⋃( s⋃
t=1

ut

))
•H

=
( l⋃

f=1

(
K

( f )
2 •H

))⋃( s⋃
t=1

(
ut ×H

))
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=
r⋃

i=1

( l⋃
f=1

(
K

( f )
2 •C∗i

))⋃( s⋃
t=1

(
ut ×H

))

=
r⋃

i=1

( l⋃
f=1

( ji⋃
j=1

(
K

( f )
2 •C( j)

i

)))⋃( s⋃
t=1

(
ut ×H

))
.

(2.1)

Since K
( f )
2 •C( j)

i is Hamiltonian decomposable into two even cycles, as a result χ′(K ( f )
2 •

C
( j)
i ) = 4. Since no vertex of C

( j)
i is adjacent to a vertex of C(k)

i , we have that no vertex

of K
( f )
2 •C( j)

i is adjacent to a vertex of K
( f )
2 •C(k)

i , whenever j �= k. Thus, χ′(K ( f )
2 •C∗i )=

χ′(
⋃ ji

j=1(K
( f )
2 • C( j)

i )) = 4. Also, since no vertex of K
( f )
2 is adjacent to a vertex of K (h)

2 ,

it implies that no vertex of
⋃ ji

j=1(K
( f )
2 •C( j)

i ) is adjacent to a vertex of
⋃ ji

j=1(K (h)
2 •C( j)

i )

for any f �= h. Thus, χ′(
⋃l

f=1

⋃ ji
j=1(K

( f )
2 •C( j)

i )) = χ′(
⋃ ji

j=1(K
( f )
2 •C( j)

i )) = 4. Since {ut ×
H}st=1 is a set of disjoint copies of H , and since χ′(H)≤ 2r + 1, we have that χ′(

⋃s
t=1(ut ×

H))= χ′(ut ×H)= χ′(H)≤ 2r + 1. Finally, no vertex of
⋃r

i=1(
⋃l

f=1(
⋃ ji

j=1(K
( f )
2 •C( j)

i ))) is
adjacent to a vertex of

⋃s
t=1(ut ×H). Therefore,

χ′
(
M1 •H

)≤max

{ r∑
i=1

χ′
( l⋃

f=1

ji⋃
j=1

(
K

( f )
2 •C( j)

i

))
,χ′(H)

}

≤max{4r,2r + 1}
= 4r.

(2.2)

The proof is complete. �

Lemma 2.4. Let K2 be a path of order 2 and M be a perfect matching, then K2 •M is a
bipartite graph and so χ′(K2 •M)= 2.

Proof. The proof follows by noting that K2 •M is decomposable into vertex disjoint cycles
of order 4. The proof is complete. �

Lemma 2.5. Let H be a (2r + 1)-regular graph having 1-factor and let M be a matching,
then χ′(M •H)= 4r + 2.

Proof. Let MH be a 1-factor of H , then H −MH is a 2r-regular graph. Thus, H = (H −
MH)

⋃
MH . Therefore,M •H = (M • (H−MH))

⋃
(M •MH). By Lemma 2.3, χ′(M • (H−

MH))= 4r. We now show that χ′(M •MH)= 2. As in Lemma 2.3,M is decomposable into

a vertex disjoint union of {K ( f )
2 }lk=1∪{ut}st=1, where K

( f )
2 is a complete graph of order 2

and ut is an isolated vertex. Therefore,

M •MH =
(( l⋃

f=1

K
( f )
2

)⋃( s⋃
t=1

ut

))
•MH

=
( l⋃

f=1

(
K

( f )
2 •MH

))⋃( s⋃
t=1

(
ut ×MH

))
.

(2.3)
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Since χ′(MH) = 1, as in Lemma 2.3, χ′(
⋃s

t=1(ut ×MH)) = χ′(ut ×MH) = χ′(MH) = 1.

Clearly that, no vertex of K
( f )
2 •MH is adjacent to a vertex of K (h)

2 •MH for any f �= h.

Therefore, by Lemma 2.4, χ′(
⋃l

f=1(K
( f )
2 •MH)) = χ′(K ( f )

2 •MH) = 2. Finally, no vertex

of
⋃l

f=1(K
( f )
2 •MH) is adjacent to any vertex of

⋃r
t=1(ut ×MH). Hence, χ′(M •MH)≤ 2.

Therefore, χ′(M •H)= 4r + 2. The proof is complete. �

Theorem 2.6. Let G and H be two graphs, then G •H is of class 1 if one of the following
holds: (i) H is of class 1, (ii) G is of class 1 and H is an r-regular graph such that if r is odd,
then H has 1-factor.

Proof. First, we consider (i). Note that G •H = (G∧H)
⋃

(N ×H), where N is the null
graph with vertex set V(G). And so, χ′(G•H)≤ χ′(N ×H) + χ′(G∧H). By Theorem 1.7
and being that N ×H is a vertex disjoint union copies of H and H is of class 1, we have
that χ′(G•H)≤ ∆(H) +∆(H)∆(G)= ∆(G•H). Now, we consider (ii). Since G is of class

1, G=⋃∆(G)
i=1 Mi, where Mi is a matching spanning subgraph of G. Hence,

G•H =
(∆(G)⋃

i=1

Mi

)
•H

= (M1 •H
)⋃(∆(G)⋃

i=2

(
Mi∧H

))
.

(2.4)

Thus,

χ′(G•H)≤ χ′
(
M1 •H

)
+

∆(G)∑
i=2

χ′
(
Mi∧H

)
. (2.5)

By Theorem 1.7,

χ′(G•H)≤ χ′
(
M1 •H

)
+
(
∆(G)− 1

)
∆(H). (2.6)

By Lemmas 2.3 and 2.5, we have that

χ′(G•H)≤ (∆(G) + 1
)
∆(H)= ∆(G•H). (2.7)

The proof is complete. �

Corollary 2.7 (Zhou). Let G be 1-factorable and let H be r-regular such that if r is odd,
then H has 1-factor. Then G•H is 1-factorable.

The following result is a straightforward from Theorem 2.6 and the fact that Km(n) =
Kn •Km.

Corollary 2.8. The complete multipartite graph Km(n) is of class 1 if and only if mn is even.

We now turn our attention to deal with the chromatic number of the special product
of graphs. The proof of the following lemma is a straightforward exercise.
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Lemma 2.9. For each G and H , we have

∆(G⊕H)= ∆(G)
∣∣V(H)

∣∣+∆(H)
∣∣V(G)

∣∣−∆(G)∆(H). (2.8)

Theorem 2.10. Let G and H be graphs, then G⊕H is of class 1 if at least one of the factors
is of class 1 and of even order and the other is regular. Moreover, the corresponding statement
needs not hold if we replace even by odd.

Proof. To prove the first part of the theorem, we may assume that G is of class 1, |V(G)| =
2n, and H is regular because G⊕H is isomorphic to H ⊕G. Note that

G⊕H = (G×H)∪ (K2n∧H
)∪ (G∧ H̄

)
. (2.9)

Thus,

χ′(G⊕H)≤ χ′(G×H) + χ′
(
K2n∧H

)
+ χ′(G∧ H̄). (2.10)

By Theorems 1.1 and 1.7 and being that G and K2n are of class 1, we have

χ′(G⊕H)≤ ∆(G) +∆(H) +∆(H)
(∣∣V(G)

∣∣− 1
)

+∆(H̄)∆(G)

= ∆(G) +∆(H)
∣∣V(G)

∣∣+∆(G)
(∣∣V(H)

∣∣−∆(H)− 1
)

= ∆(H)
∣∣V(G)

∣∣+∆(G)
∣∣V(H)

∣∣−∆(G)∆(H)

= ∆(G⊕H).

(2.11)

The second part of the theorem comes by takingG= P2n+1 andH = K2m+1, wherem,n≥ 1
and note that

∣∣E(G⊕H)
∣∣= (2nm+m+n)(4nm+ 2m+ 2) +m(2n− 1) (2.12)

and the size of the largest independent edge set is less than or equal to 2nm + n + m.
Hence,

χ′(G⊕H)≥ (4nm+ 2m+ 2) +
m(2n− 1)

2nm+n+m
. (2.13)

Therefore, χ′(G⊕H) > (4nm+ 2m+ 2)= ∆(G⊕H). The proof is complete. �

Corollary 2.11. Let H and G be two graphs, then G⊕H is 1-factorable if one of them is
1-factorable and the other is regular.

We say that � = {W1,W2, . . . ,Wn} is a proper partition of E(G) if � is a partition
of E(G) and Wi is an independent set of edges for each i = 1,2, . . . ,n. We give another
sufficient condition for the special product to be of class 1.

Theorem 2.12. Let G and H be two graphs such that G is of class 1 and of even order. Let
{V1,V2, . . . ,V∆(G)} and {U1,U2, . . . ,U|V(G)|−1} be proper partitions of E(G) and E(K|V(G)|),
respectively. If Vi ⊆Ui for each i= 1,2, . . . ,∆(G), then G⊕H is of class 1.
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Proof. Assume that Vi = φ for each i= ∆(G) + 1,∆(G) + 2, . . . ,|V(G)|− 1. Then,

(G∧ H̄)
⋃(

K|V(G)| ∧H
)=

((∆(G)⋃
i=1

Vi

)
∧ H̄

)⋃( |V(G)|−1⋃
i=1

(((
Ui−Vi

)∪Vi
)∧H

))

=
((∆(G)⋃

i=1

Vi

)
∧ H̄

)⋃((∆(G)⋃
i=1

Vi

)
∧H

)

⋃(∆(G)⋃
i=1

((
Ui−Vi

)∧H
))⋃( |V(G)|−1⋃

∆(G)+1

(
Ui∧H

))

=
((∆(G)⋃

i=1

Vi

)
∧K|V(H)|

)⋃(∆(G)⋃
i=1

((
Ui−Vi

)∧H
))

⋃( |V(G)|−1⋃
∆(G)+1

(
Ui∧H

))

=
(∆(G)⋃

i=1

((
Vi∧K|V(H)|

)∪ ((Ui−Vi
)∧H

)))

⋃( |V(G)|−1⋃
∆(G)+1

(
Ui∧H

))
.

(2.14)
Thus, by Theorem 1.7, we have

χ′
((
G∧ H̄

)⋃(
K|V(G)| ∧H

))≤ χ′
(∆(G)⋃

i=1

((
Vi∧K|V(H)|

)∪ ((Ui−Vi
)∧H

)))

+ χ′
( |V(G)|−1⋃

i=∆(G)+1

(
Ui∧H

))

≤
∆(G)∑
i=1

χ′
((
Vi∧K|V(H)|

)∪ ((Ui−Vi
)∧K|V(H)|

))

+
|V(G)|−1∑
i=∆(G)+1

χ′
(
Ui∧H

)

=
∆(G)∑
i=1

χ′
(
Ui∧K|V(H)|

)
+
|V(G)|−1∑
i=∆(G)+1

χ′
(
Ui∧H

)

≤
∆(G)∑
i=1

(∣∣V(H)
∣∣− 1

)
+
|V(G)|−1∑
i=∆(G)+1

∆(H)

= ∆(G)
(∣∣V(H)

∣∣− 1
)

+∆(H)
(∣∣V(G)

∣∣− 1−∆(G)
)

= ∆(G)
∣∣V(H)

∣∣+∆(H)
∣∣V(G)

∣∣−∆(G)∆(H)−∆(G)

−∆(H).
(2.15)
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But as in Theorem 2.10,

G⊕H = (G∧ H̄)
⋃(

K|V(G)| ∧H
)⋃

(G×H). (2.16)

Therefore, by Theorem 1.1,

χ′(G⊕H)≤ ∆(G)
∣∣V(H)

∣∣+∆(H)
∣∣V(G)

∣∣−∆(G)∆(H)−∆(G)−∆(H) + χ′(G×H)

= ∆(G)
∣∣V(H)

∣∣+∆(H)
∣∣V(G)

∣∣−∆(G)∆(H)−∆(G)−∆(H) +∆(G) +∆(H)

= ∆(G)
∣∣V(H)

∣∣+∆(H)
∣∣V(G)

∣∣−∆(G)∆(H)= ∆(G⊕H).
(2.17)

The proof is complete. �
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