
SHANNON ENTROPY: AXIOMATIC CHARACTERIZATION
AND APPLICATION

C. G. CHAKRABARTI AND INDRANIL CHAKRABARTY

Received 18 February 2005

We have presented a new axiomatic derivation of Shannon entropy for a discrete proba-
bility distribution on the basis of the postulates of additivity and concavity of the entropy
function. We have then modified Shannon entropy to take account of observational un-
certainty.The modified entropy reduces, in the limiting case, to the form of Shannon dif-
ferential entropy. As an application, we have derived the expression for classical entropy
of statistical mechanics from the quantized form of the entropy.

1. Introduction

Shannon entropy is the key concept of information theory [12]. It has found wide ap-
plications in different fields of science and technology [3, 4, 5, 7]. It is a characteristic of
probability distribution providing a measure of uncertainty associated with the proba-
bility distribution. There are different approaches to the derivation of Shannon entropy
based on different postulates or axioms [1, 8].

The object of present paper is to stress the importance of the properties of additivity
and concavity in the determination of functional form of Shannon entropy and its gen-
eralization. The main content of the paper is divided into three sections. In Section 2,
we have provided an axiomatic derivation of Shannon entropy on the basis of the prop-
erties of additivity and concavity of entropy function. In Section 3, we have generalized
Shannon entropy and introduced the notion of total entropy to take account of observa-
tional uncertainty. The entropy of continuous distribution, called the differential entropy,
has been obtained as a limiting value . In Section 4, the differential entropy along with the
quantum uncertainty relation has been used to derive the expression of classical entropy
in statistical mechanics.

2. Shannon entropy: axiomatic characterization

Let ∆n be the set of all finite discrete probability distribution

P =
{(

p1, p2, . . . , pn
)
, pi ≥ 0,

n∑
i=1

pi = 1

}
. (2.1)
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In other words, P may be considered as a random experiment having n possible outcomes
with probabilities (p1, p2, . . . , pn). There is uncertainty associated with the probability dis-
tribution P and there are different measures of uncertainty depending on different pos-
tulates or conditions. In general, the uncertainty associated with the random experiment
P is a mapping [9]

H(P) : ∆n −→R, (2.2)

where R is the set of real numbers. It can be shown that (2.2) is a reasonable measure of
uncertainty if and only if it is a Shur concave on ∆n [9]. A general class of uncertainty
measures is given by

H(p)=
n∑
i=1

φ
(
pi
)
, (2.3)

where φ : [0,1]→ R is a concave function. By taking different concave function defined
on [0,1], we get different measures of uncertainty or entropy. For example, if we take
φ(pi)=−pi log pi, we get Shannon entropy [12]

H(P)=H
(
p1, p2, . . . , pn

)=−k n∑
i=1

pi log pi, (2.4)

where 0log0= 0 by convention and k is a constant depending on the unit of measurement
of entropy. There are different axiomatic characterizations of Shannon entropy based
on different set of axioms [1, 8]. In the following, we will present a different approach
depending on the concavity character of entropy function. We set the following axiom to
be satisfied by the entropy function H(P)=H(p1, p2, . . . , pn).

Axiom 1. We assume that the entropy H(P) is nonnegative, that is, for all P = (p1, p2,
. . . , pn), H(P)≥ 0. This is essential for a measure.

Axiom 2. We assume that generalized form of entropy function (2.3) is

H(P)=
n∑
i=1

φ
(
pi
)
. (2.5)

Axiom 3. We assume that the function φ is a continuous concave function of its arguments.

Axiom 4. We assume the additivity of entropy, that is, for any two statistically independent
experiments P = (p1, p2, . . . , pn) and Q = (q1,q2, . . . ,qm),

H(PQ)=
∑
j

∑
α

φ
(
pjqα

)=∑
j

φ
(
pj
)

+
∑
α

φ
(
qα
)
. (2.6)

Then we have the following theorem.
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Theorem 2.1. If the entropy function H(P) satisfies Axioms 1 to 4, then H(P) is given by

H(P)=−k
n∑
i=1

pi log pi, (2.7)

where k is a positive constant depending on the unit of measurement of entropy.

Proof. For two statistically independent experiments, the joint probability distribution
pjα is the direct product of the individual probability distributions

pjα = pj · qα. (2.8)

Then according to the axiom of additivity of entropy (2.6), we have

∑
j

∑
α

φ
(
pj · qα

)=∑
j

φ
(
pj
)

+
∑
α

φ
(
qα
)
. (2.9)

Let us now make small changes of the probabilities pk and pj of the probability distribu-
tion P = (p1, p2, . . . , pj , . . . ,pk, . . . , pn) leaving others undisturbed and keeping the normal-
ization condition fixed. By the axiom of continuity of φ, the relation (2.9) can be reduced
to the form

∑
α

qα
[
φ′
(
pj · qα

)−φ′
(
pk · qα

)]= {φ′(pj
)−φ′

(
pk
)}
. (2.10)

The right-hand side of (2.10) is independent of qα and the relation (2.10) is satisfied
independently of p’s if

φ′
(
qα · pj

)−φ′
(
qαpk

)= φ′
(
pj
)−φ′

(
pk
)
. (2.11)

The above leads to the Cauchy functional equation

φ′
(
qα · pj

)= φ′
(
qα
)

+φ′
(
pj
)
. (2.12)

The solution of the functional equation (2.12) is given by

φ′
(
pj
)= A log pj +B (2.13)

or

φ
(
pj
)= Apj log pj + (B−A)pj +C, (2.14)

where A, B, and C are all constants. The condition of concavity (Axiom 3) requires A < 0
and let us take A = −k where k(> 0) is positive constant by Axiom 1. The generalized
entropy (2.5) then reduces to the form

H(P)=−k
∑
j

p j log pj + (B−A) +C (2.15)
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or

H(P)=−k
∑
j

p j log pj , (2.16)

where constants (B−A) and C have been omitted without changing the character of the
entropy function. This proves the theorem. �

3. Total Shannon entropy and entropy of continuous distribution

The definition (2.4) of entropy can be generalized straightforwardly to define the entropy
of a discrete random variable.

Definition 3.1. Let X ∈ R denote a discrete random variable which takes on the values
x1,x2, . . . ,xn with probabilities p1, p2, . . . , pn, respectively, the entropy H(X) of X is then
defined by the expression [4]

H(X)=−k
n∑
i=1

pi log pi. (3.1)

Let us now generalize the above definition to take account of an additional uncertainty
due to the observer himself, irrespective of the definition of random experiment. Let X
denote a discrete random variable which takes the values x1,x2, . . . ,xn with probabilities
p1, p2, . . . , pn. We decompose the practical observation of X into two stages. First, we as-
sume that X ∈ L(xi) with probability pi, where L(xi) denotes the ith interval of the set
{L(x1),L(x2), . . . ,L(xn)} of intervals indexed by xi. The Shannon entropy of this experi-
ment is H(X). Second, given that X is known to be in the ith interval, we determine its
exact position in L(xi) and we assume that the entropy of this experiment is U(xi). Then
the global entropy associated with the random variable X is given by

HT(X)=H(X) +
n∑
i=1

piU
(
xi
)
. (3.2)

Let hi denote the length of the ith interval L(xi), (i= 1,2, . . . ,n), and define

U
(
xi
)= k loghi. (3.3)

We have then

HT(X)=H(X) + k
n∑
i=1

pi loghi =−k
n∑
i=1

pi log
pi
hi
. (3.4)

The expression HT(X) given by (3.4) will be referred to as the total entropy of the random
variable X . The above derivation is physical. In fact, what we have used is merely a ran-
domization of the individual event X = xi (i= 1,2, . . . ,n) to account for the additional un-
certainty due to the observer himself, irrespective of the definition of random experiment
[4]. We will derive the expression (3.4) axiomatically as generalization of Theorem 2.1.
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Theorem 3.2. Let the generalized entropy (2.3) satisfy, in addition to Axioms 1 to 4 of
Theorem 2.1, the boundary conditions

φi(1)= k loghi (i= 1,2, . . . ,n) (3.5)

to take account of the postobservational uncertainty, where hi is the length of the ith class
L(xi) (or width of the observational value xi). Then the entropy function reduces to the form
of the total entropy (3.4).

Proof. The procedure is the same as that of Theorem 2.1 up to the relation (2.13):

φ′
(
pj
)= A log pj +B. (3.6)

Integrating (3.6) with respect to pj and using the boundary condition (3.5), we have

φ
(
pj
)− k loghj = Apj log pj + (B−A)pj −B (3.7)

so that the generalized entropy (2.3) reduces to the form

∑
j

φ
(
pj
)=−k n∑

j=1

pj log
pj

hj
, (3.8)

where we have taken A = −k < 0 for the same unit of measurement of entropy and the
negative sign to take account of Axiom 1. The constants appearing in (3.8) have been ne-
glected without any loss of characteristic properties. The expression (3.8) is the required
expression of total entropy obtained earlier. �

Let us now see how to obtain the entropy of a continuous probability distribution as
a limiting value of the total entropy HT(X) defined above. For this let us first define the
differential entropy H(X) of a continuous random variable X .

Definition 3.3. The differential entropy HC(X) of a continuous random variable with
probability density f (x) is defined by [2]

HC(X)=−k
∫
R
f (x) log f (x)dx, (3.9)

where R is the support set of the random variable X . We divide the range of X into bins
of length (or width) h. Let us assume that the density f (x) is continuous within the bins.
Then by mean-value theorem, there exists a value xi within each bin such that

h f
(
xi
)=

∫ (i+1)h

ih
f (x)dx. (3.10)

We define the quantized or discrete probability distribution (p1, p2, . . . , pn) by

pi =
∫ (i+1)h

ih
f (x)dx (3.11)
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so that we have then

pi = h f
(
xi
)
. (3.12)

The total entropy HT(X) defined for hi = h (i= 1,2, . . . ,n),

HT(X)=−k
n∑
i=1

pi log
pi
h

, (3.13)

then reduces to the form

HT(X)=−k
n∑
i=1

h f
(
xi
)

log f
(
xi
)
. (3.14)

Let h→ 0, then by definition of Riemann integral, we have HT(X) → H(X) as h→ 0,
that is,

lim
h→0

HT(X)=HC(X)=−k
∫
R
f (x) log f (x)dx. (3.15)

Thus we have the following theorem.

Theorem 3.4. The total entropy HT(X) defined by (3.13) approaches to the differential
entropy HC(X) in the limiting case when the length of each bin tends to zero.

4. Application: differential entropy and entropy in classical statistics

The above analysis leads to an important relation connecting quantized entropy and dif-
ferential entropy. From (3.13) and (3.15), we see that

−k
n∑
i=1

pi ln pi −→−k
∫
R
f (x) ln

{
h f (x)

}
dx (4.1)

showing that when h→ 0 that is, when the length of the bins h is very small, the quantized
entropy given by the left-hand side of (4.1) approaches not to the differential entropy
HC(X) defined in (3.9) but to the form given by the right-hand side of (4.1) which we
call modified differential entropy. This relation has important physical significance in
statistical mechanics. As an application of this relation, we now find the expression of
classical entropy as a limiting case of quantized entropy.

Let us consider an isolated system with configuration space volumeV and a fixed num-
ber of particles N , which is constrained to the energy shell R= (E,E+∆E). We consider
the energy shell rather than just the energy surface because the Heisenburg uncertainty
principle tells us that we can never determine the energy E exactly. we can make ∆E as
small as we like. Let f (XN ) be the probability density of microstates defined on the phase
space Γ= {XN = (q1,q2, . . . ,q2N ; p1, p2, . . . , p2N )}. The normalized condition is

∫
R
f
(
XN
)
XN = 1, (4.2)
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where

R= {XN : E < H
(
XN
)
< E+∆E

}
. (4.3)

Following (4.1), we define the entropy of the system as

S=−k
∫
f
(
XN
)

ln
{
CN f

(
XN
)}
dXN. (4.4)

The constant CN appearing in (4.4) is to be determined later on. The probability density
for statistical equilibrium determined by maximizing the entropy (4.4) subject to the
condition (4.2) leads to

f
(
XN
)= 1

Ω(E,V ,N)
for E < H

(
XN
)
< E+∆E

= 0 otherwise,
(4.5)

where H(XN ) is the Hamiltonian of the system, Ω(E,V ,N) is the volume of the energy
shell (E,E+∆E) [10]. Putting (4.5) in (4.4), we obtain the entropy of the system as [10]

S= k ln
{
Ω(E,V ,N)

CN

}
. (4.6)

The constant CN has the same unit as Ω(E,V ,N) and cannot be determined classically.
However, it can be determined from quantum mechanics. Then we have CN = (h)3N for
distinguishable particles and CN =N !(h)3N for indistinguishable particles. From Heisen-
berg uncertainty principle, we know that if h is the volume of a single state in phase space,
then Ω(E,V ,N)/(h)3N is the total number of microstates in the energy shell (E,E+∆E).
The expression (4.6) then becomes identical to the Boltzmann entropy. With this inter-
pretation of the constant CN , the correct expression of classical entropy is given by [6, 10]

S=−k
∫
R
f
(
XN
)

ln
{

(h)3N f
(
XN
)}
dXN. (4.7)

The classical entropy that follows a limiting case of von Neumann entropy is given by [14]

Sd =−k
∫
R

f
(
XN
)

(h)3N
ln
{
f
(
XN
)}
dXN. (4.8)

This is, however, different from the one given by (4.7) and it does not lead to the form of
Boltzmann entropy (4.6).

5. Conclusion

The literature on the axiomatic derivation of Shannon entropy is vast [1, 8]. The present
approach is, however, different. This is based mainly on the postulates of additivity and
concavity of entropy function. These are, in fact, variant forms of additivity and nonde-
creasing characters of entropy in thermodynamics. The concept of additivity is dormant
in many axiomatic derivations of Shannon entropy. It plays a vital role in the foundation
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of Shannon information theory [15]. Nonadditive entropies like Renyi entropy and Tsallis
entropy need a different formulation and lead to different physical phenomena [11, 13].
In the present paper, we have also provided a new axiomatic derivation of Shannon to-
tal entropy which in the limiting case reduces to the expression of modified differential
entropy (4.1). The modified differential entropy together with quantum uncertainty re-
lation provides a mathematically strong approach to the derivation of the expression of
classical entropy.
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