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We prove the following version of the Kreps-Yan theorem. For any norm-closed convex
cone C ⊂ L∞ such that C∩L∞+ = {0} and C ⊃−L∞+ , there exists a strictly positive contin-
uous linear functional, whose restriction on C is nonpositive. The technique of the proof
differs from the usual approach, applicable to a weakly Lindelöf Banach space.

1. The Kreps-Yan theorem

Let 〈X ,Y〉 be a pair of Banach spaces in separating duality [18, Chapter IV]. A convex
set M ⊂ X is called cone if λx ∈M for any x ∈M, λ ≥ 0. A cone M is called pointed if
M∩ (−M)= {0}.

Suppose that X is endowed with a locally convex topology τ, which is always assumed
to be compatible with the duality 〈X ,Y〉, and K ⊂ X is a τ-closed pointed cone. An ele-
ment ξ ∈ Y is called strictly positive if 〈x,ξ〉 > 0 for all x ∈ K\{0}. An element ξ is called
nonnegative if 〈x,ξ〉 ≥ 0 for all x ∈ K . We only consider cones K such that the set of
strictly positive functionals is nonempty.

Following [10], we say that the Kreps-Yan theorem is valid for the ordered space (X ,K)
with the topology τ if for any τ-closed convex cone C, containing −K , the condition C∩
K = {0} implies the existence of a strictly positive element ξ ∈ Y such that its restriction
on C is nonpositive: 〈x,ξ〉 ≤ 0, x ∈ C. We also refer to [10] for the comments on the
papers of Kreps [12] and Yan [20].

If the above statement is true for any τ-closed pointed cone K ⊂ X , we say that the
Kreps-Yan theorem is valid for the space (X ,τ). It should be mentioned that in this ter-
minology the Kreps-Yan theorem may be valid for (X ,τ) even if there exists a τ-closed
pointed cone such that the set of strictly positive functionals is empty.

Recall that a space (X ,τ′) is said to be Lindelöf, or have the Lindelöf property, if every
open cover of X has a countable subcover [11]. As usual, we denote the weak topology by
σ(X ,Y).

The next theorem is, in fact, a partial case of [10, Theorem 3.1].

Theorem 1.1. Let (X ,σ(X ,Y)) be a Lindelöf space. Then the Kreps-Yan theorem is valid for
the space (X ,τ).

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 2749–2756
DOI: 10.1155/IJMMS.2005.2749

http://dx.doi.org/10.1155/S0161171205501017


2750 The Kreps-Yan theorem

Proof. Let x ∈ K\{0}, then x �∈ C and by the separation theorem [18, Theorem II.9.2]
there exists an element ξx ∈ Y such that

〈
y,ξx

〉
<
〈
x,ξx

〉
, y ∈ C. (1.1)

But C is a cone, hence we get the inequality 〈y,ξx〉 ≤ 0, y ∈ C. In addition, −K ⊂ C.
Consequently,

〈
x,ξx

〉
> 0,

〈
z,ξx

〉≥ 0, z ∈ K. (1.2)

Consider the family of sets

Ax =
{
y ∈ X :

〈
y,ξx

〉
> 0
}

, x ∈ K\{0} (1.3)

and let A0 = {y ∈ X : |〈y,η〉| < 1}, where η is a strictly positive functional. The sets Ax,
x ∈ K , are open in the topology σ(X ,Y) and constitute an open cover of K . Moreover,
the cone K is closed in σ(X ,Y), because all topologies compatible with the duality 〈X ,Y〉
have the identical collection of closed convex sets. In view of Lindelöf property, this im-
plies the existence of the following countable subcover: K ⊂∪∞i=0Axi , where x0 = 0.

Let αi = 1/(‖ξxi‖2i), then
∑∞

i=1αiξxi converges in the norm topology to some element
ξ ∈ Y . Evidently, ξ ≤ 0 on C. Moreover, ξ is strictly positive. Indeed, for any element
x ∈ K\{0} there exists a λ > 0 such that λx �∈ A0. Consequently, λx ∈ Axk for some k ≥ 1
and

〈
λx,ξ

〉= ∞∑
i=1

αi
〈
λx,ξxi

〉≥ αk
〈
λx,ξxk

〉
> 0. (1.4)

This completes the proof. �

In [10, Theorem 3.1] the following condition was used, conceptually connected with
the Halmos-Savage theorem [8, Lemma 7]. For any family of nonnegative functionals
{ξβ}β∈I ⊂ Y , there exists a countable subset {ξβi}∞i=1 with the following property: if for
x ∈ K\{0} there exists a β ∈ I such that 〈x,ξβ〉 > 0, then 〈x,ξβi〉 > 0 for some i.

We prefer to require that the space (X ,σ(X ,Y)) verifies the more standard Lindelöf
condition. Clearly, this condition is satisfied if any topology of the space X , compatible
with the duality 〈X ,Y〉, has the Lindelöf property.

Denote by X∗ the topological dual of X . Evidently, the space X is Lindelöf if it may
be represented as the union of a countable collection of compact sets. Hence, a reflexive
space X is Lindelöf in the weak topology σ(X ,X∗) (shortly, weakly Lindelöf) in view
of the weak compactness of the unit ball, and the space X∗ is Lindelöf in the ∗-weak
topology σ(X∗,X) by the Banach-Alaoglu theorem. So, the Kreps-Yan theorem is valid
for any reflexive space with the norm topology and for the space (X∗,σ(X∗,X)).

A Banach space X is called weakly compactly generated (shortly, WCG), if X con-
tains a weakly compact subset whose linear span is dense in X . Corson conjectured that
the notions of weakly Lindelöf and WCG spaces are equivalent [3]. The one half of this
conjecture was confirmed in [19] (see also [7, Theorem 12.35]): every WCG space is
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weakly Lindelöf (the converse implication appeared to be false in general as follows from
[14, 16]). Therefore, the Kreps-Yan theorem is valid for any WCG space, endowed with
the norm topology.

Let (Ω,�,P) be a probability space. Denote by Lp = Lp(Ω,�,P), 1 ≤ p ≤∞, the Ba-
nach spaces of equivalence classes of measurable functions, whose p’s power is integrable
if 1≤ p <∞ (resp., which are essentially bounded if p =∞). The above arguments imply
the following result (compare with [10], [17, Theorem 1.4]): the Kreps-Yan theorem is
valid for the spaces (Lp,τp), 1≤ p ≤∞, where τp is the norm topology for 1≤ p <∞, and
τ∞ = σ(L∞,L1).

Indeed, the spaces Lp, 1 < p <∞, are reflexive, the topology σ(L∞,L1) of the space L∞

coincides with the weak-star one, and L1 is a WCG space [5, page 143].
On the other hand, it is shown in [10, Example 2.1] that the Kreps-Yan theorem may

fail even if (X ,K) is a Banach lattice (with the norm topology). So, the imposed Lindelöf
condition is not superfluous. Note also, that Theorem 1.1 does not imply the validity of
the Kreps-Yan theorem for the space L∞ with the norm topology: it is known that even
the space of bounded sequences is not weakly Lindelöf [3, Example 4.1(i)].

2. The case of L∞

Let L∞+ be the cone, generating the natural order structure on L∞. Our main result is the
following.

Theorem 2.1. The Kreps-Yan theorem is valid for the ordered space (L∞,L∞+ ) with the norm
topology.

Recall that the dual of L∞ (with the norm topology) coincides with the Banach space
ba= ba(Ω,�,P) of all bounded finitely additive measures µ on (Ω,�) with the property
that P(A)= 0 implies µ(A)= 0 [6]. Let

ba+ =
{
µ∈ ba : 〈x,µ〉 ≥ 0, x ∈ L∞+

}
(2.1)

be the set of nonnegative elements of ba. A probability measure Q is identified with the
continuous functional on L∞ by the formula

〈x,Q〉 =
∫
Ω
xdQ= EQx. (2.2)

For the convenience of the reader, we recall here Yan’s theorem [20, Theorem 1], [15,
Lemma 3, page 145].

Theorem 2.2 (Yan). Let M be a convex subset of L1(P), 0∈M. Assume that for any ε > 0
there exists c > 0 such that P(x ≥ c)≤ ε for all x ∈M. Then there exists a probability measure
Q equivalent to P (with a bounded density dQ/dP) such that supx∈M EQx <∞.

Let C ⊂ L∞ be a norm-closed convex cone, satisfying the conditions

C∩L∞+ = {0}, −L∞+ ⊂ C. (2.3)

Put Cε = {x ∈ C : ess inf x ≥−ε}.
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Lemma 2.3. For any norm-closed convex cone C ⊂ L∞ satisfying (2.3), there exists a proba-
bility measure Q equivalent to P such that

sup
x∈C1

〈x,Q〉 <∞. (2.4)

Proof. It suffice to show that the set C1 satisfies the conditions of Yan’s theorem. We liter-
ally follow the argumentation of [4, Proposition 3.1], where a somewhat more special set
is considered.

Clearly, C1 is convex and 0∈ C1. Assume that there exist a sequence of elements xn ∈
C1, n≥ 1, and a number α > 0 such that P(xn ≥ n) > α. The elements yn =min{xn/n,1}
belong to C1/n ⊂ C1 and

P
(
yn = 1

)= P
(
xn
n
≥ 1

)
> α. (2.5)

Denote by convA the convex hull of the set A. If D ⊂Ω we put

ID(ω)= 1, ω ∈D; ID(ω)= 0, ω �∈D. (2.6)

By [4, Lemma A1.1] there exists a sequence

zn ∈ conv
(
yn, yn+1, . . .

)⊂ C1/n, (2.7)

converging a.s. to z : Ω �→ [0,1]. Furthermore, the inequality

EPyn ≥ EP
(
I{yn=1}

)−EP

(
I{yn<1}
n

)
≥ α− 1/n, (2.8)

implies that EPzn ≥ α− 1/n and by Lebesgue’s dominated convergence theorem,

EPz = lim
n→∞EPzn ≥ α. (2.9)

Hence

P(z > 0)= β ≥ EP
(
zI{z>0}

)= EPz ≥ α. (2.10)

By Egorov’s theorem zn → z uniformly on a set Ω′: P(Ω′) ≥ 1− β/2. The functions
wn =min{zn,IΩ′ } belong to C and wn = znIΩ′ → zIΩ′ in the norm topology of L∞. We
obtain a contradiction, since

P
(
zIΩ′ > 0

)= P(Ω′) + P(z > 0)−P
(
Ω′ ∪ {z > 0})≥ β

2
. (2.11)

This completes the proof. �

Now we need some additional notation, used in convex analysis (e.g., [13]). Let again
〈X ,Y〉 be a pair of Banach spaces in duality. The indicator and support functions of a
convex set A⊂ X are defined by the formulas

δA(x)= 0, x ∈A, δA(x)= +∞, x �∈A; sA(ξ)= sup
x∈A
〈x,ξ〉. (2.12)
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The same notation is used if A⊂ Y . The sets

A◦ = {ξ ∈ Y : 〈x,ξ〉 ≤ 1, x ∈A
}

, A◦◦ = {x ∈ X : 〈x,ξ〉 ≤ 1, ξ ∈A◦
}

(2.13)

are called polar and bipolar of A.
The Young-Fenchel transform of a function f : X �→ [−∞,+∞] is defined as follows:

f ∗(ξ)= sup
x∈X

(〈x,ξ〉− f (x)
)
. (2.14)

The function

(
f1⊕ f2

)
(x)= inf

{
f1
(
x1
)

+ f2
(
x2
)

: x1 + x2 = x
}

(2.15)

is called an infimal convolution of f1, f2.
Note, that the support function of a set A is equal to the Minkowski function µA◦ of

the polar A◦:

sA(ξ)= µA◦(ξ), µA◦(ξ)= inf
{
λ > 0 : ξ ∈ λA◦

}
. (2.16)

We will use the next formula for its Young-Fenchel transform:

(
µA◦

)∗
(x)= sup

ξ∈Y

(〈x,ξ〉− inf
{
λ > 0 : ξ ∈ λA◦

})= sup
λ>0

sup
ξ∈λA◦

(〈x,ξ〉− λ
)

= sup
λ>0

λ

(
sup
η∈A◦

〈x,η〉− 1

)
= δA◦◦(x).

(2.17)

Proof of Theorem 2.1. Let Q be a measure, introduced in Lemma 2.3. Put

ϕ(ε)=− sup
x∈Cε

〈x,Q〉. (2.18)

Note, that Cε =∅ for ε < 0, C0 = {0}, and Cε = εC1 for ε > 0. Since the support function
of an empty set is equal to −∞, we get

ϕ(ε)= εϕ(1) + δ[0,+∞)(ε), ϕ(1)≤ 0. (2.19)

Denote by � the set of all probability measures P′, absolutely continuous with respect
to P. We have

ess inf x = inf
P′∈�

〈x,P′〉 = −s(−�)(x) (2.20)

and Cε = C∩ {x ∈ L∞ : s(−�)(x) ≤ ε}. So, for τ < 0 the function ϕ∗ has the following
representation:

ϕ∗(τ)= sup
ε≥0

sup
x∈Cε

(
ετ + 〈x,Q〉)= sup

x∈C
sup

s(−�)(x)≤ε

(
ετ + 〈x,Q〉)

= sup
x∈C

(
τ · s(−�)(x) + 〈x,Q〉). (2.21)
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For λ=−τ we obtain

ϕ∗(−λ)= sup
x∈L∞

(〈x,Q〉− λ · s(−�)(x)− δC(x)
)= (s(−λ�) + δC

)∗
(Q)

= ((s(−λ�)
)∗ ⊕ (δC)∗

)
(Q).

(2.22)

The last equality (see, e.g., [9]) is valid, because the function s(−λ�) is continuous on
the whole space L∞ in the norm topology.

Using the identities

(
s(−λ�)

)∗ = (µ(−λ�)◦
)∗ = δ(−λ�)◦◦, (δC)∗ = sC = δC◦, (2.23)

we get

ϕ∗(−λ)= (δ(−λ�)◦◦ ⊕ δC◦
)
(Q)= δ

(
(−λ�)◦◦ +C◦

)
(Q). (2.24)

On the other hand, directly from the representation (2.19), we obtain

ϕ∗(τ)= sup
ε

(
ετ −ϕ(ε)

)= sup
ε≥0

(
ε
(
τ −ϕ(1)

))= δ
(−∞,ϕ(1)

]
(τ). (2.25)

It follows that ϕ∗(−λ)= 0 for λ >−ϕ(1). Thus,

Q∈ C◦ + (−λ�)◦◦, λ∈ (−ϕ(1),+∞) (2.26)

and there exists an element µ∈ C◦ such that

µ=Q + ν, ν∈−(−λ�)◦◦ = λ�◦◦. (2.27)

But �◦◦ coincides with the σ(ba,L∞)-closed convex hull of the set �∪{0} ⊂ ba+ by
the bipolar theorem [18, Theorem IV.1.5]. Hence, ν∈ ba+ and µ is a desired functional:
it is strictly positive and 〈x,µ〉 ≤ 0, x ∈ C. The proof is complete. �

After the paper was submitted, Professor G. Cassese informed the author that he (by
another methods) had independently and simultaneously proved a somewhat more gen-
eral version of Theorem 2.1 [2]. We find it convenient to restate here the main ingredient
of this approach together with its simple proof, based on Theorem 2.1. It should be men-
tioned that the argumentation of [2] goes in the opposite direction.

Theorem 2.4 (Cassese). Let � ⊂ ba+ be a convex σ(ba,L∞)-closed set of finitely additive
probabilities, that is, 〈1,m〉 = 1, m∈�. If for any x ∈ L∞+ \{0} there exists m∈� such that
〈x,m〉 > 0, then � contains a strictly positive element.

Proof. Note, that the set D = {λx : x ∈ �, λ ≥ 0} is convex and σ(ba,L∞)-closed [1,
Lemma III.2.10, page 116]. Furthermore, its polar C = D◦, taken in L∞, is norm-closed
and satisfies the conditions (2.3). By Theorem 2.1 there exists a strictly positive element
ξ ∈ C◦. By the bipolar theorem and the closedness of D, we have ξ ∈D. It remains to note
that ξ can be normalized such that ξ ∈�. �
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Another interesting comment comes from Professor W. Schachermayer, who in a per-
sonal communication pointed out that the above ideas can be transformed in a more
direct proof of Theorem 2.1. This proof also is based on Lemma 2.3, but uses only sepa-
ration arguments and does not appeal to Fenchel duality. We have the pleasure to present
it below.

Lemma 2.5. Let C ⊂ L∞ be a norm-closed convex cone, satisfying (2.3). For any element
f ∈ ba the following conditions are equivalent:

(i) supx∈C1
〈x, f 〉 < +∞, C1 = {x ∈ C : ‖x−‖L∞ ≤ 1}, x− =max{0,−x};

(ii) there exists g ∈ ba such that g ≥ f and g ∈ C◦.

Proof. (ii)⇒(i). Let x ∈ C1, then

〈x, f 〉 = 〈x,g〉+ 〈x, f − g〉 ≤ 〈−x,g − f 〉 ≤ 〈x−,g − f 〉 ≤ ‖g − f ‖ba. (2.28)

(i)⇒(ii). Consider the σ(ba,L∞)-compact convex set Π = {h ∈ ba+ : ‖h‖ba ≤ 1} and
put

λ= sup
x∈C1

〈x, f 〉. (2.29)

If the condition (ii) is false, we may separate the sets f + λΠ and C◦ by an element x ∈ L∞:

sup
η∈C◦

〈x,η〉 < inf
ζ∈ f +λΠ

〈x,ζ〉. (2.30)

Since C◦ is a cone, we get 〈x,η〉 ≤ 0, η ∈ C◦. Thus, x ∈ C◦◦ = C by the bipolar theorem
and

〈x, f 〉+ λ inf
h∈Π
〈x,h〉 > 0. (2.31)

Furthermore, since x �∈ L∞+ and it can be normalized such that infh∈Π〈x,h〉 = −1. Hence,
x ∈ C1 and 〈x, f 〉 > λ. This yields the desired contradiction to (2.29), which completes
the proof. �

Clearly, Theorem 2.1 is implied by Lemmas 2.3 and 2.5 (put f =Q). By a more careful
analysis it can be shown that Lemma 2.5 still holds true for any convex cone C ⊂ L∞ such
that C∩L∞+ = {0}.

Finally, we mention that the case of L∞ with the norm topology is of special interest
for mathematical finance in view of characterization of the no free lunch with vanishing
risk condition [4].
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