ITERATIVE APPROXIMATION OF FIXED POINT FOR Φ -HEMICONTRACTIVE MAPPING WITHOUT LIPSCHITZ ASSUMPTION

XUE ZHIQUN

Received 30 December 2004 and in revised form 7 July 2005

Let *E* be an arbitrary real Banach space and let *K* be a nonempty closed convex subset of *E* such that $K + K \subset K$. Assume that $T : K \to K$ is a uniformly continuous and Φ hemicontractive mapping. It is shown that the Ishikawa iterative sequence with errors converges strongly to the unique fixed point of *T*.

1. Introduction

Let *E* be a real Banach space and let E^* be the dual space on *E*. The normalized duality mapping $J: E \to 2^{E^*}$ is defined by

$$Jx = \{ f \in E^* : \langle x, f \rangle = \|x\| \cdot \|f\| = \|f\|^2 \}$$
(1.1)

for all $x \in E$, where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that if *E* is a uniformly smooth Banach space, then *J* is single valued and such that J(-x) = -J(x), J(tx) = tJ(x) for all $x \in E$ and $t \ge 0$; and *J* is uniformly continuous on any bounded subset of *E*. In the sequel, we shall denote single-valued normalized duality mapping by *j* by means of the normalized duality mapping *J*. In the following, we give some concepts.

Definition 1.1. A mapping *T* with domain D(T) and range R(T) is said to be strongly pseudocontractive if for any $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le k ||x - y||^2$$
 (1.2)

for some constant $k \in (0,1)$. The mapping *T* is called Φ -strongly pseudocontractive if there exists a strictly increasing function $\Phi : [0, \infty) \to [0, \infty)$ with $\Phi(0) = 0$ such that the inequality

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2 - \Phi(||x - y||) ||x - y||$$
 (1.3)

holds for all $x, y \in D(T)$. Let $F(T) = \{x \in D(T) : Tx = x\}$. A mapping T is called Φ -hemicontractive if there exists a strictly increasing function $\Phi : [0, \infty) \to [0, \infty)$ with

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 2711–2718 DOI: 10.1155/IJMMS.2005.2711

 $\Phi(0) = 0$ such that the inequality

$$\langle Tx - Tq, j(x-q) \rangle \le ||x-q||^2 - \Phi(||x-q||) ||x-q||$$
 (1.4)

holds for all $x \in D(T)$ and $q \in F(T)$.

It is shown in [5] that the class of strongly pseudocontractive mapping is a proper subclass of Φ -strongly pseudocontractive mapping. Furthermore, the example in [2] shows that the class of Φ -strongly pseudocontractive mapping with the nonempty fixed point set is a proper subclass of Φ -hemicontractive mapping. The classes of mappings introduced above have been studied by several authors. In [1], Chidume proved that if $E = L_p$ (or l^p), $p \ge 2$, K is a nonempty closed convex and bounded subset of E, and $T: K \to K$ is a Lipschitz strongly pseudocontractive mapping, then Mann iteration process converges strongly to the unique fixed point of T. In [4], Deng extended the above result to the Ishikawa iteration process. After Tan and Xu [7] extended the results of both Chidume [1] and Deng [4] to *q*-uniformly smooth Banach spaces (1 < q < 2), Chidume and Osilike [3] extended to real q-uniformly smooth Banach spaces $(1 < q < \infty)$. Recently, these results above have been extended from Lipschitz strongly pseudocontractive mapping to Lipschitz Φ -strongly pseudocontractive mapping in real *q*-uniformly smooth Banach spaces $(1 < q < \infty)$. More recently, Osilike [6] proved that if *K* is a nonempty closed convex subset of arbitrary real Banach space E and $T: K \to K$ is a Lipschitzian Φ -hemicontractive mapping, then Ishikawa iteration sequence $\{x_n\}_{n=1}^{\infty}$ converges strongly to the unique fixed point of T. It is our purpose in this paper to examine the strong convergence theorems of the Ishikawa iterative sequences with errors for Φ -hemicontractive mapping in arbitrary real Banach spaces.

LEMMA 1.2. Let *E* be a real Banach space, then for all $x, y \in E$, there exists $j(x + y) \in J(x + y)$ such that $||x + y||^2 \le ||x||^2 + 2\langle y, j(x + y) \rangle$.

Proof. By definition of duality mapping, we may obtain directly the results of Lemma 1.2.

2. Main results

THEOREM 2.1. Let *E* be a real Banach space, and let *K* be a nonempty closed convex subset of *E* such that $K + K \subset K$. Assume that $T : K \to K$ is a uniformly continuous Φ -hemicontractive mapping. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be two real sequences in [0,1] satisfying the following conditions: (i) $\alpha_n, \beta_n \to 0$ as $n \to \infty$; (ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$. Suppose that $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are two sequences in *K* satisfying that $\sum_{n=0}^{\infty} ||u_n|| < \infty$ and $\sum_{n=0}^{\infty} ||v_n|| < \infty$. Define the Ishikawa iterative sequence $\{x_n\}_{n=0}^{\infty}$ with errors in *K* by

(IS)
$$\begin{cases} x_0 \in K, \\ y_n = (1 - \beta_n) x_n + \beta_n T x_n + \nu_n, \quad n \ge 0, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n + u_n, \quad n \ge 0. \end{cases}$$
 (2.1)

If $\{Ty_n\}_{n=0}^{\infty}$ and $\{Tx_n\}_{n=0}^{\infty}$ are bounded, then the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the unique fixed point of *T*.

Proof. We first observe that the iterative sequence $\{x_n\}$ defined by (2.1) is well defined, since *K* is convex and *T* is a self-mapping from *K* to itself with $K + K \subset K$. By the definition of *T*, we known that if $F(T) \neq \emptyset$, then F(T) must be a singleton, let $q \in K$ denote the unique fixed point. And we also obtain that for any $x \in K$, there exists $j(x - q) \in J(x - y)$ such that

$$\langle Tx - Tq, j(x - q) \rangle \le ||x - q||^2 - \Phi(||x - q||)||x - q||.$$
 (2.2)

Now set

$$M = \sup_{n \ge 0} ||Ty_n - q|| + ||x_0 - q||,$$

$$D = \sum_{n=0}^{\infty} ||u_n|| + M + 1.$$
(2.3)

By using induction, we obtain $||x_n - q|| \le M + \sum_{n=0}^{\infty} ||u_n||, n \ge 0$, which implies that $||x_n - q|| \le D, n \ge 0$. Using (2.1) and Lemma 1.2, we have

$$||x_{n+1} - q||^{2} = ||(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Ty_{n} - Tq) + u_{n}||^{2}$$

$$\leq ||(1 - \alpha_{n})(x_{n} - q) + \alpha_{n}(Ty_{n} - Tq)||^{2} + 2D||u_{n}||.$$
(2.4)

Let $A_n = ||Ty_n - T(x_{n+1} - u_n)||$. Then $A_n \to 0$ as $n \to \infty$. Indeed, since *T* is uniformly continuous, we observe that $\{x_n\}_{n=0}^{\infty}$, $\{Tx_n\}_{n=0}^{\infty}$, and $\{Ty_n\}_{n=0}^{\infty}$ are all bounded and $||y_n - (x_{n+1} - u_n)|| \to 0$ as $n \to \infty$, so that $A_n \to 0$ as $n \to \infty$. Using Lemma 1.2, (2.1), and (2.2), we have

$$\begin{aligned} \|x_{n+1} - u_n - q\|^2 \\ &= \left| \left| (1 - \alpha_n) (x_n - q) + \alpha_n (Ty_n - Tq) \right| \right|^2 \\ &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n \langle Ty_n - Tq, j(x_{n+1} - u_n - q) \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n \langle Ty_n - T(x_{n+1} - u_n), j(x_{n+1} - u_n - q) \rangle \\ &+ 2\alpha_n \langle T(x_{n+1} - u_n) - Tq, j(x_{n+1} - u_n - q) \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n A_n \|x_{n+1} - u_n - q\| \\ &+ 2\alpha_n \|x_{n+1} - u_n - q\|^2 - 2\alpha_n \Phi(\|x_{n+1} - u_n - q\|) \|x_{n+1} - u_n - q\| \\ &\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n A_n (1 - \alpha_n) \|x_n - q\| + 2\alpha_n^2 A_n D \end{aligned}$$

$$+ 2\alpha_{n}||x_{n+1} - u_{n} - q||^{2} - 2\alpha_{n}\Phi(||x_{n+1} - u_{n} - q||)||x_{n+1} - u_{n} - q||$$

$$\leq (1 - \alpha_{n})^{2}||x_{n} - q||^{2} + \alpha_{n}A_{n}(1 - \alpha_{n})(1 + ||x_{n} - q||^{2}) + 2\alpha_{n}^{2}A_{n}D$$

$$+ 2\alpha_{n}||x_{n+1} - u_{n} - q||^{2} - 2\alpha_{n}\Phi(||x_{n+1} - u_{n} - q||)||x_{n+1} - u_{n} - q||$$

$$\leq ((1 - \alpha_{n})^{2} + \alpha_{n}A_{n})||x_{n} - q||^{2} + \alpha_{n}A_{n}(1 + 2\alpha_{n}D)$$

$$+ 2\alpha_{n}||x_{n+1} - u_{n} - q||^{2} - 2\alpha_{n}\Phi(||x_{n+1} - u_{n} - q||)||x_{n+1} - u_{n} - q||,$$

$$(2.5)$$

which implies that

$$\begin{aligned} ||x_{n+1} - u_n - q||^2 &\leq \frac{(1 - \alpha_n)^2 + \alpha_n A_n}{1 - 2\alpha_n} ||x_n - q||^2 + \frac{\alpha_n A_n (1 + 2\alpha_n D)}{1 - 2\alpha_n} \\ &- \frac{2\alpha_n}{1 - 2\alpha_n} \Phi(||x_{n+1} - u_n - q||) ||x_{n+1} - u_n - q|| \\ &\leq ||x_n - q||^2 + \frac{2\alpha_n}{1 - 2\alpha_n} \left(\frac{D^2 \alpha_n + D^2 A_n + A_n + 2\alpha_n A_n D}{2} \right) \\ &- \Phi(||x_{n+1} - u_n - q||) ||x_{n+1} - u_n - q|| . \end{aligned}$$

$$(2.6)$$

Substituting (2.6) into (2.4) yields that

$$\begin{aligned} ||x_{n+1} - q||^{2} &\leq ||x_{n} - q||^{2} + \frac{2\alpha_{n}}{1 - 2\alpha_{n}} \left(\frac{D^{2}\alpha_{n} + D^{2}A_{n} + A_{n} + 2\alpha_{n}A_{n}D}{2} - \Phi(||x_{n+1} - u_{n} - q||)||x_{n+1} - u_{n} - q||\right) + 2D||u_{n}|| \\ &\leq ||x_{n} - q||^{2} + \frac{2\alpha_{n}}{1 - 2\alpha_{n}} (B_{n} - \Phi(||x_{n+1} - u_{n} - q||)||x_{n+1} - u_{n} - q||) + 2D||u_{n}||, \end{aligned}$$

$$(2.7)$$

where $B_n = D^2 \alpha_n + D^2 A_n + A_n + 2\alpha_n A_n D/2$. Now we consider the following two possible cases.

Case (i). $\lim_{n\to\infty} \inf ||x_{n+1} - u_n - q|| = r > 0$. Since $B_n \to 0, \alpha_n \to 0$ as $n \to \infty$, then there exists a positive integer N such that $B_n < 1/2\Phi(r)r, \alpha_n < 1/2$ for all $n \ge N$. It follows from (2.7) that

$$\begin{aligned} ||x_{n+1} - q||^2 &\leq ||x_n - q||^2 + \frac{\alpha_n}{1 - 2\alpha_n} \Phi(r)r - \frac{2\alpha_n}{1 - 2\alpha_n} \Phi(r)r + 2D||u_n|| \\ &\leq ||x_n - q||^2 - \frac{\alpha_n}{1 - 2\alpha_n} \Phi(r)r + 2D||u_n|| \end{aligned}$$
(2.8)

which implies that $\Phi(r)r\sum_{n=N}^{\infty}\alpha_n/1 - 2\alpha_n \le ||x_N - q||^2 + 2D\sum_{n=N}^{\infty}||u_n|| < \infty$. This contradicts the assumption that $\sum_{n=0}^{\infty}\alpha_n = \infty$ and so the case (i) is impossible.

Case (*ii*). $\lim_{n\to\infty} \inf ||x_{n+1} - u_n - q|| = 0$. In this case, there exists a subsequence $\{x_{n_j+1} - u_{n_j} - q\}$ such that $x_{n_j+1} - u_{n_j} - q \to 0$ as $j \to \infty$. Hence, for any $0 < \varepsilon < 1$, there exists a positive integer n_j such that $||x_{n_j+1} - u_{n_j} - q|| < \varepsilon$ and $B_n < \Phi(\varepsilon)\varepsilon$, $2D\sum_{k=n_j+1}^{\infty} ||u_k|| < \varepsilon$ for all $n \ge n_j$ for all $n \ge n_j$. Now we show that $||x_{n_j+m}|| < \varepsilon$ for all $m \ge 1$. First, by (2.4), we have $||x_{n_j+1} - q||^2 \le \varepsilon^2 + 2D||u_{n_j}||$. Again consider the following two possible cases. *Case*(*ii*-1). $||x_{n_j+2} - u_{n_j+1} - q|| < \varepsilon$. Using (2.4), we obtain

$$\|x_{n_{j}+2} - q\|^{2} = \|(1 - \alpha_{n_{j}+1})(x_{n_{j}+1} - q) + \alpha_{n_{j}+1}(Ty_{n_{j}+1} - Tq) + u_{n_{j}+1}\|^{2}$$

$$\leq \|x_{n_{j}+2} - u_{n_{j}+1} - q\|^{2} + 2D\|u_{n_{j}+1}\|$$

$$\leq \varepsilon^{2} + 2D\|u_{n_{j}+1}\|.$$
(2.9)

Case(*ii*-2). $||x_{n_i+2} - u_{n_i+1} - q|| \ge \varepsilon$. Then using (2.7) yields that

$$||x_{n_j+2} - q||^2 \le \varepsilon^2 + 2D(||u_{n_j}|| + ||u_{n_j+1}||).$$
(2.10)

For all $m \ge 1$, using induction, we have $||x_{n_j+m} - q||^2 \le \varepsilon^2 + 2D \sum_{k=n_j}^{n_j+m-1} ||u_k|| < 2\varepsilon$. Thus we prove that $x_n \to q$ as $n \to \infty$. This completes the proof.

Remark 2.2. The assumption $K + K \subset K$ only is used to guarantee that the iterative sequence $\{x_n\}_{n=0}^{\infty}$ is well defined. We can drop this assumption in Theorem 2.1 by using a revised iterative scheme.

COROLLARY 2.3. Let *E* be a real Banach space, and let *K* be a nonempty bounded and convex subset of *E*. Assume that $T: K \to K$ is a uniformly continuous Φ -hemicontractive mapping. Let $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}, \{\widehat{\alpha}\}_{n=0}^{\infty}, \widehat{\alpha}\}_{n=0}^{\infty}, [ii) \sum_{n=0}^{\infty} \beta_n = \\ \infty, \sum_{n=0}^{\infty} \gamma_n < \infty; (iii) \alpha_n + \beta_n + \gamma_n = \widehat{\alpha}_n + \widehat{\beta}_n + \widehat{\gamma}_n = 1.$ Let $\{u_n\}_{n=0}^{\infty}$ and $\{\nu_n\}_{n=0}^{\infty}$ be two bounded sequences in *K*. Define iteratively the Ishikawa sequence $\{x_n\}_{n=0}^{\infty}$ with errors in *K* as follows:

$$x_{0} \in K,$$

$$y_{n} = \hat{\alpha}_{n} x_{n} + \hat{\beta}_{n} T x_{n} + \hat{\gamma}_{n} v_{n}, \quad n \ge 0,$$

$$x_{n+1} = \alpha_{n} x_{n} + \beta_{n} T y_{n} + \gamma_{n} u_{n}, \quad n \ge 0.$$
(2.11)

Then the sequence $\{x_n\}_{n=0}^{\infty}$ defined by (2.11) converges strongly to the unique fixed point of *T*.

Proof. We observe that (2.11) can be rewritten as follows:

$$x_{0} \in K,$$

$$y_{n} = (1 - \hat{\beta}_{n})x_{n} + \hat{\beta}_{n}Tx_{n} + \hat{\gamma}_{n}(v_{n} - x_{n}), \quad n \ge 0,$$

$$x_{n+1} = (1 - \beta_{n})x_{n} + \beta_{n}Ty_{n} + \gamma_{n}(u_{n} - x_{n}), \quad n \ge 0.$$
(2.12)

It is easily seen that under the assumptions of Corollary 2.3, the sequence $\{x_n\}_{n=0}^{\infty}$ is bounded. Now the conclusion follows from Theorem 2.1. This completes the proof. \Box

THEOREM 2.4. Let *E* be a real Banach space, and let *K* be a nonempty closed convex subset of *E* such that $K + K \subset K$. Assume that $T : K \to K$ is a uniformly continuous Φ -hemicontractive mapping. Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be two real sequences in [0,1] satisfying the following conditions: (i) $\alpha_n, \beta_n \to 0$ as $n \to \infty$; (ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$. Suppose that $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are two sequences in *K* satisfying $||u_n||, ||v_n|| \to 0$ as $n \to \infty$, where $||u_n|| = o(\alpha_n)$. Define the Ishikawa iterative sequence $\{x_n\}_{n=0}^{\infty}$ with errors in *K* by

(IS)
$$\begin{cases} x_0 \in K, \\ y_n = (1 - \beta_n) x_n + \beta_n T x_n + \nu_n, \quad n \ge 0, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n + u_n, \quad n \ge 0. \end{cases}$$
 (2.13)

If $\{Ty_n\}_{n=0}^{\infty}$ and $\{Tx_n\}_{n=0}^{\infty}$ are bounded, then the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the unique fixed point of *T*.

Proof. Since $K + K \subset K$ and K is convex, we see that the sequence $\{x_n\}_{n=0}^{\infty}$ is well defined. By the definition of T, T has a unique fixed point in K. Let q denote the unique fixed point. Now we shall show that $\{x_n\}_{n=0}^{\infty}$ is bounded. In fact, we may set $||u_n|| = \varepsilon_n \alpha_n$, where $\varepsilon_n \to 0$ as $n \to \infty$. Set $D = \sup_{n\geq 0} \{||Ty_n - q|| + \varepsilon_n\} + ||x_0 - q||$, by induction, we can show that $||x_n - q|| \le D$ for all $n \ge 0$, so that $\{y_n\}$ is bounded. And we have

$$\langle Tx - Tq, j(x - q) \rangle \le ||x - q||^2 - \Phi(||x - q||) ||x - q||$$
 (2.14)

for each $x \in K$. By using Lemma 1.2 and (2.7), we have

$$||x_{n+1} - q||^2 \le ||(1 - \alpha_n)(x_n - q) + \alpha_n(Ty_n - Tq)||^2 + 2D||u_n||.$$
(2.15)

After repeating the usage of the proof of Theorem 2.1, we obtain

$$||(1 - \alpha_n) (x_n - q) + \alpha_n (Ty_n - Tq)||^2$$

$$\leq ((1 - \alpha_n)^2 + \alpha_n A_n) ||x_n - q||^2 + \alpha_n A_n (1 + 2\alpha_n D)$$

$$+ 2\alpha_n ||x_{n+1} - u_n - q||^2 - 2\alpha_n \Phi(||x_{n+1} - u_n - q||) ||x_{n+1} - u_n - q||.$$
(2.16)

Thus, we have

$$\begin{aligned} \|x_{n+1} - q\|^{2} \\ &\leq \|x_{n} - q\|^{2} + \frac{2\alpha_{n}}{1 - 2\alpha_{n}} \left(\frac{D^{2}\alpha_{n} + D^{2}A_{n} + A_{n} + 2\alpha_{n}A_{n}D}{2} - \Phi(\|x_{n+1} - u_{n} - q\|)\|x_{n+1} - u_{n} - q\|) \right) + 2D\|u_{n}\| \\ &\leq \|x_{n} - q\|^{2} + \frac{2\alpha_{n}}{1 - 2\alpha_{n}} \left(B_{n} + C_{n} - \Phi(\|x_{n+1} - u_{n} - q\|)\|x_{n+1} - u_{n} - q\|) \right) + 2D\|u_{n}\|, \end{aligned}$$

$$(2.17)$$

where $B_n = D^2 \alpha_n + D^2 A_n + A_n + 2\alpha_n A_n D/2 \rightarrow 0$, $C_n = 1 - 2\alpha_n / \alpha_n D ||u_n|| \rightarrow 0$ as $n \rightarrow \infty$. Then $\lim_{n \rightarrow \infty} \inf ||x_{n+1} - u_n - q|| = 0$. If it is not the case, then there exist $\delta > 0$ and positive integer *N* such that $B_n + C_n < 1/2\Phi(r)r$, $\alpha_n < 1/2$ for all $n \ge N$. It follows that $||x_{n+1} - q||^2 \le ||x_n - q||^2 - \alpha_n/1 - 2\alpha_n\Phi(r)r$, which leads to $\Phi(r)r\sum_{n=N}^{\infty}\alpha_n \le ||x_N - q||^2 < \infty$, a contradiction. Hence, there exists a subsequence $\{x_{n_j} + 1\}$ such that $x_{n_j} + 1 \rightarrow q$ as $j \rightarrow \infty$. At this point, we can choose a positive integer n_j such that $||x_{n_j+1} - q|| < \varepsilon$ and $B_n + C_n < \Phi(\varepsilon/2)\varepsilon/4$, $||u_n|| < \varepsilon/2$ for all $n \ge n_j$. We show that $||x_{n_j+2} - q|| < \varepsilon$. If not, we assume that $||x_{n_j+2} - q|| \ge \varepsilon$, then $||x_{n_j+2} - u_{n_j+1} - q|| \ge ||x_{n_j+2} - q|| - ||u_{n_j+1} \ge \varepsilon/2$ so that $\Phi(x_{n_j+2} - u_{n_j+1} - q) \ge \Phi(\varepsilon/2)$. Thus, using (2.17), we have

$$||x_{n_{j}+2}-q||^{2} \leq ||x_{n_{j}+1}-q||^{2} - \frac{\alpha_{n_{j}+1}}{1-2\alpha_{n_{j}+1}} \Phi\left(\frac{\varepsilon}{2}\right) \frac{\varepsilon}{2} < \varepsilon^{2},$$
(2.18)

this is a contradiction and so $||x_{n_j+2} - q|| < \varepsilon$. By induction, $||x_{n_j+m} - q|| < \varepsilon$ for all $m \ge 1$.

COROLLARY 2.5. Let *E* be a real Banach space, and let *K* be a nonempty bounded and convex subset of *E*. Assume that $T: K \to K$ is a uniformly continuous Φ -hemicontractive mapping. Let $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}, \{\gamma_n\}_{n=0}^{\infty}, \{\hat{\alpha}\}_{n=0}^{\infty}, \{\hat{\beta}\}_{n=0}^{\infty}, and \{\hat{\gamma}\}_{n=0}^{\infty}$ be six real sequences in [0,1] satisfying the following conditions: (i) $\beta_n \to 0, \hat{\beta}_n \to 0, \hat{\gamma}_n \to 0$ as $n \to \infty$; (ii) $\sum_{n=0}^{\infty} \beta_n =$ $\infty, \gamma_n = o(\beta_n)$; (iii) $\alpha_n + \beta_n + \gamma_n = \hat{\alpha}_n + \hat{\beta}_n + \hat{\gamma}_n = 1, n \ge 0$. Let $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ be two bounded sequences in *K*. Define iteratively the Ishikawa sequence $\{x_n\}_{n=0}^{\infty}$ with errors in *K* as follows:

$$x_{0} \in K,$$

$$y_{n} = \hat{\alpha}_{n} x_{n} + \hat{\beta}_{n} T x_{n} + \hat{\gamma}_{n} v_{n}, \quad n \ge 0,$$

$$x_{n+1} = \alpha_{n} x_{n} + \beta_{n} T y_{n} + \gamma_{n} u_{n}, \quad n \ge 0.$$
(2.19)

Then the sequence $\{x_n\}_{n=0}^{\infty}$ defined by (2.11) converges strongly to the unique fixed point of *T*.

Proof. We observe that (2.11) can be rewritten as follows:

$$x_{0} \in K,$$

$$y_{n} = (1 - \hat{\beta}_{n})x_{n} + \hat{\beta}_{n}Tx_{n} + \hat{\gamma}_{n}(v_{n} - x_{n}), \quad n \ge 0,$$

$$x_{n+1} = (1 - \beta_{n})x_{n} + \beta_{n}Ty_{n} + \gamma_{n}(u_{n} - x_{n}), \quad n \ge 0.$$
(2.20)

It is easily to obtain the conclusion from Theorem 2.4. This completes the proof. \Box

Remark 2.6. Theorems 2.1 and 2.4 extend the results of [5] from real *q*-uniformly smooth Banach spaces to arbitrary real Banach spaces. It is also easy to see that our results are significant extensions of the results of [1, 2, 3, 4, 7] to arbitrary real Banach spaces and to the more general classes of mapping (Φ -hemicontractive mapping) considered here. Moreover, our iteration schemes extend from the usual iterative sequences to the iterative sequences with errors.

3. Acknowledgment

The author is very grateful to the referees for careful reading of the original version of this paper and for some good comments.

References

- C. E. Chidume, An iterative process for nonlinear Lipschitzian strongly accretive mappings in L_p spaces, J. Math. Anal. Appl. 151 (1990), no. 2, 453–461.
- [2] C. E. Chidume and M. O. Osilike, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. Optim. 15 (1994), no. 7-8, 779–790.
- [3] _____, Ishikawa iteration process for nonlinear Lipschitz strongly accretive mappings, J. Math. Anal. Appl. **192** (1995), no. 3, 727–741.
- [4] L. Deng, On Chidume's open questions, J. Math. Anal. Appl. 174 (1993), no. 2, 441–449.
- [5] M. O. Osilike, Iterative solution of nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl. 200 (1996), no. 2, 259–271.
- [6] _____, Iterative solutions of nonlinear φ-strongly accretive operator equations in arbitrary Banach spaces, Nonlinear Anal. Ser. A: Theory Methods 36 (1999), no. 1, 1–9.
- [7] K.-K. Tan and H. K. Xu, Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), no. 1, 9–21.

Xue Zhiqun: Department of Mathematics, Shijiazhuang Railway College, Shijiazhuang 050043, China

E-mail address: xuezhiqun@126.com