ON A SUBCLASS OF n-STARLIKE FUNCTIONS

MUGUR ACU AND SHIGEYOSHI OWA

Received 21 February 2005

In 1999, Kanas and Rønning introduced the classes of starlike and convex functions, which are normalized with $f(w)=f^{\prime}(w)-1=0$ and w a fixed point in U. In 2005, the authors introduced the classes of functions close to convex and α-convex, which are normalized in the same way. All these definitions are somewhat similar to the ones for the uniform-type functions and it is easy to see that for $w=0$, the well-known classes of starlike, convex, close-to-convex, and α-convex functions are obtained. In this paper, we continue the investigation of the univalent functions normalized with $f(w)=$ $f^{\prime}(w)-1=0$, where w is a fixed point in U.

1. Introduction

Let $\mathscr{H}(U)$ be the set of functions which are regular in the unit disc $U=\{z \in \mathbb{C}:|z|<1\}$, $A=\left\{f \in \mathscr{H}(U): f(0)=f^{\prime}(0)-1=0\right\}$, and $S=\{f \in A: f$ is univalent in $U\}$.

We recall here the definitions of the well-known classes of starlike and convex functions:

$$
\begin{gather*}
S^{*}=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}, \\
S^{c}=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in U\right\} . \tag{1.1}
\end{gather*}
$$

Let w be a fixed point in U and $A(w)=\left\{f \in \mathscr{H}(U): f(w)=f^{\prime}(w)-1=0\right\}$. In [3], Kanas and Rønning introduced the following classes:

$$
\begin{gather*}
S(w)=\{f \in A(w): f \text { is univalent in } U\}, \\
S T(w)=S^{*}(w)=\left\{f \in S(w): \operatorname{Re} \frac{(z-w) f^{\prime}(z)}{f(z)}>0, z \in U\right\}, \tag{1.2}\\
C V(w)=S^{c}(w)=\left\{f \in S(w): 1+\operatorname{Re} \frac{(z-w) f^{\prime \prime}(z)}{f^{\prime}(z)}>0, z \in U\right\} .
\end{gather*}
$$

It is obvious that a natural "Alexander relation" exists between the classes $S^{*}(w)$ and $S^{c}(w)$:

$$
\begin{equation*}
g \in S^{c}(w) \quad \text { iff } f(z)=(z-w) g^{\prime}(z) \in S^{*}(w) \tag{1.3}
\end{equation*}
$$

Denote with $\mathscr{P}(w)$ the class of all functions $p(z)=1+\sum_{n=1}^{\infty} B_{n} \cdot(z-w)^{n}$ that are regular in U and satisfy $p(w)=1$ and $\operatorname{Re} p(z)>0$ for $z \in U$.

2. Preliminary results

If is easy to see that a function $f_{(z)} \in A(w)$ has the series of expansions:

$$
\begin{equation*}
f(z)=(z-w)+a_{2}(z-w)^{2}+\ldots \tag{2.1}
\end{equation*}
$$

In [8], Wald gives the sharp bounds for the coefficients B_{n} of the function $p \in \mathscr{P}(w)$. Theorem 2.1. If $p(z) \in \mathscr{P}(w), p(z)=1+\sum_{n=1}^{\infty} B_{n} \cdot(z-w)^{n}$, then

$$
\begin{equation*}
\left|B_{n}\right| \leq \frac{2}{(1+d)(1-d)^{n}}, \quad \text { where } d=|w|, n \geq 1 \tag{2.2}
\end{equation*}
$$

Using the above result, Kanas and Rønning obtain the following theorem in [3].
Theorem 2.2. Let $f \in S^{*}(w)$ and $f(z)=(z-w)+b_{2}(z-w)^{2}+\ldots$. Then

$$
\begin{array}{cc}
\left|b_{2}\right| \leq \frac{2}{1-d^{2}}, & \left|b_{3}\right| \leq \frac{3+d}{\left(1-d^{2}\right)^{2}}, \\
\left|b_{4}\right| \leq \frac{2}{3} \cdot \frac{(2+d)(3+d)}{\left(1-d^{2}\right)^{3}}, & \left|b_{5}\right| \leq \frac{1}{6} \cdot \frac{(2+d)(3+d)(3 d+5)}{\left(1-d^{2}\right)^{4}}, \tag{2.3}
\end{array}
$$

where $d=|w|$.
Remark 2.3. It is clear that the above theorem also provides bounds for the coefficients of functions in $S^{c}(w)$, due to the relation between $S^{c}(w)$ and $S^{*}(w)$.

In [1], are also defined the following sets:

$$
\begin{gather*}
D(w)=\left\{z \in U: \operatorname{Re}\left[\frac{w}{z}\right]<1, \operatorname{Re}\left[\frac{z(1+z)}{(z-w)(1-z)}\right]>0\right\} \quad \text { for } w \neq 0, D(0)=U \\
s(w)=\{f: D(w) \longrightarrow \mathbb{C}\} \cap S(w) ; \quad s^{*}(w)=S^{*}(w) \cap s(w) \tag{2.4}
\end{gather*}
$$

where w is a fixed point in U.

The authors consider the integral operator $L_{a}: A(w) \rightarrow A(w)$ defined by

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{(z-w)^{a}} \cdot \int_{w}^{z} F(t) \cdot(t-w)^{a-1} d t, \quad a \in \mathbb{R}, a \geq 0 \tag{2.5}
\end{equation*}
$$

The next theorem is a result of the so called "admissible functions method" introduced by Mocanu and Miller (see [3, 4, 6]).

Theorem 2.4. Let h be convex in U and $\operatorname{Re}[\beta h(z)+\gamma]>0, z \in U$. If $p \in \mathscr{H}(U)$ with $p(0)=$ $h(0)$ and p satisfied the Briot-Bouquet differential subordination

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), \tag{2.6}
\end{equation*}
$$

then $p(z) \prec h(z)$.

3. Main results

Deffinition 3.1. Let w be a fixed point in $U, n \in \mathbb{N}$. D_{w}^{n} denotes the differential operator:

$$
\begin{gather*}
D_{w}^{n}: A(w) \longrightarrow A(w) \text { with }, \\
D_{w}^{0} f(z)=f(z), \\
D_{w}^{1} f(z)=D_{w} f(z)=(z-w) \cdot f^{\prime}(z), \tag{3.1}\\
D_{w}^{n} f(z)=D_{w}\left(D_{w}^{n-1} f(z)\right) .
\end{gather*}
$$

Remark 3.2. For $f \in A(w), f(w)=(z-w)+\sum_{j=2}^{\infty} a_{j}(z-w)^{j}$, we have

$$
\begin{equation*}
D_{w}^{n} f(z)=(z-w)+\sum_{j=2}^{\infty} j^{n} \cdot a_{j} \cdot(z-w)^{j} \tag{3.2}
\end{equation*}
$$

It easy to see that if we take $w=0$, we obtain the Sălăgean differential operator (see [7]). Deffinition 3.3. Let w be a fixed point in $U, n \in \mathbb{N}$ and $f \in S(w) . f$ is said to be an n - w-starlike function if

$$
\begin{equation*}
\operatorname{Re} \frac{D_{w}^{n+1} f(z)}{D_{w}^{n} f(z)}>0, \quad z \in U \tag{3.3}
\end{equation*}
$$

The class of all these functions is denoted by $S_{n}^{*}(w)$.
Remark 3.4. (1) $S_{0}^{*}(w)=S^{*}(w)$ and $S_{n}^{*}(0)=S_{n}^{*}$, where S_{n}^{*} is the class of n-starlike functions introduced by Sălăgean in [7].
(2) If $f(z) \in S_{n}^{*}(w)$ and we denote $D_{w}^{n} f(z)=g(z)$, we obtain $g(z) \in S^{*}(w)$.
(3) Using the class $s(w)$, we obtain $s_{n}^{*}(w)=S_{n}^{*}(w) \cap s(w)$.

Theorem 3.5. Let w be a fixed point in U and $n \in \mathbb{N}$. If $f(z) \in s_{n+1}^{*}(w)$ then $f(z) \in s_{n}^{*}(w)$. This means

$$
\begin{equation*}
s_{n+1}^{*}(w) \subset s_{n}^{*}(w) \tag{3.4}
\end{equation*}
$$

Proof. From $f(z) \in s_{n+1}^{*}(w)$, we have $\operatorname{Re}\left(D_{w}^{n+2} f(z) / D_{w}^{n+1} f(z)\right)>0, z \in U$. We denote $p(z)=$ $\left(D_{w}^{n+1} f(z) / D_{w}^{n} f(z)\right)$, where $p(0)=1$ and $p(z) \in \mathscr{H}(U)$. We obtain

$$
\begin{align*}
\frac{D_{w}^{n+2} f(z)}{D_{w}^{n+1} f(z)} & =\frac{D_{w}\left(D_{w}^{n+1} f(z)\right)}{D_{w}\left(D_{w}^{n} f(z)\right)}=\frac{(z-w)\left(D_{w}^{n+1} f(z)\right)^{\prime}}{(z-w)\left(D_{w}^{n} f(z)\right)^{\prime}}=\frac{\left(D_{w}^{n+1} f(z)\right)^{\prime}}{\left(D_{w}^{n} f(z)\right)^{\prime}} \\
p^{\prime}(z) & =\frac{\left(D_{w}^{n+1} f(z)\right)^{\prime} \cdot\left(D_{w}^{n} f(z)\right)-\left(D_{w}^{n+1} f(z)\right) \cdot\left(D_{w}^{n} f(z)\right)^{\prime}}{\left(D_{w}^{n} f(z)\right)^{2}} \tag{3.5}\\
& =\frac{\left(D_{w}^{n+1} f(z)\right)^{\prime}}{\left(D_{w}^{n} f(z)\right)^{\prime}} \cdot \frac{\left(D_{w}^{n} f(z)\right)^{\prime}}{D_{w}^{n} f(z)}-p(z) \cdot \frac{\left(D_{w}^{n} f(z)\right)^{\prime}}{D_{w}^{n} f(z)}
\end{align*}
$$

Thus we have

$$
\begin{align*}
(z-w) \cdot p^{\prime}(z)= & \frac{\left(D_{w}^{n+1} f(z)\right)^{\prime}}{\left(D_{w}^{n} f(z)\right)^{\prime}} \cdot \frac{(z-w) \cdot\left(D_{w}^{n} f(z)\right)^{\prime}}{D_{w}^{n} f(z)}-p(z) \cdot \frac{(z-w) \cdot\left(D_{w}^{n} f(z)\right)^{\prime}}{D_{w}^{n} f(z)}, \\
& (z-w) \cdot p^{\prime}(z)=\frac{\left(D_{w}^{n+1} f(z)\right)^{\prime}}{\left(D_{w}^{n} f(z)\right)^{\prime}} \cdot p(z)-[p(z)]^{2}, \\
& \frac{\left(D_{w}^{n+1} f(z)\right)^{\prime}}{\left(D_{w}^{n} f(z)\right)^{\prime}}=p(z)+\frac{1}{p(z)} \cdot(z-w) \cdot p^{\prime}(z) . \tag{3.6}
\end{align*}
$$

From $\operatorname{Re}\left(D_{w}^{n+2} f(z) / D_{w}^{n+1} f(z)\right)>0$ we obtain $p(z)+(1 / p(z)) \cdot(z-w) \cdot p^{\prime}(z) \prec((1+$ $z) /(1-z))$ or

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{1 /(1-(w / z)) \cdot p(z)} \prec \frac{1+z}{1-z} \equiv h(z), \quad \text { with } h(0)=1 . \tag{3.7}
\end{equation*}
$$

By hypothesis, we have $\operatorname{Re}[1 /(1-(w / z)) \cdot h(z)]>0$, and thus from Theorem 2.4 we obtain $p(z) \prec h(z)$ or $\operatorname{Re} p(z)>0$. This means $f \in s_{n}^{*}(w)$.

Remark 3.6. From Theorem 3.5, we obtain $s_{n}^{*}(w) \subset s_{0}^{*}(w) \subset S^{*}(w), n \in \mathbb{N}$.
Theorem 3.7. If $F(z) \in s_{n}^{*}(w)$ then $f(z)=L_{a} F(z) \in S_{n}^{*}(w)$, where L_{a} is the integral operator defined by (2.5).
Proof. From (2.5) we obtain

$$
\begin{equation*}
(1+a) \cdot F(z)=a \cdot f(z)+(z-w) \cdot f^{\prime}(z) \tag{3.8}
\end{equation*}
$$

By means of the application of the operator D_{w}^{n+1} we obtain

$$
\begin{equation*}
(1+a) \cdot D_{w}^{n+1} F(z)=a \cdot D_{w}^{n+1} f(z)+D_{w}^{n+1}\left[(z-w) \cdot f^{\prime}(z)\right] \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
(1+a) \cdot D_{w}^{n+1} F(z)=a \cdot D_{w}^{n+1} f(z)+D_{w}^{n+2} f(z) . \tag{3.10}
\end{equation*}
$$

Similarly, by means of the application of the operator D_{w}^{n}, we obtain

$$
\begin{equation*}
(1+a) \cdot D_{w}^{n} F(z)=a \cdot D_{w}^{n} f(z)+D_{w}^{n+1} f(z) . \tag{3.11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{D_{w}^{n+1} F(z)}{D_{w}^{n} F(z)}=\frac{\left(D_{w}^{n+2} f(z) / D_{w}^{n+1} f(z)\right) \cdot\left(D_{w}^{n+1} f(z) / D_{w}^{n} f(z)\right)+a \cdot\left(D_{w}^{n+1} f(z) / D_{w}^{n} f(z)\right)}{\left(D_{w}^{n+1} f(z) / D_{w}^{n} f(z)\right)+a} . \tag{3.12}
\end{equation*}
$$

Using the notation $D_{w}^{n+1} f(z) / D_{w}^{n} f(z)=p(z)$, with $p(0)=1$, we have

$$
\begin{equation*}
\frac{(z-w) \cdot p^{\prime}(z)}{p(z)}=\frac{D_{w}^{n+2} f(z)}{D_{w}^{n+1} f(z)}-p(z) \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{D_{w}^{n+2} f(z)}{D_{w}^{n+1} f(z)}=p(z)+\frac{(z-w) \cdot p^{\prime}(z)}{p(z)} . \tag{3.14}
\end{equation*}
$$

Thus

$$
\begin{align*}
\frac{D_{w}^{n+1} F(z)}{D_{w}^{n} F(z)} & =\frac{p(z)\left[p(z)+\left((z-w) p^{\prime}(z) / p(z)\right)+a\right]}{p(z)+a} \\
& =p(z)+\frac{z p^{\prime}(z)}{(1 /(1-(w / z))) p(z)+(a /(1-(w / z)))} . \tag{3.15}
\end{align*}
$$

From $F(z) \in s_{n}^{*}(w)$ we obtain $\left(D_{w}^{n+1} F(z) / D_{w}^{n} F(z)\right) \prec((1+z) /(1-z)) \equiv h(z)$ or

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{(1 /(1-(w / z))) p(z)+(a /(1-(w / z)))} \prec h(z) . \tag{3.16}
\end{equation*}
$$

By hypothesis, we have $\operatorname{Re}[(1 /(1-(w / z))) \cdot h(z)+(a /(1-(w / z)))]>0$ and from Theorem 2.4 we obtain $p(z) \prec h(z)$ or $\operatorname{Re}\left\{D_{w}^{n+1} f(z) / D_{w}^{n} f(z)\right\}>0, z \in U$. This means $f(z)=$ $L_{a} F(z) \in S_{n}^{*}(w)$.

Remark 3.8. If we consider $w=0$ in Theorem 3.7 we obtain that the integral operator defined by (2.5) preserves the class of n-starlike functions, and if we consider $w=0$ and $n=0$ in the above theorem we obtain that the integral operator defined by (2.5) preserves the well-known class of starlike functions.

Theorem 3.9. Let w be a fixed point in U and $f \in S_{n}^{*}(w)$ with $f(z)=(z-w)+\sum_{j=2}^{\infty} a_{j}$. $(z-w)^{j}$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{1}{2^{n-1} \cdot\left(1-d^{2}\right)} \\
\left|a_{3}\right| \leq \frac{3+d}{3^{n} \cdot\left(1-d^{2}\right)^{2}} \\
\left|a_{4}\right| \leq \frac{(2+d)(3+d)}{2^{2 n-1} \cdot 3 \cdot\left(1-d^{2}\right)^{3}} \tag{3.17}\\
\left|a_{5}\right| \leq \frac{(2+d)(3+d)(3 d+5)}{5^{n} \cdot 6 \cdot\left(1-d^{2}\right)^{4}}
\end{gather*}
$$

where $d=|w|$.
Proof. From Remark 3.4 for $f \in S_{n}^{*}(w)$ we obtain

$$
\begin{equation*}
D_{w}^{n} f(z)=g(z) \in S^{*}(w) \tag{3.18}
\end{equation*}
$$

If we consider $g(z)=(z-w)+\sum_{j=2}^{\infty} b_{j} \cdot(z-w)^{j}$, using Remark 3.2, from (3.18) we obtain $j^{n} \cdot a_{j}=b_{j}, j=2,3, \ldots$

Thus we have $a_{j}=1 / j^{n} \cdot b_{j}, j=2,3, \ldots$, and from the estimates (2.3) we get the result.

References

[1] M. Acu and S. Owa, On some subclasses of univalent functions, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, article 70, 1-6.
[2] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.
[3] S. Kanas and F. Rønning, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1999), 95-105.
[4] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no. 2, 157-172.
[5] , On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), no. 2, 185-195.
[6] , Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), no. 3, 297-309.
[7] G. S.S Sălăgean, Subclasses of univalent functions, Complex Analysis—Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
[8] J. K. Wald, On starlike functions, Ph.D. thesis, University of Delaware, Delaware, 1978.
Mugur Acu: Department of Mathematics, "Lucian Blaga" University of Sibiu, 5-7 Ion Raṭiu Street, 550012 Sibiu, Romania

E-mail address: acu_mugur@yahoo.com
Shigeyoshi Owa: Department of Mathematics, School of Science and Engineering, Kinki University, Higashiosaka, Osaka 577-8502, Japan

E-mail address: owa@math.kindai.ac.jp

