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Using the Bessel-Muirhead system, we can express the K-Bessel function defined on a
Jordan algebra as a linear combination of the J-solutions. We determine explicitly the
coefficients when the rank of this Jordan algebra is three after a reduction to the rank
two. The main tools are some algebraic identities developed for this occasion.

1. Introduction

Bessel functions of matrix argument appeared as a subject of studies in the work of Herz
[6]. One can find in the multivariate statistics literature some applications of these func-
tions (see [11]). The main tool of Herz’s work was the Laplace transform and its inverse in
the space of real symmetric matrices. He obtained several properties but a “good” differ-
ential system was lacking. This was the major contribution of Muirhead in [10] when he
characterized them by a system of second-order partial differential equations and proved
the uniqueness (up to multiplicative constant) of the solution which is analytic at 0. Later,
Faraut and Travaglini [5] gave a generalization of these functions to a Jordan algebra. An
extensive study was done in [2]. However, the explicit resolution of the Bessel-Muirhead
system in general rank remains an open problem. Nevertheless, in [9] Mahmoud wrote
down an explicit basis of the solutions in the rank 2 and 3 using series of one-variable
Bessel functions. On the other hand, the K-Bessel function of matrix argument was de-
fined earlier in Herz’s paper cited above and his conjecture was that there must be a
linear relation between this kind of Bessel functions and the J’s one as known in the one-
variable theory. The first result concerning this conjecture was established by the author
in [3] for the rank two. In this paper, we continue our work and prove that a similar re-
sult for the K-Bessel function is also true when the Jordan algebra is of rank 3. In this
case, there are four nonequivalent classes of real simple and Euclidean Jordan algebra:
Herm(3,F) the algebra of 3× 3 Hermitian matrices, where F is the field of real, complex,
quaternionic, or Cayley (octaves) numbers. In [3] we intended to perform a case-by-case
calculation. In this way, a serious difficulty arises in the evaluation of some integral over
the automorphism group of the Jordan algebra. However, a unified treatment is possible
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by a reduction to the rank-2 case using some algebraic identities. This is what we will
present here.

2. Preliminaries

Let us recall the situation and some useful results in [3].

Definition 2.1. Bessel-Muirhead operators are defined by

Bi = xi
∂2

∂x2
i

+ (ν + 1)
∂

∂xi
+ 1 +

d

2

∑
j �=i

1
xi− xj

(
xi

∂

∂xi
− xj

∂

∂xj

)
, 1≤ i≤ r, (2.1)

where r is the rank of the system, ν a complex parameter, and d an integer (which will be
interpreted below in Section 3). A Bessel function is a symmetric function f which is a
solution of the Bessel-Muirhead system Bi f = 0, i= 1,2, . . . ,r.

Denote by t1, t2, . . . , tr the elementary symmetric functions, that is,

tp =
∑

1≤i1<i2<···<ip≤r
xi1xi2 ···xip (2.2)

with t0 = 1 and tp = 0 if p < 0 or p > r. The Bessel-Muirhead system is then equivalent to
the system (see [2, 7]) Zkg = 0, 1≤ k ≤ r, where

Zk =
r∑

i, j=1

Ak
i j

∂2

∂ti∂t j
+
(

ν + 1 +
r− k

2
d
)

∂

∂tk
+ δ1

k ,

Ak
i j =




ti+ j−k if i, j ≥ k,

−ti+ j−k if i, j < k, i+ j ≥ k,

0 elsewhere.

(2.3)

Here δ1
k is the Kronecker symbol and g(t1, t2, . . . , tr) = f (x1,x2, . . . ,xr). When r = 2, we

have (see [3]) a fundamental set of solutions given by J [2,1]
ν , J [2,2]

ν , t−ν
2 J [2,1]

−ν , and t−ν
2 J [2,2]

−ν ,
where

J [2,1]
ν

(
t1, t2

)= ∑
m1,m2≥0

(−1)m1

(1)m1 (1)m2 (1 + ν)m2

(
1 + ν +d/2

)
m1+2m2

tm1
1 tm2

2 ,

J [2,2]
ν

(
t1, t2

)= ∑
m1,m2≥0

(−1)m1

(1− ν−d/2)m1 (1)m2 (1 + ν)m2 (1)m1+2m2

tm1−ν−d/2
1 tm2

2 .

(2.4)

Here (a)k is the classical Pochhammer symbol, that is, (a)k = a(a+ 1)···(a+ k− 1). In
this case, the K-Bessel function (in two variables) can be expressed (in the J-basis) as
follows (see [3]):

K [2]
ν

(
t1, t2

)=
2∑
j=1

a
j
νJ

[2, j]
ν

(− t1, t2
)

+ b
j
νt−ν

2 J
[2, j]
−ν

(− t1, t2
)
, (2.5)
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where

a1
ν = b1

−ν = (2π)(n−2)/2Γ(−ν)Γ
(
− ν− n− 2

2

)
,

a2
ν = b2

−ν = (2π)(n−2)/2Γ(−ν)Γ
(

ν +
n− 2

2

) (2.6)

(for the meaning of n, see Section 3 below). Observe that this expression reduces (up to
constant factor) to the classical one-variable formula when t2 = 0 and generic ν (i.e., ν /∈ Z
and ν± (n− 2)/2 /∈ Z). Now, for r = 3, we have eight linearly independent J-solutions

J [3,1]
ν , J [3,2]

ν , J [3,3]
ν , J [3,4]

ν , t−ν
3 J [3,1]

−ν , t−ν
3 J [3,2]

−ν , t−ν
3 J [3,3]

−ν , and t−ν
3 J [3,4]

−ν , where

J [3,1]
ν

(
t1, t2, t3

)= ∑
m1,m2,m3≥0

(−1)m1+m3

(1)m1 (1)m2 (1)m3 (1 + ν)m3 (1 + ν +d/2)m2+2m3

× (1 + 2ν +d)m1+2m2+4m3

(1 + ν +d)m1+2m2+3m3 (1 + 2ν +d)m1+2m2+3m3

tm1
1 tm2

2 tm3
3 ,

J [3,2]
ν

(
t1, t2, t3

)= ∑
m1,m2,m3≥0

(−1)m1+m3

(1− ν−d)m1 (1)m2 (1)m3 (1 + ν)m3 (1 + ν +d/2)m2+2m3

× (1 + ν)m1+2m2+4m3

(1)m1+2m2+3m3 (1 + ν)m1+2m2+3m3

tm1−ν−d
1 tm2

2 tm3
3 ,

J [3,3]
ν

(
t1, t2, t3

)= ∑
m1,m2,m3≥0

(−1)m1+m3

(1)m1 (1− ν−d/2)m2 (1)m3 (1 + ν)m3 (1)m2+2m3

× (1)m1+2m2+4m3

(1− ν)m1+2m2+3m3 (1)m1+2m2+3m3

tm1
1 tm2−ν−d/2

2 tm3
3 ,

J [3,4]
ν

(
t1, t2, t3

)= ∑
m1,m2,m3≥0

(−1)m1+m3

(1 + ν)m1 (1− ν−d/2)m2 (1)m3 (1 + ν)m3 (1)m2+2m3

× (1 + ν)m1+2m2+4m3

(1)m1+2m2+3m3 (1 + ν)m1+2m2+3m3

tm1+ν
1 tm2−ν−d/2

2 tm3
3 .

(2.7)

Observe also that when t3 = 0 (and ν /∈ Z, ν±d/2 /∈ Z), these functions reduce to

J [3,1]
ν

(
t1, t2,0

)= J [2,1]
ν+d/2

(
t1, t2

)
, (2.8)

J [3,2]
ν

(
t1, t2,0

)= J [2,2]
ν+d/2

(
t1, t2

)
, (2.9)

J [3,3]
ν

(
t1, t2,0

)= t−ν−d/2
2 J [2,1]

−ν−d/2
(
t1, t2

)
, (2.10)

J [3,4]
ν

(
t1, t2,0

)= t−ν−d/2
2 J [2,2]

−ν−d/2
(
t1, t2

)
. (2.11)

This behaviour and the expression of K [2]
ν are an important step to the final result.

3. Some algebraic identities

For the general theory of Jordan algebra, one can see [4], but what we will develop is
somehow specific to the rank three. So, let A be a real simple and Euclidean Jordan
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algebra with rank 3 and real dimension n. We know that n = 3 + 3d, where d = 1,2,4,
or 8. The integer d is the real dimension of some decomposition spaces which appear in
the Peirce decomoposition of the algebra A (see [4]). Let {c1,c2,c3} be a complete system

of mutually orthogonal primitive idempotents, that is, cic j = δ
j
i ci, c1 + c2 + c3 = e the unit

of A and none of the cj ’s can split into a sum of two idempotents. We have a Cayley-
Hamilton-like theorem x3− a1(x)x2 + a2(x)x− a3(x)e = 0 and a spectral decomposition
x = k · (λ1c1 + λ2c2 + λ3c3) with k an element of the automorphism group of A and λi reals
such that

a1(x)= λ1 + λ2 + λ3 := tr(x),

a3(x)= λ1λ2λ3 := det(x),

a2(x)= λ1λ2 + λ1λ3 + λ2λ3 = 1
2

[
tr(x)2− tr

(
x2)].

(3.1)

The inner product is defined then by (x, y) := tr(xy). The operators L(x) and P(x) are de-
fined by L(x)y = xy and P(x)= 2L2(x)−L(x2). Let us consider the Peirce decomposition
with respect to the idempotent c3, that is, A= A0⊕A1/2⊕A1, where Aα is the eigenspace
of L(c3) with respect to the eigenvalue α. A0 and A1 are Jordan subalgebras of rank 2
and 1, respectively, and A1/2 is a subspace of dimension 2d. Put n0 = dimA0 = 2 + d and
e0 = c1 + c2 the unit of A0. We have A0A1 = {0}, (A0 ⊕A1)A1/2 ⊂ A1/2 and A1/2A1/2 ⊂
A0 ⊕A1. If we write tr(z) or det(z) of an element of A0, this will mean trace and deter-
minant with respect to the subalgebra A0. We denote by Ω3 the cone of positivity of A,
that is, Ω3 = {x ∈ A/λi > 0 , i= 1,2,3} = {x ∈ A/ai(x) > 0 , i= 1,2,3} and by Ω2 the cone
of A0. Every x in Ω3 (resp., in Ω2) admits a unique square root in Ω3 (resp., in Ω2) and is
invertible.

Lemma 3.1. If y = e0 + ξ + tc3 with ξ ∈A1/2 and t ∈R, then

det(y)= t− 1
2
‖ξ‖2. (3.2)

Proof. The projection onto A1 is P(c3), so P(c3)ξ = 0 and therefore 0 = tr(P(c3)ξ) =
(e,P(c3)ξ) = (c3,ξ) = (1/2)tr(ξ). By the same argument tr(ξ3) = 0. Now by Cayley-
Hamilton ξ3 + a2(ξ)ξ − det(ξ)e = 0 which implies det(ξ) = 0. On the other hand, ξ2 =
u+ τc3 with u ∈ A0 and τ ∈ R. We have τ = (c3,ξ2) = (ξc3,ξ) = (1/2)‖ξ‖2 and tr(u) =
(1/2)‖ξ‖2. From det(ξ2) = τ det(u), we deduce that det(u) = 0. So by Cayley-Hamilton
(in A0) we can write u2 = (1/2)‖ξ‖2u. Now ξ2 = u+ τc3 ⇒ ξ4 = u2 + τ2c3 = (1/2)‖ξ‖2u+
(1/4)‖ξ‖4c3 = (1/2)‖ξ‖2ξ2 and then ξ3 = (1/2)‖ξ‖2ξ. Therefore, uξ = (1/4)‖ξ‖2ξ. Then
we have

y = e0 + ξ + tc3,

y2 = (e0 +u
)

+ (1 + t)ξ +
(
t2 +

1
2
‖ξ‖2

)
c3,

y3 = (e0 + (2 + t)u
)

+
(

1 + t+ t2 +
1
2
‖ξ‖2

)
ξ +
(
t2 + t‖ξ‖2 +

1
2
‖ξ‖2

)
c3,

(3.3)
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and also tr(y)= 2 + t, a2(y)= (1/2)[tr(y)2− tr(y2)]= 1 + 2t− (1/2)‖ξ‖2. The result is a
consequence of

y3− tr(y)y2 + a2(y)y =
(
t− 1

2
‖ξ‖2

)
e. (3.4)

�

Lemma 3.2. If y = z+ ξ + tc3 with z ∈Ω2, ξ ∈A1/2, and t ∈R, then

det(y)= det(z)
[
t− (z−1ξ,ξ

)]
. (3.5)

Proof. The application

ρ : A0 −→ End
(
A1/2

)
,

u−→ ρ(u) defined by ρ(u)ξ = 2L(u)ξ
(3.6)

is a representation of A0 in the space A1/2 (for more details, see [4]). This means that
2ρ(uv)= ρ(u)ρ(v) + ρ(v)ρ(u) and identically P(u)ξ = 0. So

P
(
u+ c3

)
y = P

(
u+ c3

)
z+P

(
u+ c3

)
ξ + tP

(
u+ c3

)
c3

= P(u)z+ 2L(u)ξ + tc3.
(3.7)

Now if u= z−1/2, we derive the desired result thanks to (3.2) and the fact that

det
[
P
(
z−1/2 + c3

)
y
]= det

(
z−1/2 + c3

)2
det(y)

= det
(
z−1)det(y)= det(z)−1 det(y).

(3.8)

�

Corollary 3.3. If y = z+ ξ + tc3 ∈Ω3, then

tr
(
y−1)= 2det(z) + 2t tr(z)−‖ξ‖2

2det(z)
[
t− (z−1ξ,ξ

)] . (3.9)

Proof. First we have y3− tr(y)y2 + a2(y)y−det(y)e= 0. Then

y−1 = 1
det(y)

[
y2− tr(y)y + a2(y)e

]
(3.10)

and therefore

tr
(
y−1)= 1

det(y)

[
tr
(
y2)− tr(y)2 + 3a2(y)

]

= 1
2det(y)

[
tr(y)2− tr

(
y2)]

= 1
2det(y)

[
tr(z)2 + 2t tr(z)− tr(z2)−‖ξ‖2]

= 1
2det(y)

[
2det(z) + 2t tr(z)−‖ξ‖2].

(3.11)

�
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4. K-Bessel function

The K-Bessel function is defined by (see [2, 4])

K [3]
ν (x)=

∫
Ω3

e− tr(y−1)−(x,y)(det y)ν−n/3dy. (4.1)

This function is well defined at least for x ∈Ω3 and any complex ν. The convergence of
the previous integral is assured by the good behaviour of e− tr(y−1)−(x,y) near infinity (in
Ω3) and ∂Ω3. We can extend it to the tube Ω3⊕ iA in the complexification AC = A⊕ iA
of A as a holomorphic function in x. As a function of ν, it is an entire function (see [4,
Proposition XVI.3.1]). After a change of variables, one can show that

K [3]
ν (x)= (detx)−νK [3]

−ν (x). (4.2)

Following [2] where it is proved that K [3]
ν is a solution of a differential system similar to

(2.1), we can write

K [3]
ν (x)=

4∑
j=1

a
j
νJ

[3, j]
ν (−x) + b

j
νt−ν

3 J
[3, j]
−ν (−x). (4.3)

According to (4.2), we have a
j
ν = b

j
−ν for j = 1,2,3,4. For Re(ν) <−d, the following limit

holds (see [4] for more information on ΓΩ3 , the Gamma function of the cone Ω3):

lim
x→0
x∈Ω3

K [3]
ν (x)= ΓΩ3 (−ν)= (2π)3d/2Γ(−ν)Γ

(
− ν− d

2

)
Γ(−ν−d), (4.4)

so

a1
ν = b1

−ν = (2π)3d/2Γ(−ν)Γ
(
− ν− d

2

)
Γ(−ν−d) (4.5)

according to the behaviour of the solutions J
[3, j]
ν . To determine the other coefficients, we

take x �= 0 on the boundary of Ω. So if x = x1c1+ x2c2, then the integral representation of

K [3]
ν takes the explicit form

K [3]
ν

(
x1c1 + x2c2

)=
∫
Ω2

∫∫
E

exp−
[

2det(z) + 2t tr(z)−‖ξ‖2

2det(z)
[
t− (z−1ξ,ξ

)]
]

× exp−(x,z)det(z)ν−d−1[t− (z−1ξ,ξ
)]ν−d−1

dzdξ dt,
(4.6)

where E={(t,ξ)∈R×A1/2/t > (z−1ξ,ξ)} and y=z+ξ+tc3. We change t into t+ (z−1ξ,ξ).
The integral over E becomes

I =
∫ +∞

0

∫
A1/2

e−1/t exp−
[

tr(z)
(
z−1ξ,ξ

)− (1/2)‖ξ‖2

tdet(z)

]
tν−d−1dξ dt

=
∫ +∞

0

∫
A1/2

e−1/te−(B·ξ,ξ)tν−d−1dξ dt,

(4.7)
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where the operator B = ρ(v) with v = (tr(z)/2tdet(z))z−1 − (1/2tdet(z))e0. Note that
v ∈Ω2 because tr(v)= (tr(z)2− 2det(z))/2t(det(z)2) > 0 and det(v)= 1/4t2(det(z))2 > 0.
Also detB = det(v)d = 2−2dt−2d det(z)−2d. But

∫
A1/2

e−(B·ξ,ξ)dξ = πd(detB)−1/2, (4.8)

so

I = (2π)d det(z)d
∫ +∞

0
e−1/ttν−1dt = (2π)dΓ(−ν)det(z)d. (4.9)

Now

K [3]
ν

(
x1c1 + x2c2

)= (2π)dΓ(−ν)
∫
Ω2

e− tr(z)/det(z) exp−(x,z)det(z)ν−1dz

= (2π)dΓ(−ν)
∫
Ω2

e− tr(z−1) exp−(x,z)det(z)ν+d/2−d/2−1dz

= (2π)dΓ(−ν)K [2]
ν+d/2

(
x1c1 + x2c2

)
.

(4.10)

Theorem 4.1. It holds that

K [3]
ν

(
t1, t2, t3

)=
4∑
j=1

a
j
νJ

[3, j]
ν

(− t1, t2,−t3
)

+ b
j
νt−ν

3 J
[3, j]
−ν

(− t1, t2,−t3
)

(4.11)

with

a1
ν = b1

−ν = (2π)3d/2Γ(−ν)Γ
(
− ν− d

2

)
Γ(−ν−d),

a2
ν = b2

−ν = (2π)3d/2Γ(−ν)Γ
(
− ν− d

2

)
Γ(ν +d),

a3
ν = b3

−ν = (2π)3d/2Γ(−ν)Γ
(

ν +
d

2

)
Γ(ν),

a4
ν = b4

−ν = (2π)3d/2Γ(−ν)Γ
(

ν +
d

2

)
Γ(−ν).

(4.12)

Proof. We suppose first that Re(ν)<−d. So the left-hand side of the formula (4.3) is noth-

ing but (2π)dΓ(−ν)K [2]
ν+d/2(x1c1 + x2c2) according to (4.10). We use then the expansion es-

tablished in the case of rank-2 Jordan algebra (see [3]) and the reduction formulas (2.8)
to (2.11) for the right-hand side of (4.3). �

5. Conclusion

In light of the above calculations, we think that the complete answer to Herz’s conjec-
ture (higher ranks) can be fulfilled in two steps. First a recurrence formula between K-
Bessel functions of rank r and r + 1 like formula (4.3). This is quite easy because the
lemmas above can be written in higher ranks using some Jordan algebra indentities. But
what seems to be very difficult is the second step: the complete and explicit resolution
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of the Bessel-Muirhead system. Here the recurrence does not work because the series
method yields a very complicated recurrence system on the coefficients.
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