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The present paper deals with the study of a weakly tight function and its relation to tight
functions. We obtain a Jordan-decomposition-type theorem for a locally bounded weakly
tight real-valued function defined on a sublattice of IX , followed by the notion of a total
variation.

1. Introduction

The notion of a signed measure arises if a measure is allowed to take on both positive and
negative values. A set that is both positive and negative with respect to a signed measure
is termed as a null set. Some concepts in measure theory can be generalized by means
of classes of null sets. An abstract formulation and proof of the Lebesgue decomposition
theorem using the concept of null sets is given by Ficker [5]. A real-valued function satis-
fying certain properties that can be expressed as a difference of two nonnegative functions
possessing the same properties is called “decomposable.” Several Jordan-decomposition-
type theorems are exhibited in [3]. Faires and Morrison [4] exposed conditions on a
vector-valued measure that ensure vector-valued Jordan-decomposition-type theorem to
hold. For a signed null-additive fuzzy measure, a Jordan-decomposition-type theorem is
investigated by Pap in [11].

The problem of generation of measures by tight functions defined on a lattice of sets
has been taken up by several authors [1, 2, 6, 8, 9]. Nayak and Srinivasan [10] initiated
a weaker form of tightness for a real-valued function µ defined on a lattice of sets to
decompose µ as a difference µ+−µ− and then extended it to a countably additive measure.

In Section 2, we have defined and studied the notions of measuring envelopes, modu-
lar functions, and additive functions. The notions of superadditive and subadditive func-
tions are also given with the help of pointwise addition of elements in IX . The lower
envelope β∗ of a superadditive function β defined on a sublattice K of IX turns out to be
superadditive. In Section 3, we introduce the notion of a weakly tight function β : K →R,
where K is a sublattice of IX containing 0 and 1 (cf. [10]). The condition imposed on the
[0,1]-valued function β to be a weakly tight function is less restrictive than that for being
a tight function. It is proved that a superadditive, monotone, and weakly tight function
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β is tight (there K is taken to be closed under addition). In Section 4, our main result
states that a locally bounded, weakly tight real-valued function β defined on K has a rep-
resentation of the form β+− β−; both β+ and β− are nonnegative monotone (and hence,
locally bounded) functions defined on K . If, in addition, β is additive and modular, then
the decomposed parts β+ and β− preserve superadditive and supermodular properties.
The total variation |β| of β is defined as the sum of β+ and β−, following the terminology
in the classical measure theory (cf. [12]); few properties of |β| are noted.

Notations. Throughout this paper, X is a nonempty set and I ≡ [0,1] is the unit interval
of the real line R; C denotes a subfamily of IX of all functions from X to I ; K stands for a
sublattice of IX containing the least element 0 and the greatest element 1, where 0 and 1
are constant functions sending each x ∈ X to 0 and 1, respectively. We will denote by β a
function from K to I satisfying β(0)= 0.

2. Measuring envelopes

Let C be a sublattice of IX and let ξ : C→ I be a function. Then ξ is called monotone if f ,
g ∈ C, g ≤ f ⇒ ξ(g)≤ ξ( f ). The mapping ξ is called supermodular (submodular, resp.) if
for f ,g ∈ C, ξ( f ) + ξ(g) ≤ ξ( f ∨ g) + ξ( f ∧ g)(ξ( f ) + ξ(g) ≥ ξ( f ∨ g) + ξ( f ∧ g), resp.);
ξ is said to be modular if it is both supermodular and submodular. The mapping ξ is
said to be superadditive (subadditive, resp.) if for f1, f2 ∈ C such that f1 + f2 ∈ C, ξ( f1 +
f2) ≥ ξ( f1) + ξ( f2) (ξ( f1 + f2) ≤ ξ( f1) + ξ( f2), resp.); ξ is said to be additive if it is both
superadditive and subadditive. If we restrict ourselves to disjoint crisp sets in C, then the
condition of being additive for ξ coincides with that of [10].

The family C ⊆ IX is said to be closed under addition if for f ,g ∈ C with f + g ∈ IX ,
we have f + g ∈ C, and is said to be closed under addition modulo 1 (or closed under ⊕) if
f ,g ∈ C implies that f ⊕ g ∈ C, where f ⊕ g = ( f + g)∧ 1.

A function ξ : C→ I is called subadditive modulo 1 if for f1, f2 ∈ C with f1⊕ f2 ∈ C, we
have ξ( f1⊕ f2)≤ ξ( f1) + ξ( f2); here C ⊆ IX .

If f ,g ∈ IX and f + g ∈ IX , then f ⊕ g = f + g. Thus if C is closed under addition
modulo 1, then C is closed under addition. Also, if ξ is subadditive modulo 1, then ξ is
subadditive.

The definition for a function ξ : C→ I to be supermodular (submodular, superaddi-
tive, subadditive, resp.) continues to hold for a real-valued function ξ defined on C.

Definition 2.1. Let β : K → I be a function satisfying β(0) = 0. Define β∗ : IX → I and
β∗ : IX → I by

β∗( f )= sup
{
β(g) : g ≤ f , g ∈ K

}
,

β∗( f )= inf
{
β(g) : g ≥ f , g ∈ K

}
, f ∈ IX .

(2.1)

β∗ and β∗ are called the lower envelope and the upper envelope of β, respectively.

We obtain
(i) β∗(0)= 0= β∗(0);

(ii) both β∗ and β∗ are monotone;
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(iii) β∗ | K ≤ β ≤ β∗ | K ;
(iv) β is monotone if and only if β∗ | K = β = β∗ | K .

Proposition 2.2. (i) If β is supermodular, then β∗ is supermodular.
(ii) If β is submodular, then β∗ is submodular.

Proof. (i) Let f1, f2 ∈ IX . Let ε > 0. Then there exist g1,g2 ∈ K , f1 ≥ g1, f2 ≥ g2 such that

β∗
(
f1
)− ε

2
< β
(
g1
)
,

β∗
(
f2
)− ε

2
< β
(
g2
)
.

(2.2)

It follows that

β∗
(
f1
)

+β∗
(
f2
)− ε < β

(
g1∨ g2

)
+β
(
g1∧ g2

)
. (2.3)

Consequently,

β∗
(
f1
)

+β∗
(
f2
)− ε < β∗

(
f1∨ f2

)
+β∗

(
f1∧ f2

)
. (2.4)

Since ε is arbitrary, we get

β∗
(
f1
)

+β∗
(
f2
)≤ β∗

(
f1∨ f2

)
+β∗

(
f1∧ f2

)
. (2.5)

Proof of (ii) follows analogously. �

Proposition 2.3. (i) If K is closed under addition and β is superadditive, then β∗ is super-
additive.

(ii) If K is closed under addition modulo 1 and β is subadditive modulo 1, then β∗ is
subadditive modulo 1, and hence β∗ is subadditive.

Proof. (i) Let f1 and f2 be in IX such that f1 + f2 ∈ IX . Let ε > 0. Then there exist g1,g2 ∈ K
with g1 ≤ f1 and g2 ≤ f2 such that β(g1) > β∗( f1)− ε/2 and β(g2) > β∗( f2)− ε/2. Hence,
β∗( f1) +β∗( f2)− ε < β(g1) +β(g2). Since, for any x ∈ X , 0≤ (g1 + g2)(x)≤ ( f1 + f2)(x)≤
1, we get g1 + g2 ∈ IX and so g1 + g2 ∈ K . Since β is superadditive, β∗( f1) + β∗( f2)− ε <
β(g1 + g2)≤ β∗( f1 + f2) and hence, we obtain β∗( f1) +β∗( f2)≤ β∗( f1 + f2).

(ii) Let f1, f2 ∈ IX . Let ε > 0. Then there exist g1,g2 ∈ K with f1 ≤ g1 and f2 ≤ g2

such that

β∗
(
f1
)

+β∗
(
f2
)

+ ε > β
(
g1
)

+β
(
g2
)
. (2.6)

Since g1,g2 ∈ K and K is closed under⊕, we get g1⊕ g2 ∈ K . Also, f1⊕ f2 ≤ g1⊕ g2. Hence
(2.6) gives

β∗
(
f1
)

+β∗
(
f2
)

+ ε > β
(
g1⊕ g2

)≥ β∗
(
f1⊕ f2

)
. (2.7)

Since ε is arbitrary, we obtain that β∗ is subadditive modulo 1. �
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Definitions 2.4. Let β1 and β2 be real-valued functions defined onK . Define (β1 +β2)( f )=
β1( f ) + β2( f ), f ∈ K , and (β1− β2)( f )= β1( f )− β2( f ), f ∈ K . Likewise, for β : K →R
and λ∈R, define (λβ)( f )= λβ( f ), f ∈ K .

Proposition 2.5. (i) If β1 and β2 are supermodular (submodular, resp.), then β1 + β2 is
supermodular (submodular, resp.).

If both β1 and β2 are modular, then so are β1 +β2 and β1−β2.
(ii) If β is supermodular (submodular, resp.) then λβ is supermodular (submodular,

resp.), where λ is a nonnegative real number.
(iii) If K is closed under addition, and β1,β2 are superadditive (subadditive, resp.), then

β1 +β2 is superadditive (subadditive, resp.). If both β1 and β2 are additive, then so are β1 +β2

and β1−β2.
(iv) If K is closed under addition, and β is superadditive (subadditive, resp.), then λβ is

superadditive (subadditive, resp.), where λ is a nonnegative real number.

Proof. We will prove only (i) and (iii).
(i) Let β1 and β2 be supermodular. Let f ,g ∈ K . Then,

(
β1 +β2

)
( f ) +

(
β1 +β2

)
(g)= β1( f ) +β2( f ) +β1(g) +β2(g)

≤ β1( f ∨ g) +β1( f ∧ g) +β2( f ∨ g) +β2( f ∧ g)

= (β1 +β2
)
( f ∨ g) +

(
β1 +β2

)
( f ∧ g).

(2.8)

If β1 and β2 are submodular, then, by similar arguments, β1 +β2 is submodular.
(iii) Let K be closed under addition. Let β1 and β2 be superadditive. Let f ,g ∈ K .

Then,

(
β1 +β2

)
( f ) +

(
β1 +β2

)
(g)= β1( f ) +β2( f ) +β1(g) +β2(g)

≤ β1( f + g) +β2( f + g)= (β1 +β2
)
( f + g).

(2.9)

�

3. Weakly tight functions

Definition 3.1. Let β : K → I with β(0)= 0. Then β is called tight (cotight, resp.) if

β
(
f2
)= β

(
f1
)

+β∗
(
f2− f1

)
, f1, f2 ∈ K , f1 ≤ f2,

(
β
(
f2
)= β

(
f1
)

+β∗
(
f2− f1

)
, f1, f2 ∈ K , f1 ≤ f2, resp.

)
.

(3.1)

If β is tight (or cotight), then β is modular and monotone. Furthermore, if β is tight
(cotight, resp.), then β∗ (β∗, resp.) is an extension of β. A detailed study of tight and
cotight functions is made in [7, 13].

Definition 3.2. Let β : K → R be a function with β(0) = 0. Then β is called weakly tight
if for every pair f1, f2 ∈ K with f1 ≤ f2 and for any ε > 0, there exists f ∈ K such that
f ≤ f2− f1 and

∣
∣β
(
f2
)−β

(
f1
)−β( f )

∣
∣ < ε. (3.2)



M. Khare and B. Singh 2995

Proposition 3.3. Let β : K → I be a function satisfying β(0) = 0. If β is tight, then β is
weakly tight.

Proof. Let f1, f2 ∈ K with f1 ≤ f2. Let ε > 0. Since β is tight, there exists f ∈ K with f ≤
f2− f1 such that

β∗
(
f2− f1

)− ε = β
(
f2
)−β

(
f1
)− ε < β( f ) (3.3)

or

β
(
f2
)−β

(
f1
)−β( f ) < ε. (3.4)

Since β is monotone and f ≤ f2− f1, we obtain

β( f )= β∗( f )≤ β∗
(
f2− f1

)= β
(
f2
)−β

(
f1
)
, (3.5)

and so

β
(
f2
)−β

(
f1
)−β( f )≥ 0. (3.6)

Thus, |β( f2)−β( f1)−β( f )| < ε. �

Proposition 3.4. LetK be closed under addition. Let β : K → I be superadditive, monotone,
and weakly tight. Then β is tight.

Proof. Let f1, f2 ∈ K with f1 ≤ f2. Let ε > 0. Since β is weakly tight, there exists f ∈ K
such that f ≤ f2− f1 and

∣
∣β
(
f2
)−β

(
f1
)−β( f )

∣
∣ < ε. (3.7)

Consequently,

β
(
f2
)−β

(
f1
)
< β( f ) + ε ≤ β∗

(
f2− f1

)
+ ε. (3.8)

Since ε is arbitrary, we get β( f2)−β( f1)≤ β∗( f2− f1).
Since, by Proposition 2.3(i), β∗ is superadditive, we get β( f2)= β∗( f2)≥ β∗( f2− f1) +

β∗( f1), which yields that β∗( f2− f1)≤ β∗( f2)−β∗( f1)= β( f2)−β( f1).
Thus β∗( f2− f1)= β( f2)−β( f1), that is, β is tight. �

4. A Jordan-decomposition-type theorem

In this section, β is a real-valued function defined on a sublattice K of IX containing 0
and 1. Also, it is assumed throughout this section that β is locally bounded, that is, for any
f in K , sup{β(g) : g ≤ f , g ∈ K} exists. For a locally bounded real-valued function β, the
definitions of lower and upper envelopes, β∗ and β∗, of β may be given in the same way.

Definition 4.1. For f ∈ K , define β+( f ) and β−( f ) as follows:

β+( f )= sup
{
β(g) : g ≤ f , g ∈ K

}
,

β−( f )=− inf
{
β(g) : g ≤ f , g ∈ K

}
.

(4.1)
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Remarks 4.2. (i) β+ = β∗ | K .
(ii) β− = (−β)+; β+ = (−β)−.

(iii) Both β+ and β− are nonnegative, monotone (and hence, locally bounded).
(iv) −β− ≤ β ≤ β+.

Theorem 4.3. Let β be a weakly tight real-valued function defined on K . Then β = β+−β−.

Proof. Let ε > 0. Let f ∈ K . Then there exists f1 ∈ K such that f1 ≤ f and

β+( f ) < β
(
f1
)

+
ε

2
. (4.2)

Since β is weakly tight, there exists f2 ∈ K such that f2 ≤ f − f1 and

∣
∣β( f )− (β( f1

)
+β
(
f2
))∣∣ <

ε

2
. (4.3)

This implies that

β
(
f1
)

+β
(
f2
)
< β( f ) +

ε

2
. (4.4)

Also, f2 ≤ f − f1 ≤ f yields that −β−( f ) ≤ β( f2). Hence, using (4.2) and (4.4), we get
β+( f )−β−( f ) < β( f1) + ε/2 +β( f2) < β( f ) + ε. Since ε is arbitrary, we get

β+−β− ≤ β. (4.5)

Replacing β in (4.5) by −β, we get

(−β)+− (−β)− ≤ −β, (4.6)

or

β− −β+ ≤−β, (4.7)

or

β+−β− ≥ β. (4.8)

Thus, β+−β− = β. �

Proposition 4.4. Let K be closed under addition. If β is additive, then both β+ and β− are
superadditive.

Proof. The proof follows from Proposition 2.3(i). �

Proposition 4.5. If β is modular, then both β+ and β− are supermodular.

Proof. The proof follows from Proposition 2.2(i). �

The results obtained in this section may be summarized as follows.
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Theorem 4.6 (Jordan-decomposition-type theorem). Let K be a sublattice of IX contain-
ing 0 and 1. If β : K →R is locally bounded and weakly tight, then β can be written as

β = β+−β−, (4.9)

where both β+ and β− are nonnegative and monotone (and hence, locally bounded) functions
defined on K . Furthermore, if β is modular (β is additive and K is closed under addition),
then the decomposed parts β+ and β− are supermodular (superadditive).

Definition 4.7. For a function β : K →R, define the total variation of β, written as |β|, by

|β| = β+ +β−. (4.10)

Theorem 4.8. Let β : K →R be a locally bounded function.
(i) If β is weakly tight, then β = 0⇔ |β| = 0.

(ii) For each f ∈ K , |β( f )| ≤ |β|( f ).
(iii) If β is modular, then |β| is supermodular.
(iv) Let K be closed under addition. Then β being additive implies that |β| is superaddi-

tive.

Proof. (i) If β = 0, then β+ = 0= β− and so |β| = 0. Conversely, if |β| = 0, then both β+

and β− vanish. Since β is weakly tight, by Theorem 4.3, β = β+−β−. Hence β = 0.
(ii) Let f ∈ K . Then by Remark 4.2(iv), β( f )≤ β+( f ), and −β( f )≤ β−( f ).

If β( f ) > 0, then

|β|( f )= β+( f ) +β−( f )≥ β( f )= ∣∣β( f )
∣
∣. (4.11)

If β( f ) < 0, then

∣
∣β( f )

∣
∣=−β( f )≤ β−( f )≤ |β|( f ). (4.12)

(iii) Follows from Proposition 4.5 and Proposition 2.5(i).
(iv) Follows from Proposition 4.4 and Proposition 2.5(iii). �

Remark 4.9. If we restrict ourselves to {0,1}-valued functions in K , then K may be viewed
as a sublattice of P(X). For a [0,∞]-valued function β defined on this restricted K over
P(X), the definitions of lower and upper envelopes, β∗ and β∗, reduce to the correspond-
ing definitions in classical theory given by Adamski [1]. In this manner, the present study
generalizes the theory in [1].
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