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The distributions of products and ratios of random variables are of interest in many areas
of the sciences. In this paper, the exact distributions of the product |XY | and the ratio
|X/Y | are derived when X and Y are independent Bessel function random variables. An
application of the results is provided by tabulating the associated percentage points.

1. Introduction

For given random variables X and Y , the distributions of the product |XY | and the ratio
|X/Y | are of interest in many areas of the sciences.

In traditional portfolio selection models, certain cases involve the product of random
variables. The best examples of these are in the case of investment in a number of dif-
ferent overseas markets. In portfolio diversification models (see, e.g., Grubel [6]), not
only are prices of shares in local markets uncertain, but also the exchange rates are un-
certain so that the value of the portfolio in domestic currency is related to a product of
random variables. Similarly in models of diversified production by multinationals (see,
e.g., Rugman [21]), there are local production uncertainty and exchange rate uncertainty
so that profits in home currency are again related to a product of random variables. An
entirely different example is drawn from the econometric literature. In making a forecast
from an estimated equation, Feldstein [4] pointed out that both the parameter and the
value of the exogenous variable in the forecast period could be considered as random
variables. Hence, the forecast was proportional to a product of random variables.

An important example of ratios of random variables is the stress-strength model in the
context of reliability. It describes the life of a component which has a random strength Y
and is subjected to random stress X . The component fails at the instant that the stress
applied to it exceeds the strength and the component will function satisfactorily when-
ever Y > X . Thus, Pr(X < Y) is a measure of component reliability. It has many applica-
tions especially in engineering concepts such as structures, deterioration of rocket mo-
tors, static fatigue of ceramic components, fatigue failure of aircraft structures, and the
aging of concrete pressure vessels.

The distributions of |XY | and |X/Y | have been studied by several authors especially
when X and Y are independent random variables and come from the same family. With

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:18 (2005) 2977–2989
DOI: 10.1155/IJMMS.2005.2977

http://dx.doi.org/10.1155/S0161171205501558


2978 On the product and ratio of Bessel random variables

respect to products of random variables, see Sakamoto [22] for uniform family, Harter
[7] and Wallgren [28] for Student’s t family, Springer and Thompson [24] for normal
family, Stuart [26] and Podolski [14] for gamma family, Steece [25], Bhargava and Khatri
[3], and Tang and Gupta [27] for beta family, Abu-Salih [1] for power function family,
and Malik and Trudel [11] for exponential family (see also Rathie and Rohrer [20] for a
comprehensive review of known results). With respect to ratios of random variables, see
Marsaglia [12] and Korhonen and Narula [9] for normal family, Press [15] for Student’s t
family, Basu and Lochner [2] for Weibull family, Shcolnick [23] for stable family, Hawkins
and Han [8] for noncentral chi-square family, Provost [16] for gamma family, and Pham-
Gia [13] for beta family.

In this paper, we study the exact distributions of |XY | and |X/Y | when X and Y are
independent Bessel function random variables with pdfs

fX(x)= |x|m√
π2mbm+1Γ(m+ 1/2)

Km

(∣∣∣∣xb
∣∣∣∣
)

, (1.1)

fY (y)= |y|n√
π2nβn+1Γ(n+ 1/2)

Kn

(∣∣∣∣ yβ
∣∣∣∣
)

, (1.2)

respectively, for −∞ < x <∞, −∞ < y <∞, b > 0, β > 0, m> 1, and n > 1, where

Kν(x)=
√
πxν

2νΓ(ν + 1/2)

∫∞
1

(
t2− 1

)ν−1/2
exp(−xt)dt (1.3)

is the modified Bessel function of the third kind. Tabulations of the associated percentage
points are also provided.

Bessel function distributions have found applications in a variety of areas that range
from image and speech recognition and ocean engineering to finance. They are rapidly
becoming distributions of first choice whenever “something” heavier than Gaussian tails
is observed in the data. Some examples are as follows (see Kotz et al. [10] for further
applications).

(1) In communication theory, X and Y could represent the random noises corre-
sponding to two different signals.

(2) In ocean engineering, X and Y could represent distributions of navigation errors.
(3) In finance, X and Y could represent distributions of log-returns of two different

commodities.
(4) In image and speech recognition, X and Y could represent “input” distributions.

In each of the examples above, it will be of interest to study the distribution of the ra-
tio |X/Y |. For example, in communication theory, |X/Y | could represent the relative
strength of the two different signals. In ocean engineering, |X/Y | could represent the rel-
ative safety of navigation. In finance, |X/Y | could represent the relative popularity of the
two different commodities. The distribution of the product |XY | is considered here for
completeness.
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The exact expressions for the distributions of the product and ratio are given in Sec-
tions 2 and 3 of the paper. The calculations involve the generalized hypergeometric func-
tion defined by

pFq
(
a1, . . . ,ap;b1, . . . ,bq;x

)= ∞∑
k=0

(
a1
)
k

(
a2
)
k ···

(
ap
)
k(

b1
)
k

(
b2
)
k ···

(
bq
)
k

xk

k!
, (1.4)

where (e)k = e(e + 1)···(e + k − 1) denotes the ascending factorial. We also need the
following important lemmas.

Lemma 1.1 (Prudnikov et al. [18, equation (2.16.33.5), Volume 2]). For b > 0 and
c > 0,

∫∞
0
xα−1Kµ

(
b

x

)
Kν(cx)dx

= 2α−2µ−3bµcµ−αΓ(−µ)Γ
(
α+ ν−µ

2

)
Γ
(
α− ν−µ

2

)

× 0F3

(
1 +µ,1 +

µ− ν−α

2
,1 +

ν +µ−α

2
;
b2c2

16

)

+ 2α+2µ−3b−µc−µ−αΓ(µ)Γ
(
α+ ν +µ

2

)
Γ
(
α− ν +µ

2

)

× 0F3

(
1−µ,1− α+µ+ ν

2
,1− α+µ− ν

2
;
b2c2

16

)

+ 2−α−2ν−3bα+νcνΓ(−ν)Γ
(
µ− ν−α

2

)
Γ
(
− µ+ ν +α

2

)

× 0F3

(
1 + ν,1 +

α+ ν−µ

2
,1 +

α+µ+ ν

2
;
b2c2

16

)

+ 22ν−α−3bα−νc−νΓ(ν)Γ
(
µ+ ν−α

2

)
Γ
(

ν−µ−α

2

)

× 0F3

(
1− ν,1 +

α−µ− ν

2
,1 +

α+µ− ν

2
;
b2c2

16

)
.

(1.5)

Lemma 1.2 (Gradshteyn and Ryzhik [5, equation (6.576.4)]). For a+ b > 0 and λ < 1−
µ− ν,

∫∞
0
x−λKµ(ax)Kν(bx)dx = 2−2−λa−ν+λ−1bν

Γ(1− λ)
Γ
(

1− λ+µ+ ν

2

)
Γ
(

1− λ−µ+ ν

2

)

×Γ
(

1− λ+µ− ν

2

)
Γ
(

1− λ−µ− ν

2

)

× 2F1

(
1− λ+µ+ ν

2
,
1− λ−µ+ ν

2
;1− λ;1− b2

a2

)
.

(1.6)
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Lemma 1.3 (Prudnikov et al. [19, equation (2.21.1.14), Volume 3]). For y > 0, β > 0,
α+β < 1 + a, and α+β < 1 + b,

∫∞
y
xα−1(x− y)β−1

2F1(a,b;c;1−wx)dx

=w−a yα+β−a−1 Γ(c)Γ(b− a)Γ(β)Γ(a−α−β+ 1)
Γ(b)Γ(c− a)Γ(a−α+ 1)

× 3F2

(
a,c− b,a−α−β+ 1;a−α+ 1,a− b+ 1;

1
wy

)

+w−b yα+β−b−1 Γ(c)Γ(a− b)Γ(β)Γ(b−α−β+ 1)
Γ(a)Γ(c− b)Γ(b−α+ 1)

× 3F2

(
b,c− a,b−α−β+ 1;b− a+ 1,b−α+ 1;

1
wy

)
.

(1.7)

Lemma 1.4 (Prudnikov et al. [19, equation (2.22.2.1), Volume 3]). For a > 0, α > 0,
β > 0, and p ≤ q+ 1,

∫ a

0
xα−1(a− x)β−1

pFq
(
a1, . . . ,ap;b1, . . . ,bq;wx

)
dx

= aα+β−1B(α,β)p+1Fq+1
(
a1, . . . ,ap,α;b1, . . . ,bq,α+β;aw

)
.

(1.8)

Further properties of the generalized hypergeometric function can be found in Prud-
nikov et al. [17, 18, 19] and Gradshteyn and Ryzhik [5].

2. Product

Theorem 2.1 derives explicit expressions for the distribution of |XY | in terms of the 0F3

and 1F4 hypergeometric functions.

Theorem 2.1. Suppose that X and Y are distributed according to (1.1) and (1.2), respec-
tively. The pdf and the cdf of Z = |XY | can be expressed as

fZ(z)= K
{

2n−3m−1b−mβn−2mΓ2(−m)Γ(n−m)z2mC1(z)− 2m+nbmβnCΓ(m)Γ(n)C2(z)

+ 2m−3n−1bm−2nβ−nΓ2(−n)Γ(m−n)z2nC3(z)
}

,

(2.1)

FZ(z)=K
{

2n−3m−1b−mβn−2mΓ2(−m)Γ(n−m)
z2m+1

2m+ 1
C4(z)− 2m+nbmβnCΓ(m)Γ(n)zC5(z)

+ 2m−3n−1bm−2nβ−nΓ2(−n)Γ(m−n)
z2n+1

2n+ 1
C6(z)

}
,

(2.2)
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where

C1(z)= 0F3

(
1 +m,1 +m−n,1 +m;

z2

16b2β2

)
,

C2(z)= 0F3

(
1−m,1−n,1;

z2

16b2β2

)
,

C3(z)= 0F3

(
1 +n,1 +n−m,1 +n;

z2

16b2β2

)
,

C4(z)= 1F4

(
1
2

+m;1 +m,1 +m−n,1 +m,
3
2

+m;
z2

16b2β2

)
,

C5(z)= 1F4

(
1
2

;1−m,1−n,1,
3
2

;
z2

16b2β2

)
,

C6(z)= 1F4

(
1
2

+n;1 +n,1 +n−m,1 +n,
3
2

+n;
z2

16b2β2

)
,

1
K
= π2m+nbm+1βn+1Γ

(
m+

1
2

)
Γ
(
n+

1
2

)
,

(2.3)

and C denotes Euler’s constant.

Proof. The pdf of |XY | can be expressed as

fZ(z)= 4
∫∞

0

1
y
fX

(
z

y

)
fY (y)dy

= 4
∫∞

0

1
y

|z/y|m√
π2mbm+1Γ(m+ 1/2)

Km

(∣∣∣∣ z

by

∣∣∣∣
) |y|n√

π2nβn+1Γ(n+ 1/2)
Kn

(∣∣∣∣ yβ
∣∣∣∣
)
dy

= zmI(m,n)
π2m+n−2bm+1βn+1Γ(m+ 1/2)Γ(n+ 1/2)

,

(2.4)

where I(m,n) denotes the integral

I(m,n)=
∫∞

0
yn−m−1Km

(
z

by

)
Kn

(
y

β

)
dy. (2.5)

The result in (2.1) follows by direct application of Lemma 1.1 to calculate I(m,n). The
cdf of Z can be expressed as

FZ(z)= K
{

2n−3m−1b−mβn−2mΓ2(−m)Γ(n−m)
∫ z

0
w2mC1(w)dw

− 2m+nbmβnCΓ(m)Γ(n)
∫ z

0
C2(w)dw

+ 2m−3n−1bm−2nβ−nΓ2(−n)Γ(m−n)
∫ z

0
w2nC3(w)dw

}
.

(2.6)

The result in (2.2) follows by applying Lemma 1.4 to calculate the three integrals in (2.6).
�



2982 On the product and ratio of Bessel random variables

0 1 2 3 4 5

z

n = 2
n = 3

n = 5
n = 10

0

0.1

p
d

f

0.2

(a)

0 1 2 3 4 5

z

n = 2
n = 3

n = 5
n = 10

0

0.1

p
d

f

0.2

(b)

0 1 2 3 4 5

z

n = 2
n = 3

n = 5
n = 10

0

0.1

p
d

f

0.2

(c)

0 1 2 3 4 5

z

n = 2
n = 3

n = 5
n = 10

0

0.1

p
d

f

0.2

(d)

Figure 2.1. Plots of the pdf (2.1) for b= 1, β = 1, and (a) m= 2; (b) m= 3; (c) m= 5; and (d) m= 10.

Figure 2.1 illustrates possible shapes of the pdf (2.1) for selected values of m and n. The
four curves in each plot correspond to selected values of n. The effect of the parameters
is evident.

3. Ratio

Theorem 3.1 derives explicit expressions for the distribution of |X/Y | in terms of the 2F1

and 3F2 hypergeometric functions.
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Theorem 3.1. Suppose that X and Y are distributed according to (1.1) and (1.2), respec-
tively. The pdf and the cdf of Z = |X/Y | can be expressed as

fZ(z)= 2L(β/b)−2n−1

m+n+ 1
z−2n−2D1(z), (3.1)

FZ(z)= 2LΓ(m+n+ 1)
{

Γ(−m)D2(z)
(2m+ 1)Γ(n+ 1)

+
βzD3(z)

mbΓ(m+n+ 1)

}
, (3.2)

where

D1(z)= 2F1

(
m+n+ 1,n+ 1;m+n+ 2;1− b2

β2z2

)
,

D2(z)= 2F1

(
m+n+ 1,m+

1
2

;m+
3
2

;
β2z2

b2

)
,

D3(z)= 3F2

(
n+ 1,1,

1
2

;1−m,
3
2

;
β2z2

b2

)
,

L= Γ(m+ 1)Γ(n+ 1)
πΓ(m+ 1/2)Γ(n+ 1/2)

.

(3.3)

Proof. The pdf of Z = |X/Y | can be expressed as

fZ(z)= 4
∫∞

0
y fX(yz) fY (y)dy

= 4
∫∞

0
y

(yz)m√
π2mΓ(m+ 1/2)

Km(yz)
yn√

π2nΓ(n+ 1/2)
Kn(y)dy

= zmI(m,n)
π2m+n−2Γ(m+ 1/2)Γ(n+ 1/2)

,

(3.4)

where I(m,n) denotes the integral

I(m,n)=
∫∞

0
ym+n+1Km(yz)Kn(y)dy. (3.5)

The result in (3.1) follows by direct application of Lemma 1.2 to calculate I(m,n). The
cdf of Z can be expressed as

FZ(z)= 2L(β/b)−2n−1

m+n+ 1

∫ z

0
w−2n−2D1(w)dw

= L

m+n+ 1

∫∞
b2/(βz)2

xn−1/2
2 F1(m+n+ 1,n+ 1;m+n+ 2;1− x)dx,

(3.6)

which follows by setting x = (βw/b)−2. The result in (3.2) follows by applying Lemma 1.3
to calculate the integral in (3.6). �
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Using special properties of the 2F1 hypergeometric function, one can derive other
equivalent forms and elementary forms for the pdf of Z = |X/Y |. This is illustrated in
the corollaries below.

Corollary 3.2. The pdf given by (3.1) can be expressed in the equivalent forms

fZ(z)= 2β(βz/b)2mΓ(m+ 1)Γ(n+ 1)
bπ(m+n+ 1)Γ(m+ 1/2)Γ(n+ 1/2) 2F1

(
m+n+ 1,m+ 1;m+n+ 2;1− β2z2

b2

)
,

fZ(z)= 2βΓ(m+ 1)Γ(n+ 1)
bπ(m+n+ 1)Γ(m+ 1/2)Γ(n+ 1/2) 2F1

(
n+ 1,1;m+n+ 2;1− β2z2

b2

)
,

fZ(z)= 2β(βz/b)−2Γ(m+ 1)Γ(n+ 1)
bπ(m+n+ 1)Γ(m+ 1/2)Γ(n+ 1/2) 2F1

(
1,m+ 1;m+n+ 2;1− b2

β2z2

)
.

(3.7)

Corollary 3.3. If m≥ 2 and n≥ 2 are integers, then (3.1) can be reduced to the elementary
form

fZ(z)= 2βΓ(m+ 1)Γ(m+n+ 1)
bπ
(
β2z2/b2− 1

)
Γ(m+ 1/2)Γ(n+ 1/2)

×
[ n∑

k=1

(n− k)!
(
1−β2z2/b2

)1−k

(m+n+ 1− k)!
+

(
1−β2z2/b2

)1−n

m!β2z2/b2

×
{
− 2
(

1− b2

β2z2

)−m−1

log
(
βz

b

)
+

m∑
k=1

(
1− b2/

(
β2z2

))−k
m+ 1− k

}]
.

(3.8)

Corollary 3.4. If m− 1/2≥ 1 and n− 1/2≥ 1 are integers, then (3.1) can be reduced to
the elementary form

fZ(z)= 2b
(
1−β2z2/b2

)−m−n−1
Γ(m+ 1)Γ(n+ 1)

βz2π(m+n+ 1)(−m− 1)m+n+2Γ(m+ 1/2)Γ(n+ 1/2)

×
[
Γ(−m)

(
βz

b

)2m+2

+
m+n+1∑
k=1

(−m− 1)k(−1)k
(

1− b2

β2z2

)k−1

(βz/b)2k

]
.

(3.9)

4. Percentiles

Figure 4.1 illustrates possible shapes of the pdf (3.1) for selected values of m and n. The
four curves in each plot correspond to selected values of n. The effect of the parameters
is evident.

In this section, we provide tabulations of percentage points associated with the de-
rived distributions of |XY | and |X/Y |. These values are obtained by numerically solving
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Figure 4.1. Plots of the pdf (3.1) for b = 1, β = 1, and (a) m= 1.5; (b) m= 2.5; (c) m= 4.5; and (d)
m= 9.5.

the equations

K

{
2n−3m−1b−mβn−2mΓ2(−m)Γ(n−m)

z2m+1
p

2m+ 1
C4
(
zp
)− 2m+nbmβnCΓ(m)Γ(n)zpC5

(
zp
)

+ 2m−3n−1bm−2nβ−nΓ2(−n)Γ(m−n)
z2n+1
p

2n+ 1
C6
(
zp
)}= p,

2LΓ(m+n+ 1)
{

Γ(−m)D2
(
zp
)

(2m+ 1)Γ(n+ 1)
+

βzpD3
(
zp
)

mbΓ(m+n+ 1)

}
= p.

(4.1)
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Table 4.1. Percentage points zp of Z = |XY |.

m n p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 0.95 p = 0.99

2 2 0.02903867 0.0609406 0.1328627 0.3470357 0.6927036 2.098452

2 3 0.07362923 0.1376486 0.2682605 0.6146536 1.130666 3.038813

2 4 0.1100132 0.1998708 0.3777723 0.827011 1.465626 3.755526

2 5 0.1408100 0.2514674 0.4678341 1.000369 1.752475 4.380899

2 6 0.1673438 0.2968515 0.5449642 1.151051 1.991074 4.848271

2 7 0.1906657 0.3359331 0.6139745 1.284624 2.218128 5.323573

2 8 0.2125461 0.372798 0.6770319 1.415690 2.416419 5.745124

2 9 0.2300810 0.4031021 0.7305227 1.517905 2.591786 6.145533

3 3 0.1744381 0.2938927 0.5183827 1.057357 1.798354 4.335123

3 4 0.2572388 0.4184127 0.711219 1.388183 2.282625 5.225012

3 5 0.3263338 0.5227913 0.870987 1.660568 2.691937 6.044048

3 6 0.3860577 0.6124857 1.011584 1.908407 3.049341 6.677126

3 7 0.4394194 0.6929521 1.137077 2.125184 3.382392 7.385786

3 8 0.4865918 0.7648362 1.249936 2.318062 3.661295 7.867155

3 9 0.5306344 0.8335735 1.356932 2.498872 3.923604 8.372842

4 4 0.3773593 0.593275 0.972541 1.816783 2.900670 6.372728

4 5 0.4760256 0.7359029 1.184584 2.162823 3.404096 7.3069

4 6 0.5626443 0.8623236 1.371957 2.474747 3.845828 8.08524

4 7 0.638364 0.9744115 1.541777 2.752022 4.246468 8.858037

4 8 0.7085111 1.076598 1.696747 3.004645 4.632417 9.46566

4 9 0.7702856 1.166607 1.830414 3.240364 4.958135 10.19733

5 5 0.6033154 0.9178398 1.450584 2.584631 3.999764 8.318145

5 6 0.7075169 1.066605 1.668016 2.942446 4.50238 9.176312

5 7 0.8076738 1.211170 1.883969 3.282990 4.993118 10.06218

5 8 0.89244 1.334572 2.062933 3.568706 5.40753 10.82776

5 9 0.974915 1.449774 2.230274 3.847315 5.804434 11.49615

6 6 0.8362517 1.250325 1.934166 3.357292 5.101803 10.24216

6 7 0.9532409 1.417497 2.175916 3.744367 5.625393 11.18685

6 8 1.053948 1.559225 2.37994 4.067588 6.09969 11.93585

6 9 1.151888 1.695543 2.583201 4.397424 6.553556 12.80644

7 7 1.083447 1.595423 2.431431 4.140509 6.192786 12.20569

7 8 1.198694 1.763451 2.676427 4.537504 6.72858 13.04854

7 9 1.308068 1.918944 2.897775 4.865201 7.179527 13.83574

8 8 1.331007 1.948211 2.941492 4.955321 7.298417 14.03725

8 9 1.450212 2.113748 3.176776 5.310468 7.810788 14.88969

9 9 1.588348 2.305376 3.451306 5.742988 8.420277 15.94564

Evidently, this involves computation of the generalized hypergeometric function and rou-
tines for this are widely available. We used the function hypergeom (·) in the algebraic
manipulation package Maple. Tables 4.1 and 4.2 provide the numerical values of zp for
b = 1, β = 1, m= 2,3, . . . ,9, and n=m,m+ 1, . . . ,9.
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Table 4.2. Percentage points zp of Z = |X/Y |.

m n p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 0.95 p = 0.99

2 2 2.002938 4.334821 11.41224 52.30151 220.7189 5685.296

2 3 0.7445086 1.382358 2.855702 8.214106 21.04093 152.4738

2 4 0.4889538 0.876642 1.710587 4.384554 10.02126 57.84656

2 5 0.3832577 0.6767803 1.286959 3.169977 6.946125 37.36734

2 6 0.3251244 0.5683113 1.068319 2.560906 5.525674 29.00740

2 7 0.2832587 0.4941505 0.9234088 2.196231 4.668944 24.53751

2 8 0.2562869 0.4435011 0.8235854 1.936850 4.135955 21.08758

2 9 0.2353905 0.4071502 0.7504027 1.757447 3.712460 19.04998

3 3 1.647264 2.842614 5.538683 15.08887 37.62435 261.1618

3 4 1.085868 1.791815 3.255642 7.909027 17.61894 98.1088

3 5 0.840817 1.359837 2.407853 5.574137 11.89116 62.47279

3 6 0.7106484 1.133092 1.975254 4.480779 9.4219 49.00014

3 7 0.6216468 0.988768 1.716620 3.826405 7.905925 40.11744

3 8 0.558414 0.8840209 1.517433 3.359672 6.96206 35.21301

3 9 0.5107641 0.8041508 1.376936 3.048617 6.29827 31.90878

4 4 1.547561 2.487375 4.429231 10.55419 23.34162 127.9502

4 5 1.207760 1.900782 3.296398 7.461444 15.79163 83.15728

4 6 1.011248 1.572540 2.678426 5.945279 12.30920 62.89049

4 7 0.8819533 1.364001 2.300262 5.037816 10.45939 53.42483

4 8 0.7944737 1.222424 2.058176 4.470943 9.197412 47.1173

4 9 0.7268028 1.114706 1.866525 4.036168 8.295475 41.95984

5 5 1.499379 2.331841 4.011059 9.034731 19.02830 98.64185

5 6 1.257534 1.935343 3.264778 7.174943 14.79680 76.47803

5 7 1.099045 1.675479 2.801810 6.083041 12.60114 64.14368

5 8 0.990024 1.500218 2.49008 5.374516 11.01383 55.72903

5 9 0.906855 1.371630 2.272028 4.863465 9.93863 50.23113

6 6 1.478265 2.256043 3.782804 8.285063 17.11076 86.97477

6 7 1.28456 1.946632 3.230527 6.954553 14.26699 71.09335

6 8 1.155091 1.741973 2.867585 6.141117 12.57803 62.58595

6 9 1.056264 1.581389 2.598716 5.538108 11.25649 56.78169

7 7 1.459679 2.198993 3.639314 7.815963 15.95768 80.75053

7 8 1.30774 1.956784 3.220993 6.878688 14.07413 71.43641

7 9 1.194723 1.785849 2.932324 6.231386 12.70544 63.87592

8 8 1.441835 2.152747 3.525486 7.523065 15.35245 76.5615

8 9 1.320652 1.960763 3.198957 6.790555 13.74266 69.96122

9 9 1.433036 2.127872 3.470807 7.34273 14.87503 74.51613

We hope these numbers will be of use to the practitioners mentioned in Section 1.
Similar tabulations could be easily derived for other values of p, m, n, b, and β by using
the hypergeom (·) function in Maple.
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Besides being of practical interest, the above tables can be used to check the accuracy
of the results derived in Sections 2 and 3. We estimated the relevant percentage points by
simulating samples of size 108 from the two Bessel function distributions. The estimates
were consistent with the tabulated values up to the third decimal place.
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