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For a regular biordered set E, the notion of E-diagram and the associated regular semi-
group was introduced in our previous paper (1995). Given a regular biordered set E, an
E-diagram in a category C is a collection of objects, indexed by the elements of E and
morphisms of C satisfying certain compatibility conditions. With such an E-diagram A
we associate a regular semigroup RegE(A) having E as its biordered set of idempotents.
This regular semigroup is analogous to automorphism group of a group. This paper pro-
vides an application of RegE(A) to the idempotent-separating extensions of regular semi-
groups. We introduced the concept of crossed pair and used it to describe all extensions
of a regular semigroup S by a group E-diagram A. In this paper, the necessary and suf-
ficient condition for the existence of an extension of S by A is provided. Also we study
cohomology and obstruction theories and find a relationship with extension theory for
regular semigroups.

1. Introduction

If π : T → S is an idempotent-separating surjective homomorphism of regular semi-
groups, then the kernel of π defines a group E(S)-diagram A : C(E(S))→ GR that fac-
tors through D(B(E(S))) and π induces an idempotent-separating homomorphism Ψ :
S→ (RegE(S)(A))/ InnE(S)(A) ((T ,π) is called an extension of S by the group E(S)-diagram
A with abstract kernel Ψ). In this paper, we discuss the following extension problem for
regular semigroups.

Given Ψ : S→ (RegE(S)(A))/ InnE(S)(A), find all extensions of S by A with abstract kernel
Ψ. Of course, given Ψ, is it possible that no extension of S by A with abstract kernel Ψ can
exist. In this connection, an obstruction theory is developed for finding extensions of S by
A which induce the given Ψ.

In Section 1, we introduce the concept of a crossed pair and use it to describe all ex-
tensions of S by a group E(S)-diagram A. In Section 2, we associate with each Ψ : S→
RegE(S)(A)/ InnE(S)(A) a three-dimensional cohomology class in the Leech cohomology
of SI . We show in Theorem 3.6 that the vanishing of this cohomology class is necessary
and sufficient condition for the existence of an extension of S by A with abstract kernel Ψ.
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We further show that if Ψ has an extension, then the set of all equivalence classes of ex-
tensions of S by A with abstract kernel Ψ is in bijective correspondence with the set of all
elements of certain second cohomology group.

Before proceeding further, let us recall some known definitions and results.
For any regular semigroup S, we denote by E(S) the set of idempotents of S and by

V(x) the set of inverses of an element x ∈ S. Thus V(x)= {x′ ∈ S : xx′x = x, x′xx′ = x′}.
A pair of elements (x,x′) such that x′ ∈V(x) is called a regular pair in S.

A homomorphism θ : T → S of regular semigroups is called idempotent-separating if θ
is one-to-one on the idempotents of T . A congruence ρ is called idempotent-separating if
the associated projection homomorphism is idempotent-separating. Let ρ be an idempo-
tent-separating congruence on S. Then ρ ⊆H. For each e ∈ E(S), let Ke = ρ(e)= {x ∈ S :
xρe}. Then Ke is a subgroup of the maximal subgroup He of S. The family K= {Ke : e ∈
E(S)}, where (KS)e = {a∈He : a f = f a for each idempotent f ≤ e}.
Definition 1.1 [7]. Let S be a regular semigroup. For each e ∈ E(S), let Ke be a subgroup
of He. Then K= {Ke : e ∈ E(S)} is called a group kernel normal system of S if it satisfies

(i) a f = f a for all a∈Ke and for all f ∈ E(S) such that f ≤ e,
(ii) x′Kxx′x ⊆Kx′x for each regular pair (x,x′) of S.

Proposition 1.2 [3]. Let S be a regular semigroup. Let K = {Ke : e ∈ E(S)} be a group
kernel normal system of S. Define

ρK =
{

(x, y)∈ S× S : for some x′ ∈V(x) and y′ ∈V(y),

xx′ = yy′, x′x = y′y, and y′x ∈Kx′x
}
.

(1.1)

Then ρK is an idempotent-separating congruence on S whose kernel is the group kernel nor-
mal system K of S. Conversely, if ρ is an idempotent-separating congruence on S, then the
kernel K of ρ is a group kernel normal system of S and ρK = ρ.

Let us recall some results from [10, 13].
Let E be a regular biordered set. We write ωr = {(e, f ) : f e = e}, ωl = {(e, f ) : e f = e}

and R= ωr ∩ (ωr)−1, L= ωl ∩ (ωl)−1, ω = ωr ∩ωl.

Definition 1.3. Let E be a regular biordered set and G(E) the ordered groupoid of E-chains
of E [13]. The category C(E) has objects as the elements of E and a morphism from e to
f is a pair (e,c), where c = c(e0, . . . ,en)∈G(E) such that e ≥ e0 and en = f .

If (e,c) : e→ f , ( f ,c′) : f → g are two morphisms, with c = c(e0, . . . ,en), c′ = c( f0, . . . ,
fm), then the composite is given by (e,c)( f ,c′) = (e, (c∗ f0)c′), where (c∗ f0)c′ is the
composite of (c ∗ f0) and c′ in G(E). The identity morphism at e is (e,c(e)) and the
associativity of the composition follows from the transitivity property of the ordered
groupoid G(E) [13, Proposition 3.3].

Throughout this paper, S will denote a regular semigroup with biordered set of idem-
potents E = E(S). B(E) the universal regular idempotent generated semigroup on E [13].
C(S) denotes the category with the set of idempotents E(S) as its objects and morphism
from an object e to an object f is a triple (e,x,x′) : e→ f , where (x,x′) is a regular pair



A. Tamilarasi 2947

such that e ≥ xx′ and x′x = f . Composition of morphisms is defined by (e,x,x′)(x′x, y,
y′)= (e,xy, y′x′). Define an equivalence relation∼ on the morphisms of C(S) as follows:
if (e,x,x′), (e, y, y′) : e→ f are two morphisms, then (e,x,x′) ∼ (e, y, y′) if and only if
there exist idempotents e0,e1, . . . ,en ∈ ω(e) with (ei−1,ei) ∈ R∪ L, i = 1 to n, such that
e0 = xx′, en = yy′, and (y, y′)= (enen−1 ···e0x,x′e0e1 ···en). Then D(S)= C(S)/ ∼ is the
quotient category of C(S). If we view the underlying groupoid of the inductive groupoid
G(S) of S as a subcategory of C(S) via the embedding (x,x′)→ (xx′,x,x′), then the evalua-
tion map εS : c(e0,e1, . . . ,en)→ (e0e1 ···en,enen−1 ···e0) : G(E)→G(S) extends to a func-
tor εS : C(E)→ C(S) such that εS(e,c)→ (e,εS(c)) for every morphism (e,c) of C(E). In
particular, by taking S= B(E) we obtain a functor εB(E) : C(E)→ C(B(E)). By [13, Theo-
rem 6.9], the inclusion E ⊆ S extends uniquely to an idempotent-separating homomor-
phism δ : B(E)→ S. If C(δ) : (e,x,x′)→ (e,xδ,x′δ) : C(B(E))→ C(S) is the induced func-
tor, then C(δ)εB(E) = εS.

If θ : S→ S′ is a homomorphism of regular semigroups, then the maps e→ eθ; [e,x,
x′] → [eθ,xθ,x′θ] define a functor D(θ) : D(S) → D(S′). Let E be a biordered set. For
each e ∈ E, the inclusion ω(e)⊆ E induces a functor D(B(ω(e)))→D(B(E)). Let [e,x,x′],
[e, y, y′] : e→ f be two morphisms of D(B(E)), then

[e,x,x′]= [e, y, y′] if x = y or x′ = y′. (1.2)

Lemma 1.4. Let [e,x,x′] : e→ g be any morphism of D(B(ω(e))) with domain e. Then [e,x,
x′]= [e,g,g] in D(B(ω(e))) and hence in D(B(E)).

Let S be a regular semigroup. Let ρS be the maximum idempotent-separating congru-
ence on S. Then the kernel KS of ρS defines a group-valued functor KS : C(S)→GR, where
GR denotes the category of groups, which associates to each object e of C(S) the group
(KS)e and to each morphism (e,x,x′) : e → f the group homomorphism KS(e,x,x′) :
(KS)e → (KS)e given by (a)KS(e,x,x′)= x′ax.

Proposition 1.5. If ρ is an idempotent-separating congruence on S, then Kρ : C(S)→GR
defined by Kρ(e)= ρ(e); Kρ(e,x,x′)= KS(e,x,x′)/Kρ(e) is a subfunctor of KS. Conversely,
if K′ : C(S)→GR is a subfunctor of KS, then K′ = {K′

e : e ∈ E(S)} is a group kernel normal
system of S and defines, by (1.1), an idempotent-separating congruence ρK ′ on S. Further
ρ→ Kρ defines a bijective correspondence between the idempotent-separating congruences
on S and the subfunctors of KS.

Let π : T → S be an idempotent-separating homomorphism from T onto S. Then
Kππ−1 : C(T)→ GR factors through D(T). That is, there is a functor Kerπ : D(T)→ GR
such that the diagram

C(T)
Kππ−1

GR

D(T)

Kerπ
(1.3)

is commutative. Thus (Kerπ)e = {a∈ T : aπ = eπ}, e ∈ E(T), and aKerπ(e,x,x′)= x′ax,
a∈ (Kerπ)e.
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Lemma 1.6 [9, Lemma 4.1]. Let π : T → S be an idempotent-separating onto homomor-
phism of regular semigroups. If tπ = uπ = x, t,u ∈ T , x ∈ S, then for each e ∈ E(S)∩ Lx,
there exists a unique element a∈ T such that u= ta and aπ = e.

Definition 1.7. Let GR be the category of groups. By an E-diagram in GR we mean a
functor A : C(E) → GR which factors through C(B(E)). In other words, a functor A :
C(E)→GR is an E-diagram in GR if there is a (necessarily unique) functor Â : C(B(E))→
GR such that A= ÂεB(E).

Observe that if A is an E-diagram in GR, then for any two morphisms (e,c), (e,c′) :
e→ f in C(E), A(e,c)= A(e,c′) whenever εB(E)(c)= εB(E)(c′).

Let A be a contravariant E-diagram in GR. Then there exists a contravariant functor
Â : C(B(E))→GR such that A= ÂεB(E). For each e ∈ E, let Ae denote the composite

Ae : C
(
ω(e)

) ie−−→ C(E)
A−−→GR. (1.4)

Define G(A) to be the category whose objects are the elements of E. A morphism e→ f
is a pair of (α,φ) consisting of an ω-isomorphism α : ω(e)→ ω( f ) and a natural isomor-
phism φ : Ae → A f C(α), where C(α) : C(ω(e))→ C(ω( f )) is the functor defined by the
ω-isomorphism α, and A f C(α) is the composite

C
(
ω(e)

) C(α)−−−→ C
(
ω( f )

) A f−−→GR. (1.5)

Note that the natural isomorphism φ assigns to each object h in C(ω(e)) an isomor-
phism φh : Ah→ A(h)α such that, for any morphism (h,c) : h→ k in C(ω(e)), the following
diagram commutes:

Ah
φh

A(h)α

Ak

A(h,c)

φk
A(k)α

A(hα,cα) (1.6)

The composite of two morphisms (α,φ) : e→ f , (β,Ψ) : f → g is given by (α,φ)(β,Ψ) =
(αβ,φ(C(α)Ψ)), where αβ is the composite ω(e)

α−→ ω( f )
β−→ ω(g) and the natural iso-

morphism φ(C(α)Ψ) : Ae → AgC(αβ) is defined by

(
φ
(
C(α)Ψ

))
h = φh ◦Ψ(h)α : Ah −→ A(h)αβ (1.7)

for all h ∈ ω(e). For each object e, (1e,1e) : e→ e, where 1e : ω(e)→ ω(e) is the identity
ω-isomorphism and 1e : Ae → Ae is the identity isomorphism, is the identity morphism
of e. For an E-chain c = c(e0,e1, . . . ,en)∈G(E), define ε : G(E)→G(A) by ε(c)= (αc,φc),
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where αc : ω(e0)→ ω(en) and φc : Ae0 → AenC(αc) are such that

(h)αc = (h)τE(c)= τ
(
e0,e1

)
τ
(
e1,e2

)···τ(en−1,en
)
, (1.8)

τE : G(E) → T∗(E) is the evaluation map of the inductive groupoid T∗(E) of ω-
isomorphism of E, and φh

c = A(h,h∗ c)−1 : Ah → A(h)α
c for every h ∈ ω(e0). By [10], it

follows that (G(A),ε) is an inductive groupoid.
Let A : C(E)→GR be an E-diagram in GR. Let RegE(A) be the quotient of G(A) by the

equivalence relation ρ, where for any two morphisms (α,φ) : e→ f , (β,Ψ) : f →g in G(A),

(α,φ)ρ(β,Ψ)⇐⇒ eRg, f Lh,ε
(
c(e,g)

)
(β,Ψ)= (α,φ)ε

(
c( f ,h)

)
. (1.9)

Also if [α,φ], [β,Ψ] are the elements of RegE(A) with representatives (α,φ) : e→ f ,
(β,Ψ) : f → g, then as in [13]

[α,φ][β,Ψ]= [(α,φ)◦1 (β,Ψ)
]= [((α,φ)∗ f l

)(
αc,φc

)(
lg ∗ (β,Ψ)

)]
, (1.10)

where l ∈ S( f ,g), the sandwich set of f and g, and c = c( f l, l, lg). Also note that
E(RegE(A))= [1e,1e].

Lemma 1.8. Let ([x],[y]) be a regular pair in S such that [x][y]= [1e] and [y][x]= [1 f ].
Then there exists z : e→ f in the inductive groupoid G such that [z]= [x] and [z−1]= [y].

2. Idempotent-separating extensions of regular semigroups

Consider a regular semigroup T and an idempotent-separating homomorphism π : T →
S of T onto S. Let Kerπ : D(T)→ GR be the group-valued functor defined by the kernel
of π. The inverse i= (π/E(T))−1 : E→ E(T) of the biorder isomorphism π/E(T) : E(T)→
E(S)= E extends to an idempotent-separating homomorphism ı̂ : B(E)→ T by [13, The-
orem 6.9] and hence induces a functor D(ı̂) : D(B(E))→ D(T). If π1 : C(E)→ D(B(E))
denotes the functor

(
e,c
(
e0, . . . ,en

))−→ [e,e0e1 ···en,enen−1 ···e0
]
, (2.1)

then the composite

Aπ = KerπD(ı̂)π1 : C(E)−→GR (2.2)

is a group E-diagram which factors through D(B(E)). Thus Ae
π = {t ∈ T : tπ = e} for

each object e of C(E) and

Aπ
(
e,c
(
eo, . . . ,en

))= Kerπ
[
ei,
(
eoi
)···(eni

)
,
(
eni
)···(eoi

)]
: Ae −→ A f (2.3)

for each morphism (e,c(eo, . . . ,en)) : e→ f of C(E). This observation motivates the fol-
lowing.
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Definition 2.1. Let A : C(E)→GR be a (covariant) group E-diagram that factors through
D(B(E)). An extension of the regular semigroup S by the group E-diagram A is a triple εT =
(T ,π,U) consisting of a regular semigroup T , an idempotent-separating homorphism
π : T → S of T onto S, and a natural isomorphism of functors U : A→ Aπ .

Remark 2.2. Let e ∈ E and let Ae be the composite C(ω(e))
ie−→ C(E)

A−→ GR. For each
x ∈ Ae, we define a natural isomorphism ηx : Ae → Ae as follows. Given h ∈ ω(e), let
xh = (x)A(e,h)∈ Ah, and let ηhx : Ah→ Ah; (a)ηhx = xh−1axh be the inner automorphism
defined by xh. If m= (h,c(h0,h1, . . . ,hn)) : h→ k is a morphism of C(ω(e)), then

xhA(m)= (x)A(e,h)A(m)= (x)A
(
(e,h)m

)= (x)A(e,k)= xk (2.4)

and therefore the diagram

Ah
ηh

x

A(m)

Ah,

A(m)

Ak
ηk

x

Ak

(2.5)

is commutative. Thus the map h→ ηhx, h ∈ ω(e), defines a natural isomorphism ηx :
Ae → Ae. If RegE(A) is the regular semigroups of partial isomorphisms of the E-diagram
A, then [1e,ηx] ∈ RegE(A), where 1e : ω(e)→ ω(e) is the identity isomorphism. Clearly
ηxηy = ηxy for all x, y ∈ Ae and hence the map

η : x→ [1e,ηx
]

: Ae −→ RegE(A) (2.6)

is a homomorphism. Denote the image of Ae under η by Inn(A)e. Then Inn(A)e is a
subgroup of the maximal group H[1e ,1e] of RegE(A). We write

InnE(A)= {InnE(A)
}
e∈E. (2.7)

Proposition 2.3. InnE(A) is a group kernel normal system in RegE(A).

Proof. Let x ∈ Ae and h ∈ ω(e). Then [1e,ηx][1h,1h] = [1h,ηxh] = [1h,1h][1e,ηx]. Next,
let (s,s′) be a regular pair in RegE(A) such that ss′ = [1e,1e] and s′s = [1 f ,1 f ]. Using
Lemma 1.8, choose a morphism (α,φ) : e→ f in G(A) such that [α,φ]= s, [α−1,φ−1]= s′.
Then, for any x ∈ Ae, we have s′(x)ηs= [α−1,φ−1][1e,ηx][α,φ]= [1 f ,η(x)φ

e]= ((x)φe)η∈
Inn(A) f . Hence, by Definition 1.1, InnE(A) is a group kernel normal system in RegE(A).

�

Let RegE(A)/ InnE(A) be the quotient of RegE (A) by the idempotent-separating con-
gruence determined by InnE (A) (see Proposition 1.2) and let

t : RegE(A)−→ RegE(A)/ InnE(A) (2.8)

be the associated projection homomorphism.
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We next define the centre of the E-diagram A. For any e ∈ E, let

Z(A)e = Ker
{
η : Ae −→ RegE(A)

}= {a∈ Ae : (a)η= [1e,1e
]}

= {a∈ Ae : (a)A(e,h)= ah ∈ Z
(

Ah
)

for every h∈ ω(e)
}
.

(2.9)

Evidently Z(A)e is an abelian normal subgroup of Ae. If (e,c = c(e0, . . . ,en)) : e→ f is a
morphism in C(E), then (Z(A)e)A(e,c)⊆ Z(A) f . For, if a∈ Z(A)e, then for any element
h ∈ ω( f ), letting c′ = c∗ h = c(h0,h1, . . . ,hn), we have (a)A(e,c)A( f ,h) = (a)A((e,c)( f ,
h))=(a)A(e,c∗h)=(a)A(e,c′)=(a)A(e,h0)A(h0,c′)∈ Z(A)h, since (a)A(e,h0)∈ Z(A)h0

and A(h0,c′) : Ah0 → Ah is an isomorphism of groups. Therefore, the maps

e −→ Z(A)e; (e,c)−→ A(e,c) | Z(A)e : Z(A)e −→ Z(A) f (2.10)

define a functor Z(A) : C(E)→GR, which is a subfunctor of A : C(E)→GR. Since Z(A)e’s
are abelian groups, we may also view Z(A) as a functor from C(E) to Ab, the category of
abelian groups.

Definition 2.4. The functor Z(A) : C(E)→ Ab is called the centre of A.

Proposition 2.5. The sequence

1−→ Z(A)
i−−→ A

η−→ RegE(A)
t−→ RegE(A)/ InnE(A)−→ 1 (2.11)

is exact in the sense that t is an idempotent-separating onto homomorphism and the sequence

1−→ Z(A)e
ie−−→ Ae −→ (Ker t)e −→ 1 (2.12)

is an exact sequence of groups for each e ∈ E.

Since A factors through D(B(E)), so is the centre Z(A) : C(E)→ Ab. Let RegE(Z(A)) be
the regular semigroup of partial isomorphisms of Z(A). If (α,φ) : e→ f is a morphism in
G(A), then for each h∈ ω(e), φh : Ah→ A(h)α induces by restriction an isomorphism φh :
Z(A)h→ Z(A)(h)α and therefore the map h→ φh defines a natural φ : Z(A)e → Z(A) f C(α).
Thus we have an idempotent-separating homomorphism

u : RegE(A)−→ RegE Z
(
(A)
)

(2.13)

defined by [α,φ]u= [α,φ], for [α,φ]∈ RegE(A). If x ∈ Ae, then clearly ηx : Z(A)e → Z(A)e

is the identity natural isomorphism. Hence, u induces an idempotent-separating homo-
morphism

v : RegE(A)/ InnE(A)−→ RegE Z
(
(A)
)

(2.14)

such that tv = u.
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Definition 2.6. Two extensions εT = (T ,π,U) and εT′ = (T′,π′,U ′) of S by A are equiva-
lent if there exists an isomorphism θ : T → T′ of regular semigroups such that

(i) θπ′ = π,
(ii) for each e ∈ E, the diagram

Ae

Ue Ue
′

Aπ
e

θ Aπ
e

(2.15)

is commutative.

This defines an equivalence relation on any set of extensions of S by A.
Given an extension εT = (T ,π,U) of S by A, we usually identify A with Aπ so that

U = 1, the identity natural isomorphism on A.
Let εT = (T ,π,1) be an extension of S by A and let RegE(A) be the regular semigroup

of partial isomorphisms of A. We define a map µ : T → RegE(A) as follows. Given x ∈ T ,
choose x′ ∈V(x) and let

(x)µ= [β(x,x′),Ψ(x,x′)
]
, (2.16)

where the ω-isomorphism β(x,x′) : ω((xx′)π)→ ω((x′x)π) is given by

(h)β(x,x′)= (x′π)h(xπ), h∈ ω
(
(xx′)π

)
, (2.17)

and the natural isomorphism Ψ(x,x′) : A(xx′)π → A(x′x)πC(β(x,x′)) sends each object h of
C(ω(xx′)π) to the isomorphism

Ψh(x,x′) : a−→ x′ax : Ah −→ A(x′π)h(xπ). (2.18)

The element (x)µ is independent of the chosen x′ ∈ V(x), and x → (x)µ defines an
idempotent-separating homomorphism µ : T → RegE(A) such that (e)µ = [1eπ ,1eπ] for
every e ∈ E(T). These facts are immediate from [10, Theorem 1.6], as µ is essentially the
idempotent-separating homomorphism induced by the composite: Kerπ : D(T) → GR
with the projection functor C(T)→D(T) : (e,x,x′)→ [e,x,x′]. If x ∈ Ae with inverse x−1

in Ae′ , then from (2.17) and (2.18) we obtain

(x)µ= [β(x,x−1),Ψ(x,x−1)]= [1e,ηx
]∈ (InnA)e, (2.19)

where η : Ae → RegE(A) is as in (2.6). Hence, µ induces an idempotent-separating homo-
morphism Ψ : S→ RegE(A)/ InnE(A) completing the square

T
µ

π

RegE(A)

t

S
Ψ RegE(A)/ InnE(A)

(2.20)
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where t is the projection homomorphism. From (2.17) it is clear that the diagram

S
Ψ

θS

RegE(A)/ InnE(A)

θ′A
TE

(2.21)

is commutative. Here as in [13], θS denotes the fundamental representation of S and θ′A is
the idempotent-separating homomorphism induced by the fundamental representation
θA : RegE(A)→ TE : [α,φ] �→ [α] of RegE(A).

Definition 2.7. Let A : C(E)→ GR be a group E-diagram that factors through D(B(E)).
Let Ψ : S→ RegE(A)/ InnE(A) be an idempotent-separating homomorphism such that di-
agram (2.21) is commutative. Then the triple (S,Ψ,A), or just Ψ, is called an abstract
kernel.

The discussion preceding Definition 2.7 shows that an extension εT = (T ,π,1) of S by
A defines an abstract kernel Ψ : S→ RegE(A)/ InnE(A) which we call the abstract kernel of
the extension εT . εT is called an extension of the abstract kernel Ψ.

Remark 2.8. If Ψ : S→ RegE(A)/ InnE(A) is an abstract kernel, then the following two
properties of Ψ are immediate from the commutativity of diagram (2.21):

(i) [1e,1e]∈ (e)Ψ for every e ∈ E,
(ii) if [α,φ]∈ (x)Ψ, then for some x′ ∈ V(x), there is a representative (α′,φ′) : xx′ →

x′x of [α,φ] in the inductive groupoid G(A) such that (e)α′ = x′ex for all e ∈
ω(xx′).

Note that if (ii) holds for one x′ ∈V(x), then it holds for all x′ ∈V(x).
The rest of the section is devoted to a description of extensions of S by A which induce

the given abstract kernel Ψ. We first fix some notation and develop necessary preliminar-
ies for this purpose.

Remark 2.9. Suppose A is a covariant E-diagram in an arbitrary category C which factors
through D(B(E)). That is, there is a (necessarily unique) functor Â : D(B(E))→ C such
that the diagram

C(E)
A

π1

⊂

D
(
B(E)

) Â
(2.22)

is commutative, where π1 : (e,c(e0,e1, . . . ,en)) → [e,e0e1 ···en,enen−1 ···e0] : C(E) →
D(B(E)) is the composite C(E)

εB(E)−−→ C(B(E))→ D(B(E)). In this case, for any idempo-
tent-separating homomorphism µ : S→ RegE(A) with µθS = θA, the associated covariant
functor Aµ : C(S)→ C : (Aµ)e = Ae; e ∈ C(S) and Aµ(e,x,x′)= (φxx′(x,x′))−1A(e,xx′) for
each morphism (e,x,x′) : e → f of C(S) factors through D(S). We denote the functor



2954 Idempotent-separating extensions of regular semigroups

e→ Ae; [e,x,x′]→ A(e,xx′)φxx′(x,x′) : D(S)→ C by Aµ itself so that the diagram

C(E)

εS
A

C(S) ⊂

D(S)

Aµ

(2.23)

is commutative.

If e, f ∈ E, then for any h ∈ S(e, f ), (e,c(eh,h,h f )) is a morphism from e to h f in
C(E).

We write

D(h,e, f )= (e,c(eh,h,h f )
)
. (2.24)

If f ωle, then we write

L(e, f )= (e,c(e f , f )
)
. (2.25)

Note that L(e, f )=D( f ,e, f ). Also note that

π1D(h,e, f )= [e,e f ,h] : e −→ h f , π1L(e, f )= [e,e f , f ] : e −→ f , (2.26)

where π1 : C(E)→D(B(E)) is as in Remark 2.9.

Lemma 2.10. Let A : C(E)→ GR be an E-diagram that factors through D(B(E)). Let e, f ,
g, . . . denote arbitrary elements of E.

(i) If gωl f ωle, then

A
(
L(e, f )L( f ,g)

)= A
(
L(e,g)

)
. (2.27)

(ii) If f ωle, h∈ S( f ,g), then h∈ S(e,hg) and

A
(
L(e, f )D(h, f ,g)

)= A
(
D(h,e,hg

))
. (2.28)

If, in addition, h∈ S(e,g) (this happens, e.g., f Le), then

A
(
L(e, f )D(h, f ,g)

)= A
(
D(h,e,g

)
). (2.29)

(iii) If h∈ S(e, f ) and g ∈ S(e,k), with kω f , then g f ∈ S(h f ,k) and

A
(
D(h,e, f )D(g f ,h f ,k)

)= A
(
D(g,e,k)

)
. (2.30)

(iv) If h∈ S(e, f ), gωle, gωr f , then g ∈ S(e,g f ), g f ωlh f , and

A
(
D(h,e, f )L(h f ,g f )

)= A
(
D(g,e,g f )

)
. (2.31)
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If, in addition, g ∈ S(e, f ), then

A
(
D(h,e, f )L(h f ,g f )

)= A
(
D(g,e, f )

)
. (2.32)

(v) If h∈ S(e, f ), gR f , then h∈ S(e,g), h f ∈ S(h f ,g), and

A
(
D(h,e, f )D(h f ,h f ,g)

)= A
(
D(h,e,g)

)
. (2.33)

(vi) If f ωle, g ∈ S(e,n), h∈ S( f ,eg), m∈ S( f ,n), k ∈ S(h(eg),n), with mnLkn, then

A
(
D(h, f ,eg)D

(
k,h(eg),n

))= A
(
D(m, f ,n)L(mn,kn)

)
. (2.34)

Proof. By Remark 2.9, it is sufficient to prove (i)-(ii) replacing A by the functor π1 :
C(E)→D(B(E)). We frequently use (1.2) to prove the lemma.

(i) Using (1.2) we get π1(L(e, f )L( f ,g))= π1(L(e, f )π1L( f ,g))= [e,e f , f ][ f , f g,g]=
[e, (e f )( f g),g]= [e,eg,g]= π1(L(e,g)). This proves (i).

(ii) Let f ωle and h ∈ S( f ,g). Then clearly h ∈ S(e,hg), and π1(L(e, f )D(h, f ,g)) =
[e,e f , f ][ f , f g,h] = [e, (e f )( f g),h] = [e,e(hg),h] = π1(D(h,e,hg)). If h ∈ S(e,g), then
D(h,e,g)=D(h,e,hg). Therefore, the second statement follows from the first.

(iii) Clearly g f ∈S(h f ,k). Now π1(D(h,e, f )D(g f ,h f ,k))=[e,e f ,h][h f , (h f )k,g f ]=
[e, (e f )((h f )k),(g f )h] = [e,ek,gh] = [e,ek,g] = π1(D(g,e,k)), since (e f )((h f )k) = ek,
and (g f )h= gh.

(iv) Clearly g ∈ S(e,g f ) and g f ωlh f . By taking k = g f in (iii) and observing D(g f ,h f ,
g f ) = L(h f ,g f ), we get π1(D(h,e, f )L(h f ,g f )) = π1(D(g,e,g f )). The last relation fol-
lows from this since D(g,e,g f )=D(g,e, f ), if g ∈ S(e, f ).

(v) Let h ∈ S(e, f ), gR f . Then, by [13, Proposition 2.12], S(e, f ) = S(e,g) and so h ∈
S(e,g). Clearly h f ∈ S(h f ,g). Further, since (h f )h= h( f h)= h, we get π1(D(h,e, f )D(h f ,
h f ,g))= [e,e f ,h][h f , (h f )g,h f ]= [e, (e f )((h f )g),h]= [e,eg,h]= π1(D(h,e,g)).

(vi)

π1
(
D(h, f ,eg)D

(
k,h(eg),n

))

= [ f , f (eg),h
][
h(eg),

(
h(eg)n,k

)]

= [ f ,
(
f (eg)

)((
h(eg)

)
n
)
,kh
]

= [ f ,
(
f (eg)

)
n,kh

]
since (eg)h= h, ( f h)(eg)= f (eg)

= [ f , f n,kh] since (eg)n= en, f e = f

= [ f , f (nm)n,kh
]

since f mn= f n,nm=m

= [ f , ( f n)(mn),kh
]

= [ f , ( f n)(mn),(kn)m
]

= [ f , f n,m][mn,mn,kn]

= π1
(
D(m, f ,n)L(mn,kn)

)
.

(2.35)

The proof of the lemma is complete. �
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We fix once and for all a map ∗ : S→ S such that
(i) x∗ ∈V(x) for every x ∈ S,

(ii)

x∗ ∈He if x ∈He. (2.36)

Suppose Ψ : S→ RegE(A)/ InnE(A) is an abstract kernel, and let σ : S→ RegE(A) be a map
such that (x)σ ∈ (x)Ψ, for every x ∈ S. By Remark 2.9(ii) and by [13], each (x)σ has a
unique representative in G(A) with domain xx∗ and range x∗x. We denote this mor-
phism by (α(x),φ(x)) : xx∗ → x∗x so that [α(x),φ(x)] = (x)σ ; recall by Remark 2.9(ii),
(h)α(x)= x∗hx for all h∈ ω(xx∗). Using σ we will define a biaction of S on the disjoint
union

A=
⋃
x∈S

Ax, where Ax = Ax∗x. (2.37)

For x, y ∈ S, define

a−→ x • a : Ay −→ Axy , a−→ a• x : Ay −→ Ayx (2.38)

by

x • a= aA
(
L
(
y∗y, (xy)∗xy

))
, (2.39)

a• x = aA
(
D
(
h, y∗y,xx∗

))
φhxx∗(x)A(L(x∗hx, (yx)∗yx)), (2.40)

where h ∈ S(y∗y,xx∗) and φhxx∗(x) : Ahxx∗ → A(hxx∗)α(x)=x∗hx is the component of φ(x)
at hxx∗ ∈ ω(xx∗). If k ∈ S(y∗y,xx∗) is any other element, then the following diagram
commutes:

Ahxx∗
φhxx∗ (x)

A(L(hxx∗,kxx∗))

Ax∗hx

A(L(x∗hx,x∗kx))

A(L(x∗hx,(yx)∗ yx))

Ay = Ay∗ y

A(D(h,y∗ y,xx∗))

A(D(k,y∗ y,xx∗))

A(yx)∗ yx = Ayx

Akxx∗
φkxx∗ (x)

Ax∗kx

A(L(x∗kx,(yx)∗ yx))

(2.41)

The first triangle is commutative by Lemma 2.10(iv) and the last triangle is commutative
by Lemma 2.10(i), since (yx)∗yxωlx∗kxωlx∗hx. Finally the commutativity of the rectan-
gle follows from the naturality of φ(x). Hence, a • x does not depend on the choice of h.
Clearly a→ a• x and a→ x • a are homomorphisms of groups.
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The following lemma explains to what extent the biaction of S on A depends on σ .

Lemma 2.11. Suppose σ ,σ ′ : S→ RegE(A) are maps, with (x)σ , (x)σ ′ ∈ (x)Ψ, and let • and
♠ be the corresponding biactions of S on A. Then

(i)

x♠a= x • a x ∈ S, a∈ Ay , (2.42)

(ii) there exists a map β : S→ A, with (x)β ∈Ax, such that

(x)σ ′ = (x)σ
(
(x)β

)
η,

a♠x = (a• x)
(
y • (x)β

)
η, x ∈ S, a∈ Ay ,

(2.43)

where η : Ayx(= A(yx)∗ yx)→ RegE(A) is as in (2.6).

Proof. (i) is clear, since x♠a= aA(L(y∗y, (xy)∗xy))= x • a.
(ii) Since (x)σ , (x)σ ′ belong to the same class (x)Ψ, by Proposition 2.5, there must

be elements (x)β ∈ Ax such that (x)σ ′ = (x)σ((x)β)η. Let (α(x),φ(x)) : xx∗ → x∗x and
(α(x),φ(x)) : xx∗ → x∗x be unique representatives of (x)σ and (x)σ ′ with domain xx∗

and range x∗x.

=⇒ [α(x),φ(x)
]= [α(x),φ(x)

][
1x∗x,η(x)β]

=⇒ φe(x)= {φ(x)
(
C
(
α(x)

)
η(x)β)}

e = φe(x)η(x)β
x∗ex,

(2.44)

for every e ∈ ω(xx∗). Hence, for h∈ S(y∗y,xx∗),

a♠x = aA
(
D
(
h, y∗y,xx∗

))
φhxx∗(x)A

(
L
(
x∗hx, (yx)∗yx

))

= {{aA
(
D
(
h, y∗y,xx∗

))
φhxx∗(x)

}
η(x)β

x∗hx
}

A
(
L
(
x∗hx, (yx)∗yx

))

= [(x)βA
(
L
(
x∗x,x∗hx

))
A
(
L
(
x∗hx, (yx)∗yx

))]−1

× [aA
(
D
(
h, y∗y,xx∗

))
φhxx∗(x)A

(
L
(
x∗hx, (yx)∗yx

))]

× [(x)βA
(
L
(
x∗x,x∗hx

))
A
(
L
(
x∗hx, (yx)∗yx

))]

= [(x)βA
(
L
(
x∗x, (yx)∗yx

))]−1
(a• x)

[
(x)βA

(
L
(
x∗x, (yx)∗yx

))]

by Lemma 2.10(i), since (yx)∗yxωlx∗hxωlx∗x

= (y • (x)β
)−1

(a• x)
(
y • (x)β

)

= (a• x)
(
y • (x)β

)
η.

(2.45)

�

Definition 2.12. Let Ψ : S→ RegE(A)/ InnE(A) be an abstract kernel. Let σ : S→ RegE(A)
and p : S× S→ A, (x, y)p ∈ Axy , be maps such that

(i)

(x)σ ∈ (x)Ψ, (2.46)
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(ii)

(x)σ(y)σ = (xy)σ
(
(x, y)p

)
η, (2.47)

(iii)

(xy,z)p
(
(x, y)p • z)= (x, yz)p

(
x • (y,z)

)
p, (2.48)

where η : Axy[= A(xy)∗xy]→ RegE(A) is as in (2.6) and the biaction • of S on A is with
respect to the map σ . Then the pair (σ , p) is called a crossed pair.

Let Ψ be an abstract kernel and let σ , p be maps satisfying Definition 2.12(i) and (ii).
In the next two lemmas, we establish some of the essential properties of the biaction • of
S on A induced by σ .

Lemma 2.13. Let Ψ : S → RegE(A)/ InnE(A) be an abstract kernel. Let (σ , p) satisfy
Definition 2.12(i) and (ii) and let • denote the biaction of S on A induced by σ .

(i) If (α(e),φ(e)) : e→ e is a representative of (e)σ with domain and range e, then φe(e)
coincides with the inner automorphism defined by (e,e)p. More generally, if e1ωre, then
for any a∈ Ae = Ae, a• e1 = (e1,e1)p−1aA(e,c(e1e,e1))(e1,e1)p.

(ii) If x ∈ S, e ∈ E(S), with ex = x, then for a ∈ Ax, e • a = a. If (σ , p) also satisfies
(2.48), then for y ∈ S, e ∈ E(S), (e,e)p • y = (e, y)p−1(e,ey)p(e, y)p.

Proof. (i) For e ∈ E(S), (e)σ(e)σ = (e)σ((e,e)p)η ⇒ (e)σ = ((e,e)p)η ⇒ φe(e) = ηe(e,e)p,
the inner automorphism defined by the element (e,e)p.

If e1ωre, then e1e ∈ S(e,e1) and for a∈ Ae, by (2.40),

a• e1 = aA
(
D
(
e1e,e,e1

))
φe1
(
e1
)= aA

(
e,c
(
e1e,e1

))
ηe1

(e1,e1)p

= (e1,e1
)
p−1aA

(
e,c
(
e1e,e1

))(
e1,e1

)
p.

(2.49)

(ii) Clearly e • a = aA(L(x∗x, (ex)∗ex)) = aA(L(x∗x,x∗x)) = a. To prove the last as-
sertion, let y ∈ S, e ∈ E(S). Then, by (2.48), (e, y)p((e,e)p • y) = (e,ey)p(e • (e, y))p or
(e,e)p • y = (e, y)p−1(e,ey)p(e, y)p, since e(ey)= ey implies (e • (e, y))p = (e, y)p. �

Lemma 2.14. Let Ψ, σ , p be as in the first paragraph of Lemma 2.13. Then
(i)

x • (y • a)= xy • a, x, y ∈ S, a∈ Az, (2.50)

(ii)

x • (b • z)= (x • b)• z, x,z ∈ S, b∈ Ay , (2.51)

(iii)

(d • y)• z = (d • yz)
(
x • (y,z)p

)
η

= (x • (y,z)p
)−1

(d • yz)
(
x • (y,z)p

)
y,z ∈ S, d ∈ Ax.

(2.52)
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Proof. (i) is immediate from Lemma 2.10(i), since (xyz)∗xyzωl(yz)∗yzωlz∗z.
As before for x ∈ S, let (α(x),φ(x)) : xx∗ → x∗x denote the unique representative of

(x)σ with domain xx∗ and range x∗x. Let x, y,z ∈ S. Choose h∈ S(x∗x, yy∗), h2 ∈ S(y∗y,
zz∗). Then (xy)∗xyLy∗hy and yz(yz)∗Ryh2y∗. Let h1∈S((xy)∗xy,zz∗)=S(y∗hy,zz∗),
h3 ∈ S(x∗x, yz(yz)∗) = S(x∗x, yh2y∗). Since φ(z) : Azz∗ → Az∗zC(α(z)) is a natural iso-
morphism, the diagram

Ah2zz∗
φh2zz∗ (z)

A(L(h2zz∗,h1zz∗))

A(h2zz∗)α(z)=z∗h2z

A(L(z∗h2z,z∗h1z))

Ah1zz∗
φh1zz∗ (z)

A(h1zz∗)α(z)=z∗h1z

(2.53)

is commutative. Now, using Lemma 2.10(i) twice, we get

x • (b • z)= bA
(
D
(
h2, y∗y,zz∗

))
φh2zz∗(z)A

(
L
(
z∗h2z, (yz)∗yz

))

×A
(
L
(
(yz)∗yz, (xyz)∗xyz

))

= bA
(
D
(
h2, y∗y,zz∗

))
φh2zz∗(z)A

(
L
(
z∗h2z,z∗h1z

))
A
(
L
(
z∗h1z, (xyz)∗xyz

))

= bA
[(
D
(
h2, y∗y,zz∗

)
L
(
h2zz

∗,h1zz
∗))]φh1zz∗(z)A

(
L
(
z∗h1z, (xyz)∗xyz

))

= bA
(
D
(
h1, y∗y,h1zz

∗))φh1zz∗(z)A
(
L
(
z∗h1z, (xyz)∗xyz

))

by Lemma 2.10(iv), since h2 ∈ S
(
y∗y,zz∗

)
, h1ω

l y∗y, h1ω
rzz∗

= bA
(
L
(
y∗y, (xy)∗xy

))
A
(
D
(
h1, (xy)∗xy,zz∗

))
φh1zz∗(z)

×A
(
L
(
z∗h1z, (xyz)∗xyz

))

by Lemma 2.10(ii), since (xy)∗xyωl y∗y and h1 ∈ S
(
(xy)∗xy,zz∗

)

= (x • b)• z.
(2.54)

Hence, the proof of (ii) is complete. To prove (iii), consider the diagram

A(xy)∗xy = Axy

C2
I

Ahyy∗
C4

C7

Ay∗hy
C5

C8
III

C1

Ahlzz∗

C9

C6

IV V

Az∗hlz

C10

C11

A=Ax∗x

C3 II

C12

C16

Ah3 yh2 y∗
C13

VI

Ay∗h3 yh2

VII

C14
Ah2 y∗h3h2zz∗

C15
Az∗h2 y∗h3 yz

C18

A(xyz)∗xyz=Axyz

VIII

Ah3 yz(yz)∗

C17

C20
A(yz)∗h3 yz

C19

(2.55)
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where

C1 = A
(
L
(
y∗hy, (xy)∗xy

))
, C2 = A

(
D
(
h1, (xy)∗xy,zz∗

))
,

C3 = A
(
D
(
h,x∗x, yy∗

))
, C4 = φhyy∗(y), C5 = A

(
D
(
h1, y∗hy,zz∗

))
,

C6 = φh1zz∗(h), C7 = A
(
D
(
h3yy

∗,hyy∗, yh2y
∗)),

C8 = A
(
D
(
y∗h3y, y∗hy, y∗yh2

))
, C9 = A

(
L
(
h1zz

∗,h2y
∗h3yh2zz

∗)),
C10 = A

(
L
(
z∗h1z,z∗h2y

∗h3yz
))

, C11 = A
(
L
(
z∗h1z, (xyz)∗xyz

))
,

C12 = A
(
D
(
h3,x∗x, yh2y

∗)), C13 = φh3 yh2 y∗(y),

C14 = A
(
D
(
h2y

∗h3yh2, y∗h3yh2,zz∗
))

, C15 = φh2 y∗h3 yh2zz∗(z),

C16 = A
(
D
(
h3,x∗x, yz(yz)∗

))
, C17 = A

(
D
(
h3yz(yz)∗,h3yz(yz)∗, yh2y

∗)),
C18 = A

(
L
(
z∗h3y

∗h3yz, (yz)∗h3yz
))

, C19 = A
(
L
(
(yz)∗h3yz, (xyz)∗xyz

))
,

C20 = φh3 yz(yz)∗(yz)η
(y,z)pA(L((yz)∗ yz,(yz)∗h3 yz))
(yz)h3 yz

.

(2.56)

The commutativity of the diagram I follows from Lemma 2.10(ii), since
(xy)∗xyLy∗hy and h1 ∈ S((xy)∗xy,zz∗)= S(y∗hy,zz∗). Since yh2y∗ωyy∗, by Lemma
2.10(iii), h3yy∗ ∈ S(hyy∗, yh2y∗) and the diagram II is commutative. The diagrams III
and V are commutative, since φ(y) and φ(z) are natural isomorphisms. Next we show
that the diagram IV is commutative. Now

y∗h3yh2ω
lh2 =⇒ y∗h3yh2Lh2y

∗h3yh2 =⇒ h2y
∗h3yh2 ∈ S

(
y∗h3yh2,zz∗

)
. (2.57)

Also

h3ω
r yh2y

∗ =⇒ h1zz
∗h2y

∗h3 = h1(xy)∗xh3 =⇒ h1zz
∗Lh2y

∗h3yzz
∗, (2.58)

since zz∗h2 = h2 and h3yh1zz∗ = h3x∗xyh1zz∗ = h3yzz∗. Take e = y∗y, f = y∗hy, g =
h2, h = y∗h3y, k = h2y∗h3yh2, m = h1, n = zz∗. The commutativity of the diagram IV
now follows from Lemma 2.10(vi). Since yz(yz)∗Ryh2y∗, the commutativity of the dia-
gram VI follows from Lemma 2.10(v). Since z∗h1zLz∗h2y∗h3yzL(yz)∗h3yzL(xyz)∗xyz,
the diagram VIII is commutative by Lemma 2.10(i). Finally we establish the commu-
tativity of the diagram VII. Put c1 = c(y∗yh2,h2,h2zz∗), c2 = c(yz(yz)∗, yh2y∗), c3 =
c(z∗h2z, (yz)∗yz), (α1,φ1)= yh2y∗ ∗ (α(y),φ(y)), (α2,φ2)= (α(z),φ(z))∗ z∗h2z. Then

[(
α(yz),φ(yz)

)(
1(yz)∗ yz,η(y,z)p)]

= [α(yz),φ(yz)
][

1(yz)∗ yz,η(y,z)p]

= (yz)σ
(
(y,z)p

)
η

= (y)σ(z)σ

= [α(y),φ(y)
][
α(z),φ(z)

]

= [((α(y),φ(y)
)∗ y∗yh2

)
ε
(
c1
)(
h2zz

∗ ∗ (α(z),φ(z)
))]

by [10]

= [(α1,φ1
)
ε
(
c1
)(
α2,φ2

)]
by [13, Proposition 3.2].

(2.59)
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Since yz(yz)∗Ryh2y∗ and z∗h2zL(yz)∗yz, (1.9) implies that

(
α(yz),φ(yz)

)(
1(yz)∗ yz,η(y,z)p)

= ε
(
c2
)(
α1,φ1

)
ε
(
c1
)(
α2,φ2

)
ε
(
c3
)

= (αc2 ,φc2
)(
α1,φ1

)(
αc1 ,φc1

)(
α2,φ2

)(
αc3 ,φc3

)
.

(2.60)

Therefore, the component at e of the natural isomorphism defined by the left-hand side
coincides with the component at e of the natural isomorphism defined by the right-
hand side for each e ∈ ω(yz(yz)∗). In particular, by taking e = h3yz(yz)∗ and noting
that φe

c2 = A(D(e,e, yh2y∗)) and φc1
y∗h3 yh2

= A(D(h2y∗h3yh2, y∗h3yh2,zz∗)), we obtain
the commutativity of the diagram VII. As the interior diagrams are commutative, the
outer diagram is commutative. Hence, for d ∈ Ax = Ax∗x,

(d • y)• z = dA
(
D
(
h,x∗x, yy∗

))
φhyy∗(y)A

(
L
(
y∗hy, (xy)∗xy

))

×A
(
D
(
h1, (xy)∗xy,zz∗

))
φh1zz∗(z)A

(
L
(
z∗h1z, (xyz)∗xyz

))

= dA
(
D
(
h3,x∗x, yz(yz)∗

))
φe(yz)A

(
L
(
(yz)∗h3yz, (xyz)∗xyz

))
η

(x•(y,z)p)
(xyz)∗xyz

= (x • (y,z)p
)−1

(d • yz)
(
x • (y,z)p

)
.

(2.61)

With these preliminaries we are now in a position to describe the extensions of S by A
which induce the given abstract kernel Ψ. �

Theorem 2.15. Let Ψ : S→ RegE (A)/ InnE (A) be an abstract kernel and let (σ , p) be a
crossed pair. Let

Tp =
{

(x,a) : x ∈ S, a∈ Ax
}
. (2.62)

Define a multiplication on Tp by

(x,a)(y,b)= (xy, (x, y)p(a• y)(x • b)
)
. (2.63)

Then Tp is a regular semigroup with

E
(
Tp
)= {(e, (e,e)p−1) : e ∈ E(S)

}
. (2.64)

The map πp : Tp → S defined by (x,a)πp = x, is an idempotent-separating homomorphism
of Tp onto S. For each e ∈ E = E(S), define (Up)e : Ae → Ae

πp by

(a)
(
Up
)
e =

(
e, (e,e)p−1a

)
. (2.65)

Then Up : e → (Up)e defines a natural isomorphism between A and Aπp. The triple (Tp,
πpUp) is an extension of S by A.

Proof. For (x,a),(y,b),(z,c)∈ Tp, by (2.48), Lemma 2.14, we easily prove that ((x,a)(y,
b))(z,c) = (x,a)((y,b)(z,c)). So the multiplication is associative. For each e ∈ E(S),
(e, (e,e)p−1)(e, (e,e)p−1) = (e, (e,e)p((e,e)p−1 • e)(e • (e,e)p−1)) = (e, (e,e)p−1), since
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(e,e)p−1 • e = e • (e,e)p−1 = (e,e)p−1, by Lemma 2.13(ii). Hence, (e, (e,e)p−1) ∈ E(Tp).
On the other hand, (e,a)(e,a) = (e,a) ⇒ (ee, (e,e)p(a • e)(e • a)) = (e,a) ⇒ ee = e and
(e,e)p(a • e)(e • a) = a ⇒ e ∈ E(S) and (e,e)p = a−1 • e = (e,e)p−1a−1(e,e)p (by
Lemma 2.13(i) and (ii))⇒ e ∈ E(S) and a= (e,e)p−1.

Hence, E(Tp) = {(e, (e,e)p−1) : e ∈ E(S)}. To prove Tp is a regular semigroup, take
any (x,a) ∈ Tp and let y be an inverse of x in S. Put b = y • ((xy,xy)p(x, y)p(a • y))−1.
Then (y,b)∈ Tp, and x • b= xy • ((xy,xy)p(x, y)p(a• y))−1 (by Lemma 2.14(i))= ((xy,
xy)p(x, y)p(a• y))−1 (by Lemma 2.13(ii)). Then

(x,a)(y,b)= (xy, (x, y)p(a• y)(x • b)
)

= (xy, (x, y)p(a• y)(a• y)−1(x, y)p−1(xy,xy)p−1)

= (xy, (xy,xy)p−1).
(2.66)

Therefore, (x,a)(y,b)(x,a)=(xy, (xy,xy)p−1)(x,a)=(xyx, (xy,x)p((xy,xy)p−1 • x)(xy •
a))= (x,a), since by Lemma 2.13(ii), xy • a= a and (xy,xy)p • x = (xy,x)p and (y,b)(x,
a)(y,b)= (y,b)(xy, (xy,xy)p−1)= (y, (y,xy)p(b • xy)(y • (xy,xy)p−1))= (y,b), since

b • xy = [y • ((a−1 • y)(x, y)p−1(xy,xy)p−1)]• xy
= y • [((a−1 • y)(x, y)p−1(xy,xy)p−1)• xy] by Lemma 2.14(ii)

= y • [((a−1 • y)• xy)((x, y)p−1 • xy)((xy,xy)p−1 • xy)]

= y • ((x • (y,xy)p−1)(a−1 • y)(x • (y,xy)p
)(

(x, y)p−1 • xy)(xy,xy)p−1)

by Lemmas 2.14(iii) and 2.13(ii)

= y • ((x • (y,xy)p−1)(a−1 • y)(x, y)p−1) using (2.48) for the triple x, y, xy

= (yx • (y,xy)p−1)(y • (a−1 • y)(x, y)p−1) by Lemma 2.14(i)

= (y,xy)p−1(y • (a−1 • y)(x, y)p−1) by Lemma 2.13(ii).
(2.67)

Hence, (y,b) is an inverse of (x,a), and Tp is a regular semigroup. The map πp : Tp → S,
(x,a)πp = x, is clearly an idempotent-separating homomorphism from Tp onto S with
Ae

πp = {(e,a) : a∈ Ae} for each e ∈ E. The map Ue = (Up)e : Ae → Ae
πp defined by (2.65)

is clearly a bijection. By Lemma 2.13, it is clear that Ue is also a homomorphism.
We next show that the isomorphisms Ue define a natural isomorphism Up : A→ Aπp.

We must show that for each morphism (e,c(e0, . . . ,en)) : e→ f in C(E), the diagram

Ae
Ue

A(e,c)

Ae
πp

Aπp(e,c)

A f
U f

A f
π p

(2.68)
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is commutative. Since (e,c(e0, . . . ,en)) = (e,e0)(e0,c(e0,e1))···(en−1,c(en−1,en)), it is
enough to prove the commutativity of the diagram for morphisms of the form (e,c(e, f )),
with e ≥ f or e(R∪L) f .
Case 1 (e ≥ f ). Let a∈ Ae. Then, since

Aπp(e, f )= Kerπp
[(
e, (e,e)p−1),( f , ( f , f )p−1),( f , ( f , f )p−1)],

(a)UeAπp(e, f )= (e, (e,e)p−1a
)

Aπp(e, f )

= ( f , ( f , f )p−1)(e, (e,e)p−1a
)(

f , ( f , f )p−1)

= (e, (e,e)p−1a
)(

f , ( f , f )p−1) by Definition 1.1

= ( f , (e, f )p
((

(e,e)p−1a
)• f

)(
e • ( f , f )p−1))

= ( f , (e, f )p
(
(e,e)p−1 • f

)
(a• f )( f , f )p−1)

since e • ( f , f )p = ( f , f )p by Lemma 2.13(ii)

= ( f , (a• f )( f , f )p−1) since (e,e)p • f = (e, f )p by Lemma 2.13(ii)

= ( f , ( f , f )p−1(aA(e, f )
))

by Lemma 2.13(i)

= aA(e, f )Uf .
(2.69)

Similarly we prove the diagram is commutative for other cases eR f and eL f also.
Hence, by Definition 2.1, (Tp,πp,Up) is an extension of S by A. The proof of Theorem 2.15
is complete. �

We denote the extension (Tp,πp,Up) by (S,σ , p,A), and call the crossed extension of S
by A determined by the crossed pair (σ , p).

Theorem 2.16. Let Ψ : S→ RegE(A)/ InnE(A) be an abstract kernel and let (σ , p) be a
crossed pair, with (x)σ ∈ (x)Ψ for every x ∈ S. Then the abstract kernel of the crossed exten-
sion (S,σ , p,A) coincides with Ψ.

Proof. Define j : S→ Tp by (x) j = (x,1x), where 1x denotes the identity element of Ax.
For each (x,a)∈ Tp, let

(x,a)∗ = (x∗,x∗ • ((a−1 • x∗)(x,x∗
)
p−1(xx∗,xx∗

)
p−1)). (2.70)

Then the proof of Theorem 2.15 shows that (x,a)∗ ∈V(x,a). Let µ : Tp → RegE(A) be the
idempotent-separating homomorphism defined by (2.8). Then

(x) jµ= [β(x j, (x j)∗),Ψ(x j, (x j)∗)], x ∈ S. (2.71)

The proof of the theorem follows once we show that the representative (β(x j, (x j)∗),
Ψ(x j, (x j)∗)) : xx∗ → x∗x of (x) jµ and the representative (α(x),φ(x)) : xx∗ → x∗x of
(x)σ in G(A) are equal. From Remark 2.8(ii) and (2.13) it is clear that

β
(
x j, (x j)∗)= α(x) (2.72)

we next show that Ψ(x j, (x j)∗)= φ(x). To prove this we must show that Ψe(x j, (x j)∗)=
φe(x) : Ae → Ax∗ex for each e ∈ ω(xx∗). For this purpose we first make some calculations.
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Let e ∈ ω(xx∗). Put d = (x,x∗)p−1(xx∗,xx∗)p−1. Then, by Lemmas 2.13(ii) and 2.14(i),

(
x∗ •d)• ex = (x∗x • (x∗,ex

)
p−1)(x∗ • (x,x∗ex

)
p−1). (2.73)

Therefore, since x∗x • (x∗,ex)p−1 = (x∗,ex)p−1 by Lemma 2.13(ii),

(
x∗ •d)• ex = (x∗,ex

)
p−1(x∗ • (x,x∗ex

)
p−1). (2.74)

Putting x = x∗e, y = x, z = x∗ex in (2.48),

(
x∗ex,x∗ex

)
p
(
x∗e,x

)
p • x∗ex = (x∗e,ex

)
p
(
x∗e • (x,x∗ex

)
p
)
. (2.75)

Since (x∗e,x)p • x∗ex = (x∗ex,x∗ex)p−1(x∗e,x)p(x∗ex,x∗ex)p by Lemma 2.13(i) and
x∗e • (x,x∗ex)p = (x∗ • (e • (x,x∗ex)p))= x∗ • (x,x∗ex)p by Lemma 2.13(ii), the above
equation becomes

(
x∗e,x

)
p
(
x∗ex,x∗ex

)
p = (x∗e,ex

)
p
(
x∗ • (x,x∗ex

)
p
)

(2.76)

or

(
x∗ • (x,x∗ex

)
p−1)= (x∗ex,x∗ex

)
p−1(x∗e,x

)
p−1(x∗e,ex

)
p. (2.77)

Since
(
x,x∗e

)
p • e = (e,e)p−1(x,x∗e

)
p(e,e)p by Lemma 2.13(i),

(e,e)p
(
x,x∗e

)
p • e = (x,x∗e

)
p
(
x • (x∗e,e

)
p
)

by (2.48)

=⇒ (x,x∗e
)
p(e,e)p = (x,x∗e

)
p
(
x • (x∗e,e

)
p
)=⇒ (e,e)p−1 = (x • (x∗e,e

)
p−1)

=⇒ (x∗ • ((e,e)p−1 • x))= x∗x • ((x∗e,e
)
p−1 • x)= (x∗e,e

)
p−1 • x.

(2.78)

Also since

x∗e • (e,x)p = x∗ • (e • (e,x)p
)= x∗ • (e,x)p by Lemma 2.13(ii),

(
x∗e,x

)
p
(
x∗e,e

)
p • x = (x∗e,ex

)
p
(
x∗e • (e,x)p

)
by (2.48)

=⇒ x∗ • (e,x)p = (x∗e,ex
)
p−1(x∗e,x

)
p
(
x∗e,e

)
p • x

=⇒ (x∗e,e
)
p • x = (x∗e,x

)
p−1(x∗e,ex

)
p
(
x∗ • (e,x)p

)
.

(2.79)

For any a∈ Ae, by (2.74), (2.77), (2.78), (2.79), and Lemma 2.13(i), it is easy to show

(x j)∗
(
e, (e,e)p−1a

)
(x j)= (x∗ex,

(
x∗ex,x∗ex

)
p−1)(x∗ • (a• x)

)
. (2.80)

But

x∗ • (a• x)= x∗ • (aA
(
D
(
e,e,xx∗

))
φe(x)A

(
L
(
x∗ex, (ex)∗ex

)))

= x∗ • (aφe(x)A
(
L
(
x∗ex, (ex)∗ex

)))
since D

(
e,e,xx∗

)= 1e

= aφe(x)A
(
L
(
x∗ex, (ex)∗ex

))
A
(
L
(
(ex)∗ex,x∗ex

))
by (2.39)

= aφe(x) by Lemma 2.13(i).

(2.81)
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Hence, (x j)∗(e, (e,e)p−1a)(x j) = (x∗ex, (x∗ex,x∗ex)p−1)(a)φe(x). This implies Ψe(x j,
(x j)∗)= φe(x) for every e ∈ ω(xx∗), where we have identified a∈ Ae with (e, (e,e)p−1a)
under the isomorphism (Up)e : Ae → Ae

πP . Hence,

Ψ
(
x j, (x j)∗

)= φ(x). (2.82)

The result now follows from (2.72) and (2.82). �

Lemma 2.17 [9, Lemma 4.2]. Let (T ,π,1) be an extension of S by A. Let j : S→ T be a map
such that jπ = 1S and let • denote the biaction of S on A induced by the composite

σ : S
j−−→ T

µ−−→ RegE(A), (2.83)

where µ is as in (2.16). Then (x j)a(y j)b = (x j)(y j)(a • y)(x • b) for x, y ∈ S, a ∈ Ax =
Ax∗x, b ∈ Ay = Ay∗ y .

Theorem 2.18. Let εT = (T ,π,1) be an extension of S by A with abstract kernel Ψ : S→
RegE(A)/ InnE(A). Let σ : S→ RegE(A) be a map such that (x)σ ∈ (x)Ψ for each x ∈ S.
Then εT is equivalent to a crossed extension of the form (S,σ , p,A) with abstract kernel Ψ.

Proof. Let µ : T → RegE(A) be the idempotent-separating homomorphism defined by
(2.16). Using the commutativity of diagram (2.20), it is easy to see that every element in
the class (x)Ψ is of the form [β(u,u′),Ψ(u,u′)] for some u∈ T , u′ ∈ V(u), with uπ = x.
So there is a map j : S→ T , with jπ = 1S, such that jµ = σ ; in particular (x)σ ∈ (x)Ψ
for every x ∈ S. Since ((x j)(y j))π = (x) jπ(y) jπ = xy = (xy) jπ, Lemma 1.6 defines a
function p : S× S→ A, (x, y)p ∈ Axy , such that (x j)(y j) = (xy) j(x, y)p. This implies,
for x, y ∈ S, (x)σ(y)σ = (x) jµ(y) jµ= ((x j)(y j))µ= (xy) jµ(x, y)pµ= (xy)σ(x, y)pη, by
(2.19). Again for x, y,z ∈ S, we have by Lemma 2.17, (x j)((y j)(z j))= (x j)(yz) j(y,z)p =
(x j)(yz) j(x • (y,z)p)=(xyz) j(x, yz)p(x • (y,z)p), and ((x j)(y j))(z j)=(xy) j(x, y)p(z j)
= (xy) j(z j)((x, y)p • z) = (xyz) j(xy,z)p((x, y)p • z), where • denotes the biaction of S
on A induced by σ . Since the multiplication in T is associative, by Lemma 1.6,

(xy,z)p
(
(x, y)p • z)= (x, yz)p

(
x • (y,z)p

)
. (2.84)

Thus (σ , p) is a crossed pair.
Next we show that the extension εT is equivalent to a crossed extension (S,σ , p,A). De-

fine θ : Tp → T by (x,a)θ = (x j)a. Then, by Lemma 2.17, θ is a homomorphism: ((x,a)(y,
b))θ= (xy, (x, y)p(a • y)(x • b))θ= (xy) j(x, y)p(a • y)(x • b) = (x) j(y) j(a • y)(x • b) =
(x j)a(y j)b = (x,a)θ(y,b)θ. From Lemma 1.6, we see that θ is a bijection and therefore
an isomorphism. θπ = πp, since (x,a)θπ = ((x j)a)π = x = (x,a)πp. Finally the diagram

Ae

Up

Ae
πp θ

Ae
π

(2.85)
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is commutative, since (e j)(e j) = (e j)(e,e)p implies e j = (e,e)p and hence for a ∈ Ae,
(a)Upθ = (e, (e,e)p−1a)θ = (e j)(e,e)p−1a= (e,e)p(e,e)p−1a= a. Hence, εT is equivalent
to a crossed extension (S,σ , p,A).This completes the proof of Theorem 2.18. �

Combining Theorems 2.15, 2.16, and 2.18, we obtain a complete description of exten-
sions of S by A which induce the given abstract kernel Ψ in terms of the crossed pairs
(σ , p).

3. Obstructions to extensions

Let SI be the regular semigroup obtained from S by adjoining an identity element I
(I �∈ S). Extend the map∗ : S→ S (see (2.36)) to SI by defining I∗ = I . Now recall the cat-
egory D(SI) [5] as follows. The objects are elements of SI and morphisms are the triples
〈u,x,v〉 : x→ y such that uxv = y. The morphism composition is defined by 〈u,x,v〉〈u′,
uxv,v′〉 = 〈u′u,x,vv′〉. Let F : D(SI) → D(SI) be the functor defined by F(x) = x∗x on
objects of D(SI) and F〈u,x,v〉 = [x∗x,x∗xvy∗y, y∗ux] on morphisms 〈u,x,v〉 : x→ y of
D(SI) [9]. A functor G : D(SI)→ Ab is called a D(SI)-module. For D(SI)-modules G and
H, D(SI)-homomorphism φ : G→H is a natural transformation of functors. We denote
by homD(SI )(G,H) the abelian group of all D(SI)-homomorphisms from G to H and by
Mod(D(SI)) the category of D(SI)-modules and D(SI)-homomorphisms. Mod(D(SI))
is an abelian category with enough injectives and projectives. Let D(SI)0 be the subcat-
egory of D(SI) defined by the identity morphisms of D(SI). A D(SI)0-set is a functor
Γ : D(SI)0 → Sets from D(SI)0 to the category of sets, and D(SI)0-map is a natural trans-
formation between two D(SI)0-sets. A D(SI)-module (resp., D(SI)-homomorphism) de-
fines aD(SI)0-set (resp.,D(SI)0-map) in an obvious manner. For more details, refer to [5].

If Γ is a D(SI)0-set, then the free D(SI)-module on Γ is the D(SI)-module G such that,
for each object y of D(SI), Gy is the free abelian group generated by elements of the
form (a,〈u,x,u′〉), a ∈ Γx, x ∈ object D(SI), uxu′ = y. If 〈v, y,v′〉 : y → z is a morphism
of D(SI), then G〈v, y,v′〉 : Gy →Gz is defined by

(
a,〈u,x,u′〉)G〈v, y,v′〉 = (a,〈vu,x,u′v′〉). (3.1)

We identify a∈ Γx with (a,〈1,x,1〉) in Gx. For n≥ 0, let xn be the free D(SI)-module on
the D(SI)0-set Γn, where, for n≥ 1,

Γn(x)= {[u1, . . . ,un
]∈ (SI)n : u1u2 ···un = x

}
(3.2)

and, for n= 0,

Γ0(x)=



{
[1]
}

if x = 1,

0 if x �= 1, x ∈ SI .
(3.3)

Now we recall [5, Theorem 2.3]: the complex

X ··· −→ Xn
∂n−−→ Xn−1

∂n−1−−−→ ··· ∂3−−→ X2
∂2−−→ X1

∂1−−→ X0
ε−−→ ZSI −→ 0 (3.4)

is called the standard resolution of ZSI .
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Let Γn(x) = {[u1, . . . ,un] ∈ Γn(x) : ui �= 1, i = 1,2, . . . ,n}, n ≥ 1, and Γn = ∪Γn(x), x ∈
SI . Then the D(SI)0-set Γn freely generates a D(SI)-submodule Xn of Xn. Put X0 = X0.
Define ∂n as before, putting [u1, . . . ,un]= 0 whenever one of the ui is one. Then we obtain
another projective resolution

X ··· −→ Xn
∂n−−→ Xn−1

∂n−1−−−→ ··· ∂3−−→ X2
∂2−−→ X1

∂1−−→ X0
ε−−→ ZSI −→ 0 (3.5)

of ZSI , called the normalised standard resolution of ZSI .
Let G∈Mod(D(SI)) and let

homD(SI )(X ,G) : 0−→ homD(SI )
(
X0,G

) ∂1
∗

−−−→ homD(SI )
(
X1,G

) ∂2
∗

−−−→ ···
∂n−1

∗
−−−−→ homD(SI )

(
Xn−1,G

) ∂n
∗

−−−→ homD(SI )
(
Xn,G

) ∂n+1
∗

−−−−→ ··· .
(3.6)

Definition 3.1. The nth cohomology group of SI with coefficients in G, denoted by Hn(SI ,
G), is defined by

Hn
(
SI ,G

)=Hn
[

homD(SI )
(
X ,G

)]= Ker∂n+1
∗/ Im∂n

∗. (3.7)

The elements of homD(SI )(X ,G) are called (normalized) n-cochains. The elements of
Ker∂n+1

∗ are called (normalized) n-cocycles and the elements of Im∂n
∗ are called (nor-

malized) n-coboundaries. Two n-cocycles k1,k2 ∈ Ker∂n+1
∗ are called cohomologous if they

differ by a coboundary.

Let A : C(E)→ GR be a group E-diagram that factors through D(B(E)) and let Z(A)
be the centre of A. For each x ∈ S, let Z(A)x = Z(A)x∗x and let

Z(A)=
⋃
x∈S

Z(A)x (3.8)

be the disjoint union of Z(A)x’s. Remark that Z(A)x is contained in the centre of Ax,
where as in the previous section A=⋃x∈S Ax with Ax = Ax∗x.

Suppose Ψ : S→ RegE(A)/ InnE(A) is an abstract kernel. Then the composite S
Ψ−−→

(RegE(A)/ InnE(A))
V−−→ RegE(Z(A)) is an idempotent-separating homomorphism. Since

A and hence Z(A)(: C(E)→ Ab) factors through D(B(E)), by Remark 2.9, Ψv induces a
functor Ž(A) = Ž(A)Ψv : D(S) → Ab. Let Ž(A)0 : D(SI) → Ab be the extension of Ž(A)

such that Ž(A)I
0 = {0} and let Ž(A)0F be the composite D(SI)

F−→ D(SI)
Ž(A)0−−−−→ Ab. In

this section, we associate with the abstract kernel Ψ a 3-dimensional cohomology class
[k]∈H3(SI , Ž(A)0F) and show that Ψ admits an extension if and only if [k]= 0. We also
show that if Ψ has an extension, then the set of all equivalence classes of extensions of S
by A is in bijective correspondence with the set H2(SI , Ž(A)0F).
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Let σ : S → RegE(A) be any map such that (x)σ ∈ (x)Ψ. As before for each x ∈ S,
let (α(x),φ(x)) : xx∗ → x∗x denote the unique representative of (x)σ in G(A) with do-
main xx∗ and range x∗x and let (α(x),φ(x)) : xx∗ → x∗x denote the element of G(Z(A))
determined by (α(x),φ(x)) (see (2.13)) so that (x)Ψv = (x)σu = [α(x),φ(x)]. The biac-
tion of S on A defined by σ induces by restriction a biaction of S on Z(A) which coin-
cides with the one induced by the composite Ψv = σu : S→ RegE(A)→ RegE(Z(A)). In
particular, the induced biaction of S on Z(A) is independent of the chosen σ . We next
see the relation between this biaction and the functor Ž(A)0F : D(SI)→ Ab. Let x ∈ S,
a∈ Z(A)y = Z(A)y∗ y = (Ž(A)0F)y . Then by (2.23) and (2.39) we have

a
(

Ž(A)0F〈x, y,I〉)= aŽ(A)0[y∗y, y∗y(xy)∗xy, (xy)∗xy
]

= aŽ(A
)[
y∗y, y∗y(xy)∗xy, (xy)∗xy

]

= aZ(A)
(
L
(
y∗y, (xy)∗xy

))= x • a,

a
(

Ž(A)0F〈I , y,x〉)= aŽ(A)0[y∗y, y∗yx, (yx)∗y
]

= aŽ(A)
[
y∗y, y∗yx, (yx)∗y

]

= aŽ(A)
[
y∗y, y∗yx, (yx)∗yh

]
by (1.2)

= aŽ(A)
{[
y∗y, y∗yxx∗,h

]

× [hxx∗,hx,x∗hxx∗
][
x∗hx,x∗hx, (yx)∗yx

]}

= aZ(A)
(
D
(
h, y∗y,xx∗

))
Ž(A)

[
hxx∗,hx,x∗hxx∗

]

×Z(A)
(
L
(
x∗hx, (yx)∗yx

))
by (2.23)

= aZ(A)
(
D
(
h, y∗y,xx∗

))
φhxx∗(hx)Z(A)

(
L
(
x∗hx, (yx)∗yx

))

by Remark 2.9

= aZ(A)
(
D
(
h, y∗y,xx∗

))
φhxx∗(x)Z(A)

(
L
(
x∗hx, (yx)∗yx

))

= a• x by (2.40),

(3.9)

where h ∈ S(y∗y,xx∗), and the components φhxx∗(hx) of φ(hx) and φhxx∗(x) of φ(x)
are equal since [α(hx),φ(hx)]= (hx)Ψv = (hxx∗)Ψv(x)Ψv = [1hxx∗ ,1hxx∗][α(x),φ(x)]=
[hxx∗ ∗ (α(x),φ(x))]. Thus we have x • a= a(Ž(A)0F〈x, y,I〉) and a• x = a(Ž(A)0F〈I , y,
x〉).

Next we describe the cohomology groups. Consider the normalized standard reso-
lution (3.5). Since the D(SI)-module Xn’s are free on Γn’s and since (Ž(A)0F)I = {0},
we have

homD(SI )
(
Xn, Ž(A

)0
F)= homD(SI )0

(
Γn, Ž(A)0F

)

=
{
α : S× S

(n times)
×···× S−→ Z(A) :

(
x1,x2, . . . ,xn

)∈ Z(A)x1x2···xn
}
.

(3.10)
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Hence, we may regard an n-cochain as a map α : S× S
(n times)

× ··· × S→ Z(A), with (x1,x2,

. . . ,xn)∈ Z(A)x1x2···xn . The coboundary ∂n
∗α of an n− 1 cochain α is given by the formula

(
x1,x2, . . . ,xn

)
∂n
∗α= (x2,x3, . . . ,xn

)
αŽ(A)0F

〈
x1,x2, . . . ,xn,I

〉

+
n−1∑
i=1

(−1)i
(
x1,x2, . . . ,xixi+1, . . . ,xn

)
α

+ (−1)n
(
x1,x2, . . .xn−1

)
αŽ(A)0F

〈
I ,x1,x2, . . . ,xn−1,xn

〉

= x1 •
(
x2,x3, . . . ,xn

)
α+

n−1∑
i=1

(−1)i
(
x1,x2, . . . ,xixi+1, . . . ,xn

)
α

+ (−1)n
(
x1,x2, . . . ,xn−1

)
α• xn.

(3.11)

From now on we write the group operation as multiplication. Note that a 2-cochain α :
S× S→ Z(A), (x, y)∈ Z(A)xy , is a 2-cocycle if

(xy,z)α
(
(x, y)α• z)= (x, yz)α

(
x • (y,z)α

)
(3.12)

for all x, y,z ∈ S; α is a coboundary if and only if there exists a 1-cochain β : S→ Z(A),
(x)β ∈ Z(A)x, such that

(x, y)α= (x • (y)β
)
(xy)β−1((x)β • y) (3.13)

for all x, y ∈ S. Similarly a 3-cocycle k is a map k : S× S× S→ Z(A), (x, y,z)k ∈ Z(A)xyz,
such that

(xy,z, t)k(x, y,zt)k = ((x, y,z)k • t)(x, yz, t)k
(
x • (y,z, t)k

)
(3.14)

for all x, y,z, t ∈ S; k is a coboundary if and only if there exists a 2-cochain α : S× S→
Z(A), (x, y)∈ Z(A)xy , such that

(x, y,z)k = (x • (y,z)α
)
(xy,z)α−1(x, yz)α

(
(x, y)α• z)−1

(3.15)

for all x, y,z ∈ S. For n= 2,3, let Zn(SI , Ž(A)0F) denote the abelian group of all n-cocycles
and let Bn(SI , Ž(A)0F)⊆ Zn(SI , Ž(A)0F) be the subgroup of all coboundaries. Then

Hn
(
SI , Ž(A)0F

)= Zn
(

SI , Ž(A)0F
)

Bn
(

SI , Ž(A)0F
) . (3.16)

Now we proceed to show that the abstract kernel Ψ : S→ RegE(A)/ InnE(A) defines an
element in the cohomology group H3(SI , Ž(A)0F), the vanishing of which is necessary
and sufficient for the existence of extensions of Ψ.
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We fix a map σ : S→ RegE(A) such that (x)σ ∈ (x)Ψ for all x ∈ S. Let • denote the
biaction of S on A induced by σ . As before we denote by (α(x),φ(x)) : xx∗ → x∗x the
unique representative of (x)σ in G(A) with domain xx∗ and range x∗x. Since (xσ)(yσ)
and (xy)σ both belong to the same class (xy)Ψ, we can choose a function p : S× S→ A,
(x, y)p ∈ Axy , such that

(x)σ(y)σ = (xy)σ
(
(x, y)p

)
η, (3.17)

where η : Axy, = A(xy)∗xy → RegE(A) is as before.
Before proceeding further, let us first prove the following.

Lemma 3.2. For a∈ Ax, b ∈ Ay ,

(xσ)(a)η(yσ)(b)η= (xy)σ
(
(x, y)p(a• y)(x • b)

)
η. (3.18)

Proof. Consider the diagram

xhx∗
(α,φ)

(αc2 ,φc2 )

x∗xh
(αc1 ,φc1 )

hyy∗
(β,Ψ)

y∗hy
(1y∗hy ,η(aG)(bH))

(αc3 ,φc3 )

y∗hy

(αc3 ,φc3 )

xy(xy)∗
(α(xy),φ(xy))(1(xy)∗xy ,η(x,y)p)

(xy)∗xy
(1(xy)∗xy ,η(a•y)(x•b))

(xy)∗xy
(3.19)

where

h∈ S
(
x∗x, yy∗

)
, c1 = c

(
x∗xh,h,hyy∗

)
, c2 = c

(
xhx∗,xy(xy)∗

)
,

c3 = c
(
y∗hy, (xy)∗xy

)
,

ε
(
c1
)= (αc1 ,φc1

)
, ε

(
c2
)= (αc2 ,φc2

)
, ε

(
c3
)= (αc3 ,φc3

)
,

(α,φ)= (α(x),φ(x)
)∗ x∗xh : xhx∗ −→ x∗xh,

(β,Ψ)= hyy∗ ∗ (α(y),φ(y) : hyy∗
)−→ y∗hy,

(3.20)

H = A
(
L
(
y∗y, y∗hy

))
,

G= A
(
L
(
x∗x,x∗xh

))(
φc1
)
x∗xhΨhyy∗

= A
(
L
(
x∗x,x∗xh

))
A
(
D
(
h,x∗xh, yy∗

))
Ψhyy∗

= A
(
D
(
h,x∗x, yy∗

))
Ψhyy∗ by Lemma 2.10(ii),

(3.21)

a• y = (a)GA
(
L
(
y∗hy, (xy)∗xy

))= (a)G
(
φc3
)
y∗hy by [9, (1.8)],

x • b= (b)A
(
L
(
y∗y, (xy)∗xy

))= (b)A
(
L
(
y∗hy, (xy)∗xy

))= (b)H
(
φc3
)
y∗hy

by [10, (1.8)].

(3.22)
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Since (xσ)(yσ)= (xy)σ((x, y)p)η, the first rectangle is commutative. The second rec-
tangle is also commutative, since for d ∈ Ay∗hy ,

d
(
η(aG)(bH))

y∗hy
(
φc3
)
y∗hy

= (((aG)(bH)
)−1

d(aG)(bH)
)(
φc3
)
y∗hy

= ((aG)(bH)
)−1(

φc3
)
y∗hyd

(
φc3
)
y∗hy

(
(aG)(bH)

)(
φc3
)
y∗hy

= ((a• y)(x • b)
)−1(

dφc3
)
y∗hy

(
(a• y)(x • b)

)

= (d)
(
φc3
)
y∗hy

(
η(a•y)(x•b))(xy)∗xy

= (d)
(
φc3
(
C
(
αc3
)
η(a•y)(x•b)))

y∗hy.

(3.23)

Hence, the outer diagram is commutative. Now

(xσ)(a)η(y)σ(b)η= [α(x),φ(x)
][

1x∗x,ηa
][
α(y),φ(y)

][
1y∗ y ,ηb

]

= [(α,φ)
((

1x∗x,ηa
)∗ x∗xh

)
ε
(
c1
)
(β,Ψ)

(
y∗hy∗

(
1y∗ y ,ηb

))]
by (1.10)

= [(α,φ)ε
(
c1
)
(β,Ψ)

(
1y∗hy ,ηaG

)(
1y∗hy ,ηbH

)]

= [(α(xy),φ(xy)
)(

1(xy)∗xy ,η(x,y)p(a•y)(x•b))] by the diagram

= [α(xy),φ(xy)
][

1(xy)∗xy ,η(x,y)p(a•y)(x•b)]

= (xy)σ
(
(x, y)p(a• y)(x • b)

)
η.

(3.24)

Hence, the proof of the lemma is complete. �

Let σ and p be as before. Using (3.17) and Lemma 3.2, we get
(
(xσ)(yσ)

)
(zσ)= (xy)σ

(
(x, y)p

)
η(zσ)= (xyz)σ

(
(xy,z)p

(
(x, y)p • z))η,

(xσ)
(
(yσ)(zσ)

)= (xσ)(yz)σ
(
(y,z)p

)
η= (xyz)σ

(
(x, yz)p

(
x • (y,z)p

))
η.

(3.25)

Since the multiplication in RegE(A) is associative, by Lemma 1.6,

(
(xy,z)p

(
(x, y)p • z))η = ((x, yz)p

(
x • (y,z)p

))
η. (3.26)

The exactness of the sequence in Proposition 2.5 gives us a 3-cochain k : S× S× S→ Z(A)
such that

(xy,z)p
(
(x, y)p • z)= (x, yz)p

(
x • (y,z)p

)
(x, y,z)k (3.27)

for all x, y,z ∈ S.

Lemma 3.3. The map k : S× S× S→ Z(A) is a 3-cocycle.

Proof. We must show that k satisfies (3.14). Let x, y,z, t ∈ S. Following [11], it is easy to
calculate the expression

L= (xyz, t)p
[
(xy,z)p

(
(x, y)p • z)]• t (3.28)
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in two ways. In the first way using (3.27) and Lemma 2.14, we easily get

L= (x, yzt)p
(
x • (y,zt)p

)(
xy • (z, t)p

)(
x • (y,z, t)k

)
(x, yz, t)k

(
(x, y,z)k • t). (3.29)

In the second way also using Lemma 2.14(iii) to the term ((x, y)p • z)• t, we get

L= (xyz, t)p
(
(xy,z)p • t)(xy • (z, t)p

)−1(
(x, y)p • zt)(xy • (z, t)p

)
. (3.30)

Using (3.27) to the first two terms and since (xy,z, t)k ∈ Z(A)xyzt, (x, y,zt)k ∈ Z(A)xyzt,
we finally get

L= (x, yzt)p
(
x • (y,zt)p

)(
xy • (z, t)p

)
(x, y,zt)k(xy,z, t)k. (3.31)

Comparison gives

(xy,z, t)k(x, y,zt)k = ((x, y,z)k • t)(x, yz, t)k
(
x • (y,z, t)k

)
. (3.32)

Hence, by (3.14) k is a 3-cocycle. �

Definition 3.4. The cocycle k satisfying (3.27) is called an obstruction of the abstract kernel
Ψ : S→ RegE(A)/ InnE(A). The following lemma shows that the cohomology class defined
by k is independent of chosen σ and p.

Lemma 3.5. (i) For a given σ , a change in the choice of p in (3.17) replaces k by a cohomol-
ogous cocycle. By suitably changing the choice of p, k may be replaced by any cohomologous
cocycle.

(ii) A change in the choice of σ may be followed by a suitable new selection of p so as to
leave the obstruction cocycle k unchanged.

Proof. (i) Suppose p′ is another choice of p and let k′ be the corresponding 3-cocycle so
that

(xy,z)p′
(
(x, y)p′ • z)= (x, yz)p′

(
x • (y,z)p′

)
(x, y,z)k′ (3.33)

for all x, y,z ∈ S. We will show that k, k′ are cohomologous. Since p and p′ satisfy (3.17),
by Lemma 1.6, ((x, y)p)η = ((x, y)p′)η. So the exactness of the sequence in Proposition
2.5 gives rise to a 2-cochain τ : S× S→ Z(A) such that

(x, y)p′ = (x, y)p(x, y)τ. (3.34)

Substituting (3.34) in (3.33) and using (3.17), we get

(x, y,z)kk′−1 = (x, y,z)k(x, y,z)k′−1 = (x • (y,z)τ
)
(xy,z)τ−1(x, yz)τ

(
(x, y)τ • z)−1

(3.35)

for all x, y,z ∈ S. Thus by (3.15) k and k′ are cohomologous. To prove the second state-
ment, take any 3-cocycle k′ that is cohomologous to k. Then there is a 2-cochain τ :
S× S→ Z(A) such that (3.35) holds. If we put (x, y)p′ = (x, y)p(x, y)τ, x, y ∈ S, then p′

satisfies (3.17) and (3.33), and so k′ is the 3-cocycle defined by p′.
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(ii) Let σ ′ : S→ RegE(A) be another map such that (x)σ ′ ∈ (x)Ψ for all x ∈ S, and let
◦ denote the biaction of S on A induced by σ ′. Then by Lemma 2.11(ii) there exists a
map β : S→ A, (x)β ∈ Ax, such that (x)σ ′ = (x)σ((x)β)η for all x ∈ S. This implies by
Lemma 3.2

(xσ ′)(yσ ′)= (xy)σ ′
(
(xy)β−1(x, y)p

(
(x)β • y)(x • (y)β

))
η. (3.36)

Put (x, y)p′ = (xy)β−1(x, y)p((x)β • y)(x • (y)β)η. Then, by Lemma 2.11(i) and (ii),

(x, y)p′ = (xy)β−1(x, y)p
(
x ◦ (y)β

)(
(x)β ◦ y). (3.37)

By Lemma 2.14, (3.37), and by the relation x ◦ (y ◦ (z)β= xy ◦ (z)β), we have

(xyz)β(xy,z)p′
(
(x, y)p′ ◦ z)= (xyz)β(x, yz)p′

(
x ◦ (y,z)p′

)
(x, y,z)k. (3.38)

Hence,

(xy,z)p′
(
(x, y)p′ ◦ z)= (x, yz)p′

(
x ◦ (y,z)p′

)
(x, y,z)k. (3.39)

Thus the obstruction cocycle determined by p′ coincides with k. �

From Lemmas 3.3 and 3.5, we obtain the first part of the following.

Theorem 3.6. Let Ψ : S→ RegE(A)/ InnE(A) be an abstract kernel. Then Ψ defines a well-
defined element [k] of H3(SI , Ž(A)0F). Further, Ψ has an extension of S by A if and only if
[k]= 0.

Proof. If Ψ has an extension, then by Theorem 2.18 there is an extension of the form
(S,σ , p,A) with abstract kernelΨ and crossed pair (σ , p). Then, since (σ , p) satisfies (2.48),
it is clear from (3.27) that [k]= 0. Conversely, suppose [k]= 0. In view of Lemma 3.5(i),
we can assume without loss of generality that k = 0, the zero 3-cocycle. Then (σ , p) is a
crossed pair by (3.17) and (3.27), and the crossed extension (S,σ , p,A) is an extension of
S by A with abstract kernel Ψ by Theorems 2.15 and 2.16. �

Theorem 3.7. Let (S,σ , p,A) and (S,σ ,q,A) be two crossed extensions of S by A with ab-
stract kernel Ψ. Then (S,σ , p,A) is equivalent to (S,σ ,q,A) if and only if there exists an
1-cochain β : S→ Z(A) such that

(x, y)p(x, y)q−1 = ((x)β • y)(x • (y)β
)
(xy)β−1 (3.40)

for all x, y ∈ S.

Proof. Suppose (S,σ , p,A) and (S,σ ,q,A) are equivalent extensions and let θ : Tp → Tq

be an isomorphism such that θπq = πp and (a)Upθ = (a)Uq, a∈ Ae, e ∈ E. Define maps
j1 : S→ Tp and j2 : S→ Tq by (x) j1 = (x,1x); (x) j2 = (x,1x), where 1x denotes the identity
element of Ax for all x ∈ S. Then j1πp = 1S = j2πq. For x, y ∈ S and by Lemma 2.13(i)
and (ii), we can easily show that (xy) j1((x, y)p)Up = (x j1)(y j1). That is, (x j1)(y j1) =
(xy) j1((x, y)p)Up. Similarly (x j2)(y j2)= (xy) j2((x, y)q)Uq. The proof of Theorem 2.16
gives (x) j1µ1 = (x)σ(x) j2µ2 for all x ∈ S, where µ1 : Tp → RegE(A) and µ2 : Tq → RegE(A)
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are defined by (2.16). If we denote the composite j1θ : S→ Tq by j, then jπq = 1S, (x j)(y j)
= (xy) j((x, y)p)Uq, (x)σ = (x) jµ2 for all x, y ∈ S. Since jπq = 1S = j2πq, by Lemma 1.6
there exists a map β : S→ A, (x)β∈ Ax, such that

(x) j = (x) j2
(
(x)β

)
Uq, (3.41)

and so (x)σ = (x) jµ2 = (x) j2µ2((x)β)Uqµ2 = (x)σ((x)β)η for all x ∈ S. Then, by Lemma
1.6, (x)β ∈ Kerη or ((x)β)η= (1x)η (where 1x is the identity element of Ax) and therefore
by Proposition 2.5, (x)β∈ Z(A)x for all x ∈ S. Thus β is a 1-cochain. By using Lemma 2.17
and ((x)β • y)(x • (y)β)∈ Z(A)xy , we easily derive

(xy) j = (xy) j
[
(xy)β−1(x, y)q(x, y)p−1((x)β • y)(x • (y)β

)]
Uq. (3.42)

Then, by Lemma 1.6, (xy)β−1(x, y)q(x, y)p−1((x)β • y)(x • (y)β) = 1xy or, since β takes
values in Z(A),

(x, y)p(x, y)q−1 = ((x)β • y)(x • (y)β
)
(xy)β−1. (3.43)

Conversely, let β : S→ Z(A) be a 1-cochain such that (3.40) holds. This implies, in par-
ticular, (x)β commutes with every element of Ax, x ∈ S. Define a map θ : Tp → Tq by
(x,a)θ = (x,a(x)β) for all (x,a)∈ Tp. Then clearly θπq = πp. Moreover, for e ∈ E(S) and
a∈ Ae, by (2.65) we get (a)Upθ = (e, (e,e)p−1a)θ = (e, (e,e)p−1(e)βa)= (e, (e,e)q−1a)=
(a)Uq since (3.40) implies (e,e)q−1 = (e,e)p−1(e)β • e, and by Lemma 2.13(i), (e)β • e =
(e)β. Using (3.40) we can easily verify θ is an isomorphism. Hence, (S,σ , p,A) and (S,σ ,
q,A) are equivalent. �

Theorem 3.8. If the abstract kernel Ψ : S→ RegE(A)/ InnE(A) has an extension, then the set
ε(S,A) of equivalence classes of extensions of S by A with abstract kernel Ψ is in one-to-one
correspondence with the set H2(SI , Ž(A)0F).

Proof. Since Ψ admits an extension of S by A, by Theorem 2.18, there is an extension
of the form (S,σ , p,A) with abstract kernel Ψ. Keep σ fixed. Let α : S× S→ Z(A) be a
2-cocycle so that (xy,z)α((x, y)α • z)= (x, yz)α(x • (y,z)α) for all x, y,z ∈ S. Define pα :
S× S→ A by (x, y)pα= (x, y)p(x, y)α. Then (σ , pα) is a crossed pair and hence defines a
crossed extension (S,σ , pα,A) with abstract kernel Ψ. If α′ is another 2-cocycle, then

(x, y)α−1(x, y)α′ = (x, y)α−1(x, y)p−1(x, y)p(x, y)α′

= ((x, y)p(x, y)α−1)(x, y)p(x, y)α′

= ((x, y)pα
)−1

(x, y)pα′.

(3.44)

Therefore, using Theorem 3.7, it is easy to see that α, α′ are cohomologous if and only if
(S,σ , pα,A) and (S,σ , pα′,A) are equivalent. Hence, we have a well-defined injective map

ξ : [α]−→ [S,σ , pα,A] : H2(SI , Ž(A)0F
)−→ ε(S,A), (3.45)
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where [S,σ , pα,A] denotes the equivalence class of (S,σ , pα,A). Let (S,σ ,q,A) be an ex-
tension of S by A with abstract kernel Ψ. Then by (2.23), Lemma 1.6, and Proposition 2.5,
we prove (x, y)q(x, y)p−1 ∈ Z(A)(xy)∗xy = Z(A)xy . Put (x, y)α = (x, y)q(x, y)p−1. Then

α : S× S→ Z(A), (x, y)α∈ Z(A)xy is a 2-cochain. α is indeed a 2-cocycle. So [α]∈H2(SI ,

Ž(A)0F) and [α]ξ = [S,σ , pα,A] = [S,σ ,q,A]. Since every extension of S by A with ab-
stract kernel Ψ is equivalent to an extension of the form (S,σ ,q,A) by Theorem 2.18, it
follows that ξ is surjective. The proof of the theorem is complete. �

Theorems 3.6 and 3.8 generalize the corresponding results for inverse semigroups due
to Lausch [4].
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