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We construct a uniform in time asymptotics describing the interaction of two isothermal
shock waves with opposite directions of motion. We show that any smooth regularization
of the problem implies the realization of the stable scenario of interaction.

1. Introduction

We consider the gas dynamics system in the isothermal case

∂ρ

∂t
+
∂(ρu)
∂x

= 0, x ∈R1, t > 0,
∂(ρu)
∂t

+
∂

∂x

(
ρu2 + c2

0ρ
)= 0, (1.1)

together with the initial data in the form of two shock waves with opposite directions of
motion

ρ|t=0 = ρ0 + e1H
(− x+ x0

1

)
+ e2H

(
x− x0

2

)
,

u|t=0 = u1H
(− x+ x0

1

)
+u2H

(
x− x0

2

)
.

(1.2)

Here, H(x) is the Heaviside function, H(x) = 1 for x > 0, and H(x) = 0 for x < 0, ei =
ρi − ρ0 > 0 are amplitudes of jumps, and ρi,ui,c0 > 0 are constants. For definiteness, we
assume that ρ1 � ρ2 and x0

1 < x
0
2. The initial shock waves are assumed to be stable, so that

u1 = c0

(√
ρ1

ρ0
−
√
ρ0

ρ1

)
> 0,

u2 =−c0

(√
ρ2

ρ0
−
√
ρ0

ρ2

)
< 0.

(1.3)

The solution of problem (1.1), (1.2) seems nowadays to be well known. Indeed, the stan-
dard procedure of “step-by-step” consideration before and after the interaction time in-
stant t = t∗ shows that the solution is described by the two noninteracting shock waves
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for t < t∗, namely,

ρ= ρ0 + e1H
(− x+ϕ10(t)

)
+ e2H

(
x−ϕ20(t)

)
,

u= u1H
(− x+ϕ10(t)

)
+u2H

(
x−ϕ20(t)

)
,

(1.4)

where ϕi0 = ϕi0t t+ x0
i are the phases of the shocks,

ϕ10t = u1 + c0

√
ρ0

ρ1
= c0

√
ρ1

ρ0
, ϕ20t = u2− c0

√
ρ0

ρ2
=−c0

√
ρ2

ρ0
, (1.5)

and ϕ10(t∗)= ϕ20(t∗)
def= x∗ is the point of intersection of the paths x = ϕi0(t), i= 1,2.

Next, at the time t∗, the initial conditions (1.2) are replaced by the shock wave with
the amplitudes ρ1− ρ2 and u1−u2 of the jumps of ρ and u, which are concentrated at the
point x = x∗. Solving this Riemann problem, we obtain that the solution for t > t∗ is again
represented by two noninteracting shock waves with uniquely defined new amplitudes
and new paths of propagation (see, e.g., [2, 9]). Let us call this behavior of the solution
the “stable scenario.”

However, the uniqueness of weak solutions for hyperbolic systems of conservation laws
has been proved (with additional conditions) only for the case of sufficiently small am-
plitudes of shocks (see [1, 2, 8]). Apart from the above mentioned solution, the Riemann
problem admits a family of artificial solutions. Therefore, the described construction can-
not be treated as a well-posed one for the case of arbitrary amplitudes of shocks.

It is clear that the weak point of this scheme is the consideration of shock waves as
noninteracting ones for time close to t∗. Moreover, this conflicts with the physical sense
of the problem since the actual gas dynamics includes viscosity phenomena. Therefore,
it is necessary to smooth the solution for time close to t∗, and to consider the process of
interaction in detail.

Whitham [10] was the first to solve a similar problem for the inviscid Burgers-Hopf
equation

∂u

∂t
+
∂

∂x
f (u)= 0 (1.6)

with the quadratic nonlinearity f (u)= u2. Passing to the Burgers regularization and us-
ing the Hopf-Cole transformation, G. Whitham found the exact solution for the ini-
tial data similar to (1.2) and, as a result, established that the regularization implies the
choice of a stable scenario of interaction. However, this procedure works uniquely for
the quadratic nonlinearity. A progress in this problem has been achieved only recently
by Danilov and Shelkovich for (1.6) with convex nonlinearities (see [5]; see also [3, 4]).
Since it is impossible to find exact solutions in the general case, they constructed an as-
ymptotic solution in the framework of the “weak asymptotic method” [3, 4, 5, 6, 7]. The
main point here is the treatment of the solution uε(x, t) of the regularized problem as a
�∞(0,T ;�∞(R1)) mapping for ε= const > 0 and a �(0,T ;�′(R1)) mapping uniformly in
ε ∈ [0,1], where ε is a parameter of regularization. Respectively, a family uε(t,x) is called
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an asymptotic mod��′(ε) solution of (1.6) if the relation

d

dt

∫∞
−∞

uεψ dx−
∫∞
−∞

f
(
uε
)∂ψ
∂x

dx = �(ε) (1.7)

holds for any test function ψ = ψ(x). The main advantage of this approach is the possi-
bility to describe the interaction of nonlinear waves by an ordinary differential equation.
Let us note that this method allows also to describe soliton interactions for nonintegrable
problems [4, 7].

Our aim is a generalization of the weak asymptotic method for hyperbolic systems of
conservation laws. Using system (1.1) as a simple but meaningful example, we show that
this tool easily allows to construct an asymptotic solution. At the same time, we obtain
in this way a scattering-type problem for a dynamical system (instead of an equation in
the scalar case). Analysis of this problem requires the use of the specifics of the original
problem. However, this can be done, and we obtain a uniform in time description of the
interaction of two shock waves in the case of opposite directions of motion.

2. Construction of the asymptotic solution

Following the ideas sketched above, we arrive at what follows.

Definition 2.1. Sequences ρε(t,x) and uε(t,x) are called a weak asymptotic mod��′(ε)
solution of system (1.1) if ρε(t,x) and uε(t,x) belong to �∞([0,T]×R1) for ε= const > 0
and to �(0,T ;�′(R1)) uniformly in ε ∈ [0,const], and if the relations

d

dt

∫∞
−∞

ρεψ1dx−
∫∞
−∞

ρεuε
∂ψ1

∂x
dx = �(ε),

d

dt

∫∞
−∞

ρεuεψ2dx−
∫∞
−∞

(
ρεu

2
ε + c2

0ρε
)∂ψ2

∂x
dx = �(ε)

(2.1)

hold for any test functions, ψi = ψi(x)∈�(R1).

It is necessary to note that the parabolic regularization of (1.1) with �(ε) viscosity
terms implies �(ε) corrections in relations (2.1).

To present the asymptotic solution, let us denote ω = ω(η) ∈ �∞(R1) an auxiliary
function such that

lim
η→−∞ω = 0, lim

η→∞ω = 1. (2.2)

For simplicity, we assume that ω tends to its limiting values at an exponential rate. More-
over, we assume that

ω′η > 0, ω(η) +ω(−η)= 1. (2.3)

Obviously, this implies that ω(η)− 1/2 is an odd function and ω((x−φ)/ε)→H(x−φ)
as ε→ 0.
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Now, let us write the weak asymptotic solution for the problem (1.1), (1.2) in the
following form:

ρε = ρ0 + e1ω
(−x+φ1

ε

)
+ e2ω

(
x−φ2

ε

)
+ rω

(−x+φ1

ε

)
ω
(
x−φ1

ε

)
,

uε = u1ω
(−x+φ1

ε

)
+u2ω

(
x−φ2

ε

)
+ vω

(−x+φ1

ε

)
ω
(
x−φ1

ε

)
.

(2.4)

Here, the phases φi = φi(t,τ) are defined by

φi = ϕi0(t) +ψ0(t)ϕi1(τ), i= 1,2, (2.5)

where

ψ0(t)= ϕ20(t)−ϕ10(t), τ = ψ0(t)
ε

, (2.6)

and the phases of noninteracting shock waves, ϕi0, and ρ0, ei, ui are the same as in (1.4),
(1.5).

Thus, τ plays the role of a “fast” time and for time t before (after) the interaction
ψ0(t) > 0 and τ → +∞ (ψ0(t) < 0 and τ →−∞) as ε→ 0.

The functions ϕi1 = ϕi1(τ), r = r(τ), and v = v(τ) are assumed to be smooth and such
that

ϕi1 −→ 0, r −→ 0, v −→ 0 as τ −→ +∞, (2.7)

ϕi1 −→ ϕi1, r −→ r, v −→ v as τ −→−∞, (2.8)

where ϕi1,r, and v are some constants.
The first assumption (2.7) implies that the anzatz (2.4) describes the two noninter-

acting waves (1.4) before the interaction. In order to describe the behavior of the anzatz
after the instant time of interaction, we have to analyze the product ω((−x+φ1)/ε)ω((x−
φ2)/ε).

Lemma 2.2. Under the assumptions mentioned above, the following relations hold:

ωk
(
x−φi
ε

)
=H(x−φi)+ εdkδ

(
x−φi

)
+ ��′

(
ε2), (2.9)

ωk
(−x+φ1

ε

)
ω�
(
x−φ2

ε

)
= bk�

{
H
(− x+φ1

)−H(− x+φ2
)}

− ε{ck�δ(x−φ1
)

+ c�kδ
(
x−φ2

)}
+ ��′

(
ε2),

(2.10)

where k,� � 1, dk are some constants, d1 = 0 and

bk� = k
∫∞
−∞

ωk−1(η)ω′η(η)ω�(−σ −η)dη,

ck� = k
∫∞
−∞

ηωk−1(η)ω′η(η)ω�(−σ −η)dη.

(2.11)
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Here and in what follows

σ = φ2−φ1

ε
, ω′η(η)= dω(η)

dη
. (2.12)

Proof. Relation (2.9) is almost obvious. Let us only note that the equality d1 = 0 is a
direct consequence of the equality in (2.3). Furthermore, considering the left-hand side
of relation (2.10) in the weak sense, we obtain the following:

I
def=
∫∞
−∞

ωk
(−x+φ1

ε

)
ω�
(
x−φ2

ε

)
ψ(x)dx

=
∫∞
−∞

ωk
(−x+φ1

ε

)
ω�
(
x−φ2

ε

)
d

dx

∫ x
−∞

ψ(x′)dx′dx

=−
∫∞
−∞

ψ0(x)
{
ω�
(
x−φ2

ε

)
∂

∂x
ωk
(−x+φ1

ε

)
+ωk

(−x+φ1

ε

)
∂

∂x
ω�
(
x−φ2

ε

)}
dx

= k
∫∞
−∞

ωk−1(η)ω′η(η)ω�(−σ −η)ψ0(φ1− εη)dη

− �
∫∞
−∞

ω�−1(η)ω′η(η)ωk(−σ −η)ψ0
(
φ2 + εη

)
dη,

(2.13)

where ψ0(x) = ∫ x−∞ψ(x′)dx′, and ψ ∈�(R1), and we took into account the exponential
rate of vanishing of the product ω(η)ω(−η) as η→ ±∞. Now, applying the Taylor ex-
pansion and using notation (2.10), we can rewrite the right-hand side in (2.13) in the
following form:

I = bk�ψ0
(
φ1
)− b�kψ0

(
φ2
)− εck�ψ(φ1

)− εc�kψ(φ2
)

+ �
(
ε2). (2.14)

A detailed analysis of the integrals in (2.11) implies the following statement.

Lemma 2.3. The convolutions bk� and ck� exist and have the following properties:

bk�(σ)= b�k(σ) > 0,
σ

2
dbkk
dσ

+
dckk
dσ

= 0,

σ
db12

dσ
+
d

dσ

(
c12 + c21

)= 0,

lim
σ→+∞bk�(σ)= lim

σ→+∞ck�(σ)= 0, lim
σ→−∞bk� = 1, for any k,� � 1,

(2.15)

lim
σ→−∞c1� = 0, lim

σ→−∞c2� = c2
def=
∫∞
−∞

η
(
ω2(η)

)′
η dη, for � � 1. (2.16)
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Moreover,

for � � 1, k > 1, lim
σ→+∞

b�k
b�11

= 0, lim
σ→+∞

c11

b11
= α1σ ,

for i= 1,2, lim
σ→+∞

ci2
bi11

= βi, lim
σ→+∞

c21

b11
= 0,

for j = 1,2, lim
σ→+∞σ

j−1
(
db1 j

dσ

/
b11

)
= γj , lim

σ→+∞

(
dc12

dσ

/
b11

)
= c,

(2.17)

where α1, βi, γj , and c are constants.

Using the first equation in (2.15) and the obvious relation ψ0(φi) =
∫∞
−∞H(−x +

φi)ψ(x)dx, we see that (2.14) implies the desired relation (2.10). This completes the proof
of Lemma 2.2. �

Applying the statement of Lemma 2.2, we obtain that the weak asymptotic of the an-
zatz (2.4) has the following form:

ρε = ρ0− rb11 +
(
e1 + rb11

)
H
(− x+φ1

)
+
(
e2 + rb11

)
H
(
x−φ2

)
− εrc11

(
δ
(
x−φ1

)
+ δ
(
x−φ2

))
+ ��′

(
ε2), (2.18)

uε =−vb11 +
(
u1 + vb11

)
H
(− x+φ1

)
+
(
u2 + vb11

)
H
(
x−φ2

)
+ ��′

(
ε2). (2.19)

Therefore, for time after the interaction, we obtain two shock waves (or one wave if
limτ→−∞(φ1 − φ2) = 0) with new amplitudes and new trajectories of motion. It is clear
also that assumptions (2.8) are critical ones. Indeed, the breakdown of (2.8) implies the
realization of a scenario of shock waves interaction which is qualitatively different from
the stable scenario.

Now, let us find equations for the functions φi, r, and v. To this end, we should calcu-
late weak asymptotic expansions for the expressions in the integrals (2.1). Applying the
statement of Lemmas 2.2 and 2.3 and using the notation

V = vb11, R= rb11, Bik = bik
bi11

, Cik = cik
bi11

, (2.20)

after simple calculations, we obtain the following.

Lemma 2.4. Under the assumptions (2.2) and (2.3), the following relations hold:

ρεuε = ρ1u1H
(− x+φ1

)
+ ρ2u2H

(
x+φ2

)
+G1

{
H
(− x+φ1

)−H(− x+φ2
)}

+ εG2δ
(
x−φ1

)
+ εG3δ

(
x−φ2

)
+ ��′

(
ε2),

(2.21)

ρεu
2
ε = ρ1u

2
1H
(− x+φ1

)
+ ρ2u

2
2H
(
x+φ2

)
+G4

{
H
(− x+φ1

)−H(− x+φ2
)}

+ ��′(ε),
(2.22)
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where

Gi = gi0 + gi1V + gi2R+B22RV , i= 1,2,3,

G4 = g40 + g41V + g42R+ g43V
2 + g44RV +B33RV

2,

g10 =
(
e1u2 + e2u1

)
b11, g20 = g30 =

(
e1u2 + e2u1

)
c11,

g11 = ρ0 +
(
e1 + e2

)
B12, g12 =

(
u1 +u2

)
B12,

g21 = ρ0C11 + e1C21 + e2C12, g22 = u1C21 +u2C12,

g31 = ρ0C11 + e2C21 + e1C12, g32 = u2C21 +u1C12,

g40 = 2ρ0u1u2b11 +
[(
e1u2 + e2u1

)(
u1 +u2

)
+
(
e1 + e1

)
u1u2

]
b12,

g41 = 2
[
ρ0
(
u1 +u2

)
+
(
e1u1 + e2u2

)
B13 +

(
e1u2 + e2u1

)
b11B22

]
,

g42 =
(
u2

1 +u2
2

)
B13 + 2u1u2b11B22, g43 = ρ0B22 +

(
e1 + e2

)
B23,

g44 = 2
(
u1 +u2

)
B23.

(2.23)

Now, we should calculate the time derivatives. Since

dτ(t)
dt

= ψ0t

ε
, ψ0t = ϕ20t −ϕ10t , (2.24)

in order to obtain the precision �(ε) in the right-hand side of relations (2.1), we have to
take into account the terms of order ��′(ε) in (2.18) and (2.21). At the same time, the
phase derivatives do not include �(1/ε) terms since

dφi
dt
= ϕi0t +ψ0t ϕi1 +

ψ0

ε
ψ0t ϕ

′
i1 = ϕi0t +ψ0t

(
τϕi1

)′
. (2.25)

Here and in the sequel, the apostrophe denotes derivative with respect to τ.
Next, using formulas (2.18), (2.25), and notation (2.20), we find that

∂ρε
∂t

= (e1 +R
)dφ1

dt
δ
(
x−φ1

)− (e2 +R
)dφ2

dt
δ
(
x−φ2

)

+
ψ0t

ε
R′
{
H
(− x+φ1

)−H(− x+φ2
)}

−ψ0t
(
RC11

)′{
δ
(
x−φ1

)− δ(x−φ2
)}

+ ��′(ε).

(2.26)

Now we need to use the following almost obvious statement.

Lemma 2.5. Let S(τ) be a function from the Schwartz space, and let a function φk(τ)∈�∞

have the representation

φk(τ)= x∗ + εχk(τ), χk(0)= 0, (2.27)
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where x∗ = const and χk is a slowly increasing function. Then

S(τ)H
(− x+φk(τ)

)= S(τ)H
(− x+ x∗

)
+ εS(τ)χk(τ)δ

(
x− x∗)+ ��′

(
ε2). (2.28)

Moreover,

S(τ)δ
(
x− x∗)= S(τ)δ

(
x−φk(τ)

)
+ ��′(ε). (2.29)

Denoting x∗, t∗ the point and time instant of interaction of the paths x = ϕi0(t), i =
1,2, we obtain the equality

τ = ψ0(t)
ε

= ψ0t
t− t∗
ε

. (2.30)

Thus, for functions of the form (2.5), we have

φk = x∗ + ετ

(
ϕk0t

ψ0t
+ϕk1(τ)

)
def= x∗ + εχk(τ). (2.31)

The assumptions for r and the properties of the convolutions bk� , ck� imply exponential
rate of vanishing of the functions R′ and (RC11)′. This and the statement of Lemma 2.5
imply the following relation:

1
ε
R′
{
H
(− x+φ1

)−H(− x+φ2
)}= R′(χ1− χ2

)
δ
(
x− x∗)+ ��′(ε)

=−σ
2
R′
{
δ
(
x−φ1

)
+ δ
(
x−φ2

)}
+ ��′(ε).

(2.32)

Therefore,

∂ρε
∂t

=
{(
e1 +R

)dφ1

dt
−ψ0t L0

}
δ
(
x−φ1

)−{(e2 +R
)dφ2

dt
+ψ0t L0

}
δ
(
x−φ2

)
+ ��′(ε),

(2.33)

where

L0 = σ

2
R′ +

(
RC11

)′
. (2.34)

It remains to use equality (2.15). Introduce the following notation:

ki j = σ

2
bi j + ci j , Ḃ11 = 1

b11

db11

dσ
,

K1i = k1i

b11
, i= 1,2, K21 = k21

b11
, K22 = k22

b2
11
.

(2.35)

Then

L0 = K11
(
R′ −RḂ11σ

′). (2.36)
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Preparing similar calculations for the time derivative of ρεuε, we obtain the formula

∂ρεuε
∂t

=
{(
ρ1u1 +G1

)dφ1

dt
−ψ0t L1

}
δ
(
x−φ1

)

−
{(
ρ2u2 +G1

)dφ2

dt
+ψ0t L2

}
δ
(
x−φ2

)
+ ��′(ε),

(2.37)

where

Li = �i1 + �i2σ ′, �i1 =MiV
′ +NiR

′, i= 1,2,

M1 = ρ0K11 + e2K12 + e1K21 +RK22, N1 = u2K12 +u1K21 +VK22,

M2 = ρ0K11 + e1K12 + e2K21 +RK22, N2 = u1K12 +u2K21 +VK22,

�12 =
{(
e2− e1

)
D12−M1Ḃ11

}
V +

{(
u2−u1

)
D12−N1Ḃ11

}
R,

�22 =−
{(
e2− e1

)
D12 +M2Ḃ11

}
V − {(u2−u1

)
D12 +N2Ḃ11

}
R,

D12 = 1
b11

{
σ

2
db12

dσ
+
dc12

dσ

}
.

(2.38)

Next, using formulas (2.18), (2.21), and (2.22), it is easy to calculate the derivatives

∂ρε
∂x

=−(e1 +R
)
δ
(
x−φ1

)
+
(
e2 +R

)
δ
(
x−φ2

)
+ ��′(ε),

∂ρεuε
∂x

=−(ρ1u1 +G1
)
δ
(
x−φ1

)
+
(
ρ2u2 +G1

)
δ
(
x−φ2

)
+ ��′(ε),

∂ρεu2
ε

∂x
=−(ρ1u

2
1 +G4

)
δ
(
x−φ1

)
+
(
ρ2u

2
2 +G4

)
δ
(
x−φ2

)
+ ��′(ε).

(2.39)

Substituting expressions (2.32), (2.37), and (2.39) into relations (2.1), collecting coeffi-
cients of δ(x−φ1) and δ(x−φ2) and setting them equal to zero, we obtain

(
e1 +R

)dφ1

dt
= ψ0t L0 +G1 + ρ1u1, (2.40)

(
e2 +R

)dφ2

dt
=−ψ0t L0 +G1 + ρ2u2, (2.41)

(
ρ1u1 +G1

)dφ1

dt
= ψ0t L1 +G4 + ρ1u

2
1 + c2

0

(
e1 +R

)
, (2.42)

(
ρ2u2 +G1

)dφ2

dt
=−ψ0t L2 +G4 + ρ2u

2
2 + c2

0

(
e2 +R

)
. (2.43)

Theorem 2.6. Let there exist a smooth solution R, V , and φi, i= 1,2, of the system (2.40)–
(2.43) such that relations (2.7) and (2.8) hold. Then the weak asymptotic solution (2.4)
describes the stable scenario of the shock waves interaction uniformly in time.
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Proof. To prove this statement, it is enough to consider system (2.40)–(2.43) for τ →±∞.
Let τ → +∞. Assumption (2.7) and the vanishing of the convolutions imply the relations

Gi,Li,R,V −→ 0,
dφi
dt
−→ ϕi0t , i= 1,2, as τ −→ +∞. (2.44)

Thus, the system (2.40)–(2.43) transforms into the following:

eiϕi0t = ρiui, ρiuiϕi0t = ρiu2
i + c2

0ρi, i= 1,2. (2.45)

Obviously, equalities (2.45) are the Rankine-Hugoniot conditions for the shock waves
with amplitudes (ei,ui), i= 1,2, which propagate over the unperturbed gas with the state
(ρ0,u0 = 0).

Now, let us consider system (2.40)–(2.43) for τ →−∞, that is, for times after the in-
teraction.

Assumptions (2.8) and stabilization of the convolutions imply the relations

φi −→ φi(t), R−→ r, V −→ v as τ −→−∞. (2.46)

Using the explicit formulas (2.23), it is easy to establish that

G1 −→ ρ∗u∗ − ρ1u1− ρ2u2, G4 −→ ρ∗u∗2− ρ1u
2
1− ρ2u

2
2, (2.47)

where

ρ∗ = ρ0 + e1 + e2 + r, u∗ = u1 +u2 + v. (2.48)

Therefore, the system (2.40)–(2.43) reduces to

(
ρ∗ − ρ2

)
φ1t
= ρ∗u∗ − ρ2u2,

(
ρ∗u∗ − ρ2u2

)
φ1t
= ρ∗u∗2− ρ2u

2
2 + c2

0

(
ρ∗ − ρ2

)
,

(
ρ∗ − ρ1

)
φ2t
= ρ∗u∗ − ρ1u1,

(
ρ∗u∗ − ρ1u1

)
φ2t
= ρ∗u∗2− ρ1u

2
1 + c2

0

(
ρ∗ − ρ1

)
.

(2.49)

Thus, we obtain the Rankine-Hugoniot conditions for two shock waves which propagate
over the backgrounds (ρ2,u2) and (ρ1,u1), respectively. Obviously, equalities (2.49) imply
the standard formulas for the limiting velocities of the front motions

φ1t
= u∗ + c0

√
ρ2

ρ∗
, φ2t

= u∗ − c0

√
ρ1

ρ∗
. (2.50)

Moreover, solving (2.49) for ρ∗, u∗, we find the expressions

ρ∗ = ρ1ρ2

ρ0
, u∗ = u1 +u2, (2.51)
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which coincide with the well-known solution of the Riemann problem in the situation
under consideration. Thus, we can treat the system (2.40)–(2.43) as a generalization of
the Rankine-Hugoniot conditions for two interacting shocks with opposite directions of
motion. �

3. Investigation of the dynamical system

First of all, let us pass from (2.40)–(2.43) to a system of three autonomous equations. To
do this, let us solve (2.40), (2.41) with respect to φ1t , φ2t and subtract one from the other.
Since

dφ2

dt
− dφ1

dt
= ψ0t

d

dτ

ψ2−φ1

ε
= ψ0t

dσ

dτ
, (3.1)

we obtain the equality

dσ

dτ
= 1
ψ0t

{
G1 + ρ2u2

e2 +R
− G1 + ρ1u1

e1 +R

}
−L0

{
1

e2 +R
+

1
e1 +R

}
. (3.2)

Next, let us note that (2.40)–(2.43) imply the following compatibility conditions:

(−1)k+1ψ0t L0 +G1 + ρkuk
ek +R

= (−1)k+1ψ0t L0 +G4 + ρku2
k + c2

0

(
ek +R

)
ρkuk +G1

, (3.3)

for k = 1,2. Now, solving (3.2), (3.3) with respect to the derivatives στ ′, Rτ ′, Vτ
′, we can

rewrite these equations in the standard form

ψ0t
dU

dτ
= F(U), U = (σ ,R,V). (3.4)

Obviously, assumptions (2.7) imply the following scattering-type conditions:

σ

τ
−→ 1, R−→ 0, V −→ 0 as τ −→∞. (3.5)

Our aim is to establish the existence of a global solution for the problem (3.4), (3.5), and
to discover the behavior of σ , R, and V for τ →−∞. However, the explicit formulas for
the right-hand side F are rather unwieldy. In order to avoid too complicated algebraic
calculations, we restrict ourselves to the special case ρ1 = ρ2. It is easy to establish that
this choice implies the equality u1 =−u2, and moreover, V ≡ 0. Thus, in the special case,
we pass from the system (3.4) to the following system of two equations:

ψ0t
dσ

dτ
= 4u1

α2 + q1K11R

α3 +α4R
def= F1,

ψ0t
dR

dτ
= 2u1

e1q0 +
(
q0−α0

)
R−α1R2

α3 +α4R
def= F2,

(3.6)
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where ψ0t =−2u1ρ1/e1, and

q0 = ρ0b11 + e1b12, q1 = ρ0ρ1

2e2
1

+B13− b11B22,

α0 = ρ2
1

2e1
+ e1q1 + 2ρ1D12 + Ḃ11

(
ρ1N + 2K11

(
q0− ρ2

1

2e1

))
,

α1 = q1
(
1− 2K11Ḃ11

)
, α2 = K11

(
ρ2

1

2e1
− q0

)
− ρ1N

2
,

α3 = e1N − ρ1K11, α4 =N + 4K11D12, N = K21−K12.

(3.7)

There are four curves that specify the behavior of the system (3.6) trajectories. Let us
denote

γ±1 =
{
R= R±1 (σ), σ ∈R1}, R±1 =

1
2α1

(
q0−α0±

√(
α0− q0

)2
+ 4α1e1q0

)
, (3.8)

the isoclines of F1,

γ2 =
{
R= R2(σ), σ ∈R1}, R2 =− α2

q1K11
, (3.9)

the isocline of F2, and

γs =
{
R= R3(σ), σ ∈R1}, Rs =−α3

α4
, (3.10)

the curve of singularities.
The statement of Lemma 2.3 implies the following relations:

N −→ c2, K11 −→ σ

2
, D12, Ḃ11 −→ 0, q0 −→ ρ1, q1,α1 −→ ρ0ρ1

2e2
1

,

α0 −→ ρ1
(
ρ0 + ρ1

)
2e1

, α2 −→−ρ1
(
σ
(
ρ1− 2ρ0

)
+ 2c2e1

)
4e1

,

α3 =−σρ1

2
+ e1c2, α4 −→ c2 as σ −→−∞.

(3.11)

Therefore, for σ →−∞,

R+
1 −→

e2
1

ρ0
, R−1 −→−2e1, R2 −→− e1

ρ0

(
ρ1− 2e1

)
, Rs −→ σ

ρ1

2c2
. (3.12)

To consider the behavior of the curves γ for σ → +∞, we should make more precise es-
timates of the convolutions. Indeed, with the accuracy of Lemma 2.3, we obtain the re-
lations α1 → 0, α4 → 0 as σ → +∞ and loose the signs of the curves. The simplest way to
overcome this difficulty is to note that the limiting Rankine-Hugoniot conditions (2.45)
and (2.49) do not depend on the choice of the regularization ω. Thus we can use a specific
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regularization, for instance, ω(η)= (1 + tanhη)/2. For such a choice, we find

N −→ 1
2

, K11 −→− σ

2(2σ − 1)
, D12 −→ σ − 1

2σ − 1
,

Ḃ11 −→−4
σ − 1

2σ − 1
, q0 −→ 0, q1 −→ ρ0ρ1

2e2
1

,

α0 −→ e1q1, α1 −→ q1

4σ2
, α2 −→−ρ1

(
ρ1 + 2e1

)
8e1

,

α3 −→ 1
4

(
ρ1 + 2e1

)
, α4 −→ 1

8σ2
as σ −→∞.

(3.13)

Thus,

R+
1 −→ 0, R−1 −→−4σ2e1, R2 −→− e1

ρ0

(
ρ1 + 2e1

)
, Rs −→−2σ2(ρ1 + 2e1

)
.

(3.14)

Numerical simulations show that the curves γ±1 , γ2, and γs do not intersect for finite σ .
This implies that the system (3.6) does not have any critical points. At the same time,
the parts of the curve γ+

1 for σ → ±∞ play the role of a saddle point and an attractive
node, respectively. Indeed, let σ →−∞ and R = e2

1/ρ0 + r. Then, formulas (3.11) imply
the following linearization of system (3.6):

dσ

dτ
= ρ0

ρ1

(
1 +

r

e1

)
,

dr

dτ
=−ρ0 + ρ1

ρ1

r

σ
for σ�−1. (3.15)

The solution r = r(σ) has the form

e1 ln
(|r||σ|β)+ r = const, β =

(
ρ0 + ρ1

)
ρ0

> 0. (3.16)

So, in the leading term

σ = ρ0

ρ1
τ, |r| = |cσ|−β, c = const, (3.17)

and it is clear that the line R = e2
1/ρ0, σ = ρ0τ/ρ1 for τ →−∞ is similar to an attractive

node.
Let σ →∞. Formulas (3.13) imply the following linearization of system (3.6):

dσ

dτ
=
(

1 +
β1

e1
R
)

,
dR

dτ
= 2β1R, β1 = ρ0

ρ1 + 2e1
> 0. (3.18)

So, the trajectories go out a neighborhood of the line σ = τ, R = 0 with an exponential
velocity, whereas σ = τ and R= 0 satisfy system (3.6) for τ → +∞.



3124 Interaction of shock waves in gas dynamics

10

R

1

γ+
1

γ2

γ−1

σ

Figure 3.1. The phase portrait for system (3.6).

Therefore, taking into account the signs of the right-hand sides F1 and F2, we obtain
the phase portrait shown in Figure 3.1.

Now, it is evident the existence of a separatrix which goes from σ− = ρ0τ/ρ1,R− = e2
1/ρ0

(for τ →−∞) to σ+ = τ, R+ = 0 (for τ →∞) lying under the isocline γ+
1 . This implies the

following statement.

Theorem 3.1. There exists the separatrix for system (3.6) which coincides with the “points”
σ−, R− and σ+, R+. This separatrix can be specified by the scattering-type conditions

σ

τ
−→ 1, R−→ 0 for τ −→ +∞. (3.19)

It seems that a similar statement is true in the general case of arbitrary ρ1 and ρ2. In
any case, taking into account the limiting values of the convolutions, after cumbersome
calculations, it is possible to find the limiting values of the functions

σ− = τ ρ0√
ρ1ρ2

, R− = e1e2

ρ0
, V+ = 0 as τ −→−∞,

σ+ = τ, R+ = 0, V− = 0 as τ −→ +∞.
(3.20)

4. Calculations of the phase corrections

After solving problem (3.4), (3.5), we can find the phase corrections ϕi1. Using again the
formulas (2.25), we can rewrite (2.40), (2.41) in the following form:

ψ0t
d

dτ

(
τϕi1

)= G1 + ρiui + (−1)i+1ψ0t L0

ei +R
−ϕi0t def= fi(U), (4.1)

where i= 1,2, and U = (σ ,R,V).
Now, we readily derive the desired formulas as follows:

ϕi1(τ)= 1
ψ0t

1
τ

∫ τ
0
fi(U)dτ′, i= 1,2. (4.2)
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Smoothness of U implies the boundedness of fi at the point τ = 0. Thus, ϕi1 are bounded
at this point. Next, since

G1,L0,R−→ 0 as τ −→ +∞, ϕi0t =
ρiui
ei

, i= 1,2, (4.3)

the functions fi vanish sufficiently rapidly as τ →∞. This guarantees the convergence of
the integral in the right-hand sides of (4.2) as τ →∞. Hence,

ϕi1(τ)−→ 0 as τ −→ +∞, (4.4)

which confirms the first a priori assumption in (2.7). Furthermore,

fi(τ)= ρ∗u∗ − ρiui
ρ∗ − ρi

−ϕi0t + �
(
τ2eγτ

)
as τ −→ +∞, (4.5)

where we use the notation (2.48) and r = R−, v = V− since B11 → 1, i = 2 for i = 1, and
i= 1 for i= 2, and γ is a number defined by the choice of the regularization ω.

Thus, the integral diverges. By using L’Hospital rule, it is easy to find the limiting value
of ϕi1 as follows:

ϕi1 =
1
ψ0t

{
ρ∗u∗ − ρiui
ρ∗ − ρi

−ϕi0t
}

, i= 1,2. (4.6)

This satisfies the first a priori assumption in (2.13). Moreover, formulas (4.6) allow to
calculate the limiting phases φi = limτ→−∞φi. Indeed, using the Taylor expansion at the
time instant t = t∗ and taking into account equality (2.30), we derive

φi
def= ϕi0 +ψ0(t)ϕi1 = x∗ +

(
ϕi0t +ψ0t ϕi1

)(
t− t∗)

= x∗ +
ρ∗u∗ − ρiui
ρ∗ − ρi

(
t− t∗), i= 1,2.

(4.7)

Obviously, these phases satisfy the first Rankine-Hugoniot conditions (2.49).

5. Conclusion

We considered the gas dynamics system as the most important example of hyperbolic
systems of conservation laws. It seems obvious that the above described method of con-
struction of uniform in time asymptotics can be applied to general strictly hyperbolic
systems of conservation laws. Of course, the direct application of the method is possible
only when interaction of shock waves results in the appearance of new shock waves. It is
clear also that for systems of n equations, n > 2, the anzatz has to include all the possi-
ble stable shock waves. In such a case, sufficiently simple algebraic calculations allow to
obtain a result similar to Theorem 2.6. However, the investigation of the corresponding
dynamical system is not so easy in the general case. This and the appearance of centered
rarefaction, contact discontinuities, and vacuum state are the issues for future investiga-
tion.
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