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The aim of this paper is to investigate the Stoneley waves in a non-homogeneous or-
thotropic granular medium under the influence of a gravity field. The frequency equa-
tion obtained, in the form of a sixth-order determinantal expression, is in agreement with
the corresponding result when both media are elastic. The frequency equation when the
gravity field is neglected has been deduced as a particular case.

1. Introduction

Problem of Stoneley waves play an important role in the earthquake science, optics, geo-
physics, and plasma physics. Many authors such as Abd-Alla and Ahmed [1, 2], El-Naggar
et al. [8], Das et al. [6], and others studied the effect of gravity of the propagation of sur-
face waves (Stoneley waves, Rayleigh waves, and Love waves) in an elastic solid medium.
Goda [9] studied the effect of inhomogeneity and anisotropy on Stoneley waves.

The study of granular medium has been necessiated by its possible application in soil
mechanics, geophysical prospecting, mining engineering, and so forth. The theoretical
outline of the development of the subject from the mid-1930s was given by Paria [13].
The present paper, however, is based on the dynamics of granular media as propounded
by Oshima [11, 12].

The medium under consideration is discontinuous such as one composed numerous
large or small grains. Unlike a continuous body, each element or grain cannot only trans-
late but also rotate about its centre of gravity. This motion is the characteristic of the
medium and has an important effect upon the equation of motion to produce internal
friction. It is assumed that the medium contains so many grains that they will never be
separated from each other during the deformation and that the grain has perfect elasticity.
The propagation of Rayleigh waves in granular medium was given by many authors such
as Bhattacharyya [5], El-Naggar [7], Ahmed [4], and others. In [3], Ahmed discussed the
influence of gravity on the propagation of Rayleigh waves in granular medium.

This paper is devoted to the study of the effect of granular body and also of the gravity
field in the propagation of Stoneley waves. The wave velocity equation has been derived in
the form of a sixth-order determinant. The roots of this equation are in general complex
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and the imaginary part of an appropriate root measures the attenuation of the waves. It
is shown that the frequency of Stoneley waves contains terms involving the acceleration
due to gravity and so the phase velocity changes with respect to this acceleration due to
gravity. When the gravity field is neglected, the frequency equation has been deduced as
a particular case. Also when both media are elastic, the frequency equation reduces to the
corresponding result obtained by Abd-Alla and Ahmed [2] in the form of a fourth-order
determinant.

2. Formulation of the problem

LetM1 andM2 be two non-homogeneous orthotropic granular media. They are perfectly
welded in contact and are under the influence of gravity. These two media extend to
infinitely great distance from the origin and are separated by a plane horizontal boundary
andM2 is to be taken aboveM1. LetOx1x2x3 be a set of orthogonal Cartesian coordinates,
the origin O being any point on the plane boundary, x3-axis is vertically downwards into
the medium M1.

We consider the possibility of a type of wave traveling in the direction Ox1, in such
a manner that the disturbance is largely confined to the neighborhood of the boundary
which implies that the wave is a surface wave.

Notice that at any instant all particles in any line are parallel to Ox2, having equal
displacement, therefore all partial derivatives with respect to u2 are zero and there is no
propagation of displacement u2 [2].

The state of deformation in the granular medium is described by the displacement
vector U(u1,0,u3) of the centre of gravity of a grain and the rotation vector ξ(ξ,η,ζ) of
the grain about its centre of gravity. There exist a stress tensor and a stress couple and are
non-symmetric, that is,

τi j �= τji, Mij �=Mji, i= 1,2,3. (2.1)

The stress tensor τi j can be expressed as the sum of symmetric and anti-symmetric ten-
sors

τi j = σi j + σ ′i j , (2.2)

where

σi j = 1
2

(
τi j + τji

)
, σ ′i j =

1
2

(
τi j − τji

)
. (2.3)

The symmetric tensor σi j = σji is related to the symmetric strain tensor

ei j = eji = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

by the Hook’s law.
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The anti-symmetric stress σ ′i j are given by

σ ′23 =−F
∂ξ

∂t
, σ ′31 =−F

∂η

∂t
, σ ′12 =−F

∂ζ

∂t
,

σ ′11 = σ ′22 = σ ′33 = 0,

(2.5)

where F is the coefficient of fraction.
The stress couple Mij is given by

Mij =Mνi j , (2.6)

where M is the third elastic constant,

ν11 = ∂ξ

∂x1
, ν22 = 0, ν33 = ∂ζ

∂x3
, ν23 = 0,

ν31 = ∂ξ

∂x3
, ν12 = ∂

∂x1

(
η+ω2

)
, ν32 = ∂

∂x3

(
η+ω2

)
,

ν13 = ∂ζ

∂x1
, ν21 = 0,

(2.7)

where ω2 = ∂u1/∂x3− ∂u3/∂x1.
If g is the acceleration due to gravity, then the components of body forces are X = 0,

Z = g. Assuming that the initial stress field due to gravity is hydrostatic, the states of initial
stress τi j are [10]

τi j = τ, i= j,

τi j = 0, i �= j,
i, j = 1,2,3, (2.8)

where τ is a function of depth Ox3 only.
The equilibrium conditions of the initial stress field are [10]

∂τ

∂x1
= ∂τ

∂x2
= 0,

∂τ

∂x3
+ ρg = 0, (2.9)

where ρ is the density of the material medium.
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The six equations of motion are [2, 5]

∂τ11

∂x1
+
∂τ13

∂x3
+ ρg

∂u3

∂x1
= ρ∂

2u1

∂t2
,

∂τ12

∂x1
+
∂τ32

∂x3
= 0,

∂τ13

∂x1
+
∂τ33

∂x3
− ρg

∂u1

∂x1
= ρ∂

2u3

∂t2
,

τ23− τ32 +
∂M11

∂x1
+
∂M31

∂x3
= 0,

τ31− τ13 +
∂M12

∂x1
+
∂M32

∂x3
= 0,

τ12− τ21 +
∂M13

∂x1
+
∂M33

∂x3
= 0.

(2.10)

These equations, when the stresses are substituted, take the forms

∂

∂x1

[
C11

∂u1

∂x1
+C13

∂u3

∂x3

]
+

∂

∂x3

[
C55

(
∂u3

∂x1
+
∂u1

∂x3

)
−F ∂η

∂t

]
+ ρg

∂u3

∂x1
= ρ∂

2u1

∂t2
,

∂

∂x1

(
−F ∂ζ

∂t

)
+

∂

∂x3

(
F
∂ξ

∂t

)
= 0,

∂

∂x1

[
C55

(
∂u3

∂x1
+
∂u1

∂x3

)
+F

∂η

∂t

]
+

∂

∂x3

[
C13

∂u1

∂x1
+C33

∂u3

∂x3

]
− ρg ∂u1

∂x1
= ρ∂

2u3

∂t2
,

−F ∂ξ
∂t

+∇2(Mξ)= 0,

−F ∂η
∂t

+∇2
[
M
(
η+

∂u1

∂x3
− ∂u3

∂x1

)]
= 0,

−F ∂ζ
∂t

+∇2(Mζ)= 0,

(2.11)

where Cij are elastic constants.

3. Solution of the problem

We assume that the non-homogeneities are of the form

Cij = ai jemx3 , ρ= ρ0e
mx3 , F = F0e

mx3 , M =M0e
mx3 , (3.1)

where ai j , ρ0, F0, M0, and m are constants.
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Substituting from (3.1) into (2.11), we get

a11
∂2u1

∂x2
1

+ a13
∂2u3

∂x1∂x3
+ a55

(
∂2u3

∂x1∂x3
+
∂2u1

∂x2
3

)

+m
[
a55

(
∂u3

∂x1
+
∂u1

∂x3

)
−F0

∂η

∂t

]
−F0

∂

∂t

(
∂η

∂x3

)
+ ρ0 g

∂u3

∂x1
= ρ0

∂2u1

∂t2
,

∂

∂t

(
mξ +

∂ξ

∂x3
− ∂ζ

∂x1

)
= 0,

a55

(
∂2u3

∂x2
1

+
∂2u1

∂x1∂x3

)
+ a13

∂2u1

∂x1∂x3
+ a33

∂2u3

∂x2
3

+m
(
a31

∂u1

∂x1
+ a33

∂u3

∂x3

)
+F0

∂

∂t

(
∂n

∂x1

)
− ρ0g

∂u1

∂x1
= ρ0

∂2u3

∂t2
,

−F0
∂ξ

∂t
+M0∇2ξ +mM0

∂ξ

∂x3
= 0,

−F0
∂η

∂t
+M0∇2

(
η+

∂u1

∂x3
− ∂u3

∂x1

)
+mM0

∂

∂x3

(
η+

∂u1

∂x3
− ∂u3

∂x1

)
= 0,

−F0
∂ζ

∂t
+M0∇2ζ +mM0

∂ζ

∂x3
= 0.

(3.2)

We assume that the displacements u1 and u3 are derivable from the displacement po-
tentials φ(x1, x3, t), ψ(x1,x3, t) by the relations

u1 = ∂φ

∂x1
− ∂ψ

∂x3
, u3 = ∂φ

∂x3
+
∂ψ

∂x1
. (3.3)

Substituting from (3.3) into (3.2), we get the following wave equations satisfied by φ,
ψ, ξ, η, and ζ :

a11
∂2φ

∂x2
1

+
(
a13 + 2a55

)∂2φ

∂x2
3

+ 2ma55
∂φ

∂x3
+
(
ma55 + ρ0g

) ∂ψ
∂x1

= ρ0
∂2φ

∂t2
, (3.4)

∂

∂t

(
mξ +

∂ξ

∂x3
− ∂ζ

∂x1

)
= 0, (3.5)

a55
∂2ψ

∂x2
1

+
(
a33− a31− a55

)∂2ψ

∂x2
3

+ma33
∂ψ

∂x3
+ (ma31− ρ0g)

∂φ

∂x1
+F0

∂η

∂t
= ρ0

∂2ψ

∂t2
, (3.6)
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∇2ξ +m
∂ξ

∂x3
− S0

∂ξ

∂t
= 0, (3.7)

∇2η+m
∂η

∂x3
− S0

∂η

∂t
−∇4ψ−m ∂

∂x3

(∇2ψ
)= 0, (3.8)

∇2ζ +m
∂ζ

∂x3
− S0

∂ζ

∂t
= 0, (3.9)

where S0 = F0/M0.
Eliminating η from (3.6) and (3.8), we get

F0∇4
(
∂ψ

∂t

)
+mF0

∂2

∂x3∂t
(∇ψ)

+
(
∇2 +m

∂

∂x3
− S0

∂

∂t

)[
a55

∂2ψ

∂x2
1

+
(
a33− a31− a55

)∂2ψ

∂x2
3

+ma33
∂ψ

∂x3
+
(
ma31− ρ0g

) ∂φ
∂x1

− ρ0
∂2ψ

∂t2

]
= 0.

(3.10)

Assuming that

(φ,ψ)= {φ1
(
x3
)
,ψ1
(
x3
)}

exp
{
i
(
Lx1− bt

)}
, (3.11)(

ξ,η,ζ
)= {ξ1

(
x3
)
,η1
(
x3),ζ

(
x3
)}

exp
{
i
(
Lx1− bt

)}
. (3.12)

Substituting from (3.11) into (3.4) and (3.10), we get

((
a13 + 2a55

)
D2 + 2ma55D− a11L

2 + ρ0b
2)φ1 + iL

(
ma55 + ρ0g

)
ψ1 = 0, (3.13)

{[(
a33− a31− a55

)− ibF0
]
D4 +m

[(
2a33− a31− a55

)− ibF0
]
D3

− [(L2a55− ρ0b
2 +m2a33− 2ibLF0

)
+
(
L2− ibs0

)(
a33− a31− a55

)]
D2

−m((L2a55− ρ0b
2)+ a33

(
L2− ibS0

)− ibF0L
2)D

+
((
L2− ibS0

)(
L2a55− ρ0b

2)− ibF0L
4)}ψ1

− iL(ρ0g −ma31
)(
D2 +mD− (L2− ibS0

))
φ1 = 0,

(3.14)

where D ≡ d/dx3.
Equations (3.13) and (3.14) must have exponential solutions in order that φ1, ψ1 will

describe surface waves; they must become vanishingly small as x3 →∞. Hence, for the
medium M1,

φ1 = Aje
−λjx3 , (3.15)

ψ1 = Bje−λjx3 , ( j = 3,4,5), (3.16)

where the constants Aj are related with the constants Bj , respectively, by means of (3.13).
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Equating the coefficients of the exponentials e−λjx3 ( j = 3,4,5) to zero and using (3.13)
and (3.14), we have

Aj = njBj , (3.17)

where

nj = −iL(ρ0g +ma55
)

(
a13 + 2a55

)
λ2
j − 2ma55λj + ρ0b2− a11L2

, ( j = 3,4,5), (3.18)

λ3, λ4, λ5 are the roots which have a positive real part of the equation

k0λ
6 + k1λ

5 + k2λ
4 + k3λ

3 + k4λ
2 + k5λ+ k6= 0,

k0 =
(
a13 + 2a55

)[(
a33− a31− a55

)− ibF0
]
,

k1 =−m
{(
a13 + 4a55

)[(
a33− a31− a55

)− ibF0
]

+ a33
(
a13 + 2a55

)}
,

k2 =
[(
a33− a31− a55

)− ibF0
](
ρ0b

2− a11L
2 + 2m2a55

)
+ 2m2a33a55

− (a13 + 2a55
)(
L2a55− ρ0b

2 +m2a33− 2ibL2F0 +
(
L2− ibS0

)(
a33− a31− a55

))
,

k3 =−m
{(
ρ0b

2− a11L
2)[(2a33− a31− a55

)− ibF0
]

− 2a55
(
L2a55− ρ0b

2 +m2a33− 2ibL2F0 +
(
L2− ibS0

)(
a33− a31− a55

))
− (a13 + 2a55

)(
L2a55− ρ0b

2− ibL2F0 + a33
(
L2− ibS0

))}
,

k4 =
(
a11L

2− ρ0b
2)(L2a55− ρ0b

2 +m2a33− 2ibL2F0 +
(
L2− ibS0

)(
a33− a31− a55

))
− 2m2a55

[(
L2a55− ρ0b

2)+ a33
(
L2− ibS0

)− ibF0L
2]

− (a13 + 2a55
)[(

L2− ibS0
)(
ρ0b

2−L2a55
)
+ibF0L

4]
+L2(ma55 + ρ0g

)(
ma31− ρ0g

)
,

k5 =m
{
L2a55− ρ0b

2 + a33
(
L2− ibS0

)− ibF0L
2

+ 2a55
((
L2− ibS0

)(
ρ0b

2−L2a55
)

+ ibF0L
4)−L2(ma55 + ρ0g

)(
ma31− ρ0g

)}
,

k6 =
(
a11L

2− ρ0b
2)((L2− ibS0

)(
ρ0b

2− a55L
2)+ ibF0L

4)
−L2(ma55 + ρ0g

)(
ma31− ρ0g

)(
L2− ibS0

)
.

(3.19)

Using (3.8), (3.11), (3.12), and (3.16), one gets

η1 =Ω j
(
Bje

−λjx3
)
, (3.20)
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where

Ω j =
λ4
j −mλ3

j − 2L2λ4
j +mL2λi +L4

λ2
j −mλi + ibS0−L2

. (3.21)

Also, substituting from (3.12) into (3.5), (3.7), and (3.9), we get

(D+m)ξ1− iLζ1 = 0, (3.22)

(
D2 +mD+h2)ξ1 = 0, (3.23)

(
D2 +mD+h2)ζ1 = 0, (3.24)

where h2 = ibS0−L2.
The solutions of (3.23) and (3.24) are

ξ1 =A2e
−ih2x3 , ζ1 = B2e

−ih2x3 , (3.25)

where h2 = (−m+
√
m2− 4h2)/2.

From (3.25) and (3.22), one can obtain

A2 = −L
h2 + im

B2. (3.26)

We use the symbols with a bar for the upper medium (except x3, L, b, g) and the
functions ξ̄1, ζ̄1, η̄1, φ̄1, and ψ̄1 must vanish as x→−∞.

For the upper medium M2, we have

ξ̄1 = Ā2e
ih̄2x3 , ζ̄1 = B̄2e

ih̄2x3 ,

η̄1 = Ω̄ j B̄ je
λ̄ j x3 , φ̄1 = Ā je

λ̄ j x3 , ψ̄1 = B̄ je λ̄ j x3 ( j = 3,4,5).
(3.27)

4. Boundary conditions and frequency equation

The boundary conditions on the interface x3 = 0 are
(i) u1 = ū1,

(ii) u3 = ū3,
(iii) ξ = ξ̄,
(iv) η = η̄,
(v) ζ = ζ̄ ,

(vi) M33 = M̄33,
(vii) M31 = M̄31,

(viii) M32 = M̄32,
(ix) τ33 = τ̄33,
(x) τ31 = τ̄31,

(xi) τ32 = τ̄32,
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where

M33 =M ∂ζ

∂x3
, M32 =M ∂

∂x3

(
η−∇2ψ

)
, M31 =M ∂ξ

∂x3
,

τ33 = C13
∂2φ

∂x2
1

+C33
∂2φ

∂x2
3

+
(
C33−C13

) ∂2ψ

∂x1∂x3
,

τ32 =−F ∂ξ
∂t

, τ31 = C55

(
∂2ψ

∂x2
1
− ∂2ψ

∂x2
3

+ 2
∂2φ

∂x1∂x3

)−F ∂η
∂t
.

(4.1)

From the boundary conditions (iii), (v), (vi), and (vii), we get

A2 = Ā2, B2 = B̄2, h2M0 =−h̄2M̄0, (4.2)

whence A2 = Ā2 = B2 = B̄2 = 0, ξ = ζ = ξ̄ = ζ̄ = 0.
The other significant boundary conditions are responsible for the following relations:

(i) (iLnj + λj)Bj = (iLn̄ j − λ̄ j)B̄ j ,
(ii) (iL−njλj)Bj = (iL+ n̄ j λ̄ j)B̄ j ,
(iv) Ω jBj = Ω̄ j B̄ j ,

(viii) M0[(L2 +Ω j)λj − λ3
j ]Bj = M̄0[−(L2 + Ω̄ j)λ̄ j + λ̄3

j ]B̄ j ,

(ix) [(a33λ
2
j − a13L2)nj − iL(a33− a13)λi]Bj = [(ā33λ̄

2
j − ā13L2)n̄ j + iL(ā33− ā13)λ̄i]B̄ j ,

(x) [a55(L2 + λ2
j + 2iLnjλj)− ibF0Ω j]Bj = [ā55(L2 + λ̄2

j − 2iLn̄ j λ̄ j)− ibF̄0Ω̄ j]B̄ j .
Eliminating the constants Bj , B̄ j ( j = 3,4,5), we obtain the wave velocity equation in the
form of a sixth-order determinantal equation,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iLn3 + λ3 iLn4 + λ4 iLn5 + λ5 iLn̄3− λ̄3 iLn̄4− λ̄4 iLn̄5− λ̄5

iL−n3λ3 iL−n4λ4 iL−n5λ5 iL+ n̄3λ̄3 iL+ n̄4λ̄4 iL+ n̄5λ̄5

Ω3 Ω4 Ω5 Ω̄3 Ω̄4 Ω̄5

Q13 Q14 Q15 Q̄13 Q̄14 Q̄15

Q23 Q24 Q25 Q̄23 Q̄24 Q̄25

Q33 Q34 Q35 Q̄33 Q̄34 Q̄35

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (4.3)

where

Q1 j =M0
(
L2 +Ω j − λ2

j

)
λj ,

Q2 j = nj
(
a33λ

2
j − a13L

2)− iL(a33− a13
)
λj ,

Q3 j = a55
(
L2 + λ2

j + 2iLnjλj
)− ibF0Ω j ,

Q̄1 j =−M̄0
(
L2 + Ω̄ j − λ̄2

j

)
λ̄ j ,

Q̄2 j = iL
(
a33− a13

)
λ̄ j − n̄ j

(
a13L

2− a33λ̄
2
j

)
,

Q̄3 j = ā55
(
L2− 2iLn̄ j λ̄ j + λ̄2

j

)− ibF̄0Ω̄ j , j = 3,4,5.

(4.4)

Equation (4.3) is the frequency equation of Stoneley waves in a non-homogeneous or-
thotropic granular medium under the influence of gravity, this equation depends on the
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particular values of λj and λ̄ j creating a dispersion of the general wave form. Moreover,
the wave velocity C (= b/L) depends on the gravity field, the non-homogeneous of the
material medium and the granular rotations.

From (3.18), (3.19), and (4.3), we can assert that when L is Large, so that the length of
the wave is small, the effect of gravity is sufficiently small, that is, the wave length of the
wave is large, the effect of gravity is no longer negligible and plays an important role on
the determination of the wave velocity C.

If we neglect the gravity field, we obtain the wave velocity equation for Stoneley waves
in a non-homogeneous orthotropic granular medium which is the same equation as (4.3)
with

nj = −imLa55(
a13 + 2a55

)
λ2
i − 2ma55λi + ρ0b2− a11L2

, ( j = 3,4,5), (4.5)

where λj are the roots of the equation

k0λ
6 + k1λ

5 + k2λ
4 + k3λ

3 + k′4λ
2 + k′5λ+ k′6 = 0,

k′4 =
(
a11L

2− ρ0b
2)[L2a55− ρ0b

2 +m2a33− 2ibL2F0 +
(
L2− ibs0

)(
a33− a31− a55

)]
− 2m2a55

[(
L2a55− ρ0b

2)+ a33
(
L2− ibs0

)− ibF0L
2]

− (a13 + 2a55
)[(

L2− ibs0
)(
ρ0b

2−L2a55
)

+ ibF0L
4]+m2L2a55a31,

k′5 =m
{
L2a55− ρ0b

2 + a33
(
L2− ibs0

)− ibF0L
2

+ 2a55
[(
L2− ibs0

)(
ρ0b

2−L2a55
)

+ ibF0L
4]−m2L2a55a31

}
,

k′6 =
(
a11L

2− ρ0b
2)[(L2− ibs0

)(
ρ0b

2− a55L
2)+ ibF0L

4]−m2L2a55a31
(
L2− ibs0

)
.

(4.6)

When both media are elastic (M0 = 0, F0 = 0), by using (3.4) and (3.6); (3.18) becomes

nj = −iL(ma55 + ρ0g
)

(
a13 + 2a55

)
λ2
j − 2ma55λj − a11L2 + ρ0b2

, ( j = 3,4), (4.7)

λj are the real roots of the equation

(
a13 + 2a55

)(
a33− a31− a55

)
λ4

−m[2a55
(
a33− a31− a55

)
+ a33

(
a13 + 2a55

)]
λ3

+
[(
ρ0b

2− a11L
2)(a33− a31− a55

)
+
(
a13 + 2a55

)(
ρ0b

2− a55L
2)+ 2m2a55a33

]
λ2

+mL2[a33
(
a11− ρ0b

2)+
(
a13 + 2a55

)(
a55− ρ0b

2)]λ
+L2[(ρ0b

2− a11
)(
ρ0b

2− a55
)

+
(
ma31− ρ0g

)(
ma55 + ρ0g

)]= 0,
(4.8)
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and the frequency equation (4.3) takes the form

∣∣∣∣∣∣∣∣∣∣∣

iLn3 + λ3 iLn4 + λ4 iLn̄3− λ̄3 iLn̄4− λ̄4

iL−n3λ3 iL−n4λ4 iL+ n̄3λ̄3 iL+ n̄4λ̄4

Q23 Q24 Q̄23 Q̄24

Q33 Q34 Q̄33 Q̄34

∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.9)

Equation (4.9) determines the wave velocity equation for Stoneley wave in a non-
homogeneous orthotropic elastic medium under the influence of gravity and is in com-
plete agreement with that obtained by Abd-Alla and Ahmed [2].
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