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A generalized logistic distribution is proposed, based on the fact that the difference of two
independent Gumbel-distributed random variables has the standard logistic distribution.

1. Introduction

If X1 and X2 are independent Gumbel-distributed random variables with the common
cdf

F(x)= exp
{− exp(−x)

}
, (1.1)

then it is well known that the difference Z = X1−X2 has the standard logistic distribution
with the pdf

fZ(z)= exp(z){
1 + exp(z)

}2 (1.2)

for −∞ < z <∞. The properties of this distribution and its generalizations have been
studied by several authors. Of particular eminence are the numerous papers on this topic
by Professor N. Balakrishnan and his colleagues; see, for example, Balakrishnan [1, 2, 3],
Balakrishnan and Aggarwala [4], Balakrishnan et al. [5, 7, 12], Balakrishnan and Chan
[6], Balakrishnan and Joshi [8], Balakrishnan and Kocherlakota [9], Balakrishnan and
Leung [10], Balakrishnan and Malik [11], Balakrishnan and Puthenpura [13], Balakrish-
nan and Sandhu [14], and Balakrishnan and Wong [15].

In this short note, we construct a new generalization of (1.2) by taking Xi, i= 1,2, to
have the general Gumbel distribution with the cdf

Fi(x)= exp
{
− exp

(
− x−µi

σi

)}
(1.3)

for −∞ < x <∞, −∞ < µi <∞, and σi > 0. This distribution (which is also known as the
extreme-value distribution of type I) has received special attention in the probabilistic-
statistical literature and in various applications in the second half of the twentieth century.
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A recent book by Kotz and Nadarajah [16], which describes this distribution, lists over
fifty applications ranging from accelerated life testing through to earthquakes, floods,
horse racing, rainfall, queues in supermarkets, sea currents, wind speeds, and track race
records (to mention just a few).

2. The generalization

The pdf corresponding to (1.3) is

fi(x)= 1
σi

exp
(
− x−µi

σi

)
exp

{
− exp

(
− x−µi

σi

)}
, (2.1)

and thus the pdf of Z = X1−X2 can be written as

fZ(z)=
∫∞
−∞

f1(x) f2(x− z)dx

= 1
σ1σ2

∫∞
−∞

exp
(
− x−µ1

σ1

)
exp

{
− exp

(
− x−µ1

σ1

)}

× exp
(
− x− z−µ2

σ2

)
exp

{
− exp

(
− x− z−µ2

σ2

)}
dx.

(2.2)

Setting y = exp(−x/σ1), (2.2) can be expressed as

fZ(z)= 1
σ2

exp
(
µ1

σ1
+
µ2 + z

σ2

)
I
(
µ1,µ2,σ1,σ2

)
, (2.3)

where I denotes the integral

I
(
µ1,µ2,σ1,σ2

)=
∫∞

0
yσ1/σ2 exp

[
−
{

exp
(
µ1

σ1

)
y + exp

(
µ2 + z

σ2

)
yσ1/σ2

}]
dy. (2.4)

We refer to (2.3) as the generalized logistic distribution. The integral term in (2.4) is dif-
ficult to calculate. However, for some particular choices of (µ1,µ2,σ1,σ2), one can obtain
the following explicit expressions.

(i) If σ1 = σ2 = σ , then by standard integration one can obtain

I = 1{
exp

(
µ1/σ

)
+ exp

((
µ2 + z

)
/σ
)}2 . (2.5)

If, in addition, µ1 = µ2 = µ, then the above reduces to

I = exp(−2µ/σ){
1 + exp(z/σ)

}2 . (2.6)
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(ii) If σ1 = 2σ2, then one can show by [17, equation (2.3.15.7)] that

I = α
√
πα

8
exp

(
αβ2

4

){
2erfc

(√
αβ

2

)
+αβ2 erfc

(√
αβ

2

)}
− α2β

4
, (2.7)

where α= exp{(µ2 + z)/σ2}, β = exp{µ1/(2σ2)}, and erfc(·), denotes the complementary
error function defined by

erfc(x)= 1− 2√
π

∫ x

0
exp

(− t2)dt. (2.8)

(iii) If 0 < σ1/σ2 = p/q < 1 (where p ≥ 1 and q ≥ 1 are co-prime integers), then one can
show by [17, equation (2.3.1.13)] that

I =
q−1∑
j=0

(−α) j

j!
Γ
(

1 +
p(1 + j)

q

)
β−(1+p(1+ j)/q)

×p+1 Fq

(
1,∆

(
p,1 +

p(1 + j)
q

)
;∆(q,1 + j);

(−1)q ppαq

qqβp

)
,

(2.9)

where α= exp{(µ2 + z)/σ2}, β = exp(µ1/σ1), ∆(k,a) denotes the sequence

∆(k,a)= a

k
,
a+ 1
k

, . . . ,
a+ k− 1

k
, (2.10)

mFn denotes the generalized hypergeometric function defined by

mFn
(
α1, . . . ,αm;β1, . . . ,βn;x

)=
∞∑
k=0

(
α1
)
k ···

(
αm
)
k(

β1
)
k ···

(
βn
)
k

xk

k!
, (2.11)

and (c)k = c(c+ 1)···(c+ k− 1) denotes the ascending factorial.
(iv) If σ1/σ2 = p/q > 1 (where p ≥ 1 and q ≥ 1 are coprime integers), then one can

show again by [17, equation (2.3.1.13)]that

I =
p−1∑
j=0

q(−β) j

p j!
Γ
(

1 +
q(1 + j)

p

)
α−(1+q(1+ j)/p)

×q+1 Fp

(
1,∆

(
q,1 +

q(1 + j)
p

)
;∆(p,1 + j);

(−1)pqqβp

ppαq

)
,

(2.12)

where α= exp{(µ2 + z)/σ2} and β = exp(µ1/σ1).
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Figure 2.1. The generalized logistic pdf (2.3) for σ1/σ2 = 0.2,1,2,5,10, σ2 = 1, µ1 = 0, and µ2 = 1.
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Figure 2.2. The generalized logistic pdf (2.3) for σ1/σ2 = 0.2,1,2,5,10, σ2 = 1, µ1 = 1, and µ2 = 0.

Figures 2.1 and 2.2 illustrate possible shapes of the pdf (2.3) for selected values of
(µ1,µ2,σ1,σ2). The magnitude of σ1/σ2 clearly controls the shape of the pdf. In fact, if
µ1 = 0, then

fZ(z)−→ 1
σ2

exp
(
µ2 + z

σ2

)
exp

{
− exp

(
µ2 + z

σ2

)}
(2.13)
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as σ1/σ2 → 0. Also, f (z) → 0 for every z ∈ (0,∞) as σ1/σ2 →∞. On the other hand, if
µ1 �= 0, then f (z)→ 0 for every z ∈ (0,∞) irrespective of whether σ1/σ2 → 0 or σ1/σ2 →∞.

3. Applications

The standard logistic distribution given by (1.2) has important uses in describing growth
and as a substitute for the normal distribution. It has also attracted interesting applica-
tions in the modeling of the dependence of chronic obstructive respiratory disease preva-
lence on smoking and age, degrees of pneumoconiosis in coal miners, geological issues,
hemolytic uremic syndrome data for children, physiochemical phenomenon, psycholog-
ical issues, survival time of diagnosed leukemia patients, and weight gain data. The main
feature of the generalized logistic distribution in (2.3) is that new parameters are intro-
duced to control both location and scale. Thus, (2.3) allows for a greater degree of flexi-
bility and we can expect this to be useful in many more practical situations.
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